def test_load_lfw_pairs(): if not os.path.exists(os.path.join(get_data_home(), 'lfw_home')): raise SkipTest lfw_pairs_train = load_lfw_pairs(subset='train') # this dataset is used for training supervised face verification models, # this is a binary classification task top_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, top_classes) # default slice is a rectangular shape around the face, removing # most of the background, for each of the 2 face pictures assert_equal(lfw_pairs_train.data.shape, (2200, 2, 62, 47)) # the ordering is respecting the metadata text file of the official LFW # tasks assert_equal(lfw_pairs_train.target.shape, (2200, )) assert_array_equal(lfw_pairs_train.target[:5], [1, 1, 1, 1, 1]) assert_array_equal(lfw_pairs_train.target[-5:], [0, 0, 0, 0, 0]) # as for the people loader it is also possible to load the color channels # in the last dimension lfw_pairs_train = load_lfw_pairs(subset='train', color=True) assert_equal(lfw_pairs_train.data.shape, (2200, 2, 62, 47, 3)) # the data also has a test development set and a 10-fold CV dataset for # final evaluation lfw_pairs_test = load_lfw_pairs(subset='test') assert_equal(lfw_pairs_test.data.shape, (1000, 2, 62, 47)) lfw_pairs_10_folds = load_lfw_pairs(subset='10_folds') assert_equal(lfw_pairs_10_folds.data.shape, (6000, 2, 62, 47))
def test_load_fake_lfw_pairs(): lfw_pairs_train = load_lfw_pairs(data_home=SCIKIT_LEARN_DATA) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.data.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = load_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True) assert_equal(lfw_pairs_train.data.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
def test_load_lfw_pairs(): if not os.path.exists(os.path.join(get_data_home(), 'lfw_home')): raise SkipTest lfw_pairs_train = load_lfw_pairs(subset='train') # this dataset is used for training supervised face verification models, # this is a binary classification task top_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, top_classes) # default slice is a rectangular shape around the face, removing # most of the background, for each of the 2 face pictures assert_equal(lfw_pairs_train.data.shape, (2200, 2, 62, 47)) # the ordering is respecting the metadata text file of the official LFW # tasks assert_equal(lfw_pairs_train.target.shape, (2200,)) assert_array_equal(lfw_pairs_train.target[:5], [1, 1, 1, 1, 1]) assert_array_equal(lfw_pairs_train.target[-5:], [0, 0, 0, 0, 0]) # as for the people loader it is also possible to load the color channels # in the last dimension lfw_pairs_train = load_lfw_pairs(subset='train', color=True) assert_equal(lfw_pairs_train.data.shape, (2200, 2, 62, 47, 3)) # the data also has a test development set and a 10-fold CV dataset for # final evaluation lfw_pairs_test = load_lfw_pairs(subset='test') assert_equal(lfw_pairs_test.data.shape, (1000, 2, 62, 47)) lfw_pairs_10_folds = load_lfw_pairs(subset='10_folds') assert_equal(lfw_pairs_10_folds.data.shape, (6000, 2, 62, 47))
def test_load_empty_lfw_pairs(): lfw_people = load_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA)