Пример #1
0
def solve_psd(A,b,overwrite_b=False,return_chol=False):
    from scipy.linalg.lapack import dposv
    if return_chol:
        L, x, _ = dposv(A,b,lower=1,overwrite_b=overwrite_b)
        return np.tril(L), x
    else:
        return dposv(A,b,overwrite_b=overwrite_b)[1]
Пример #2
0
def solve_psd(A,b,overwrite_b=False,return_chol=False):
    from scipy.linalg.lapack import dposv
    if return_chol:
        L, x, _ = dposv(A,b,lower=1,overwrite_b=overwrite_b)
        return np.tril(L), x
    else:
        return dposv(A,b,overwrite_b=overwrite_b)[1]
def LAPACK_solve_ls_with_normal_equation(A, b):
    #  The corresponding procedure in LAPACK is https://www.netlib.org/lapack/lug/node27.html
    ATA = np.matmul(A.T, A)
    ATb = np.matmul(A.T, b)
    # ATA = dgemm(1, A.T, A)
    # ATb = dgemm(1, A.T, b)
    _, x, _ = dposv(ATA, ATb)
    # _, _, x, _ = dgesv(ATA, ATb)
    return x
Пример #4
0
def solve_psd(A,
              b,
              chol=None,
              lower=True,
              overwrite_b=False,
              overwrite_A=False):
    if chol is None:
        return lapack.dposv(A,
                            b,
                            overwrite_b=overwrite_b,
                            overwrite_a=overwrite_A)[1]
    else:
        return lapack.dpotrs(chol, b, lower, overwrite_b)[0]
Пример #5
0
def solve_psd(A,b,chol=None,lower=True,overwrite_b=False,overwrite_A=False):
    if chol is None:
        return lapack.dposv(A,b,overwrite_b=overwrite_b,overwrite_a=overwrite_A)[1]
    else:
        return lapack.dpotrs(chol,b,lower,overwrite_b)[0]
Пример #6
0
    unifs = utils.pgev(Y, Loc, Scale, Shape)

    cen = unifs < prob_below
    cen_above = unifs > prob_above

    # 3. Eigendecomposition of the correlation matrix
    n_covariates = len(beta_loc0)
    theta_c = np.array([range, nu])
    Dist = distance.squareform(distance.pdist(Stations_local))
    tmp_vec = np.ones(n_s)
    Cor = utils.corr_fn(Dist, theta_c)
    # eig_Cor = np.linalg.eigh(Cor) #For symmetric matrices
    # V = eig_Cor[1]
    # d = eig_Cor[0]
    cholesky_inv = lapack.dposv(Cor, tmp_vec)

    # 4. Process data given initial values
    # X = data_all['X'][subset_indices,:]
    # X_s = data_all['X_s'][subset_indices,:]
    # Z = data_all['Z'][subset_indices,:]
    X = utils.gev_2_RW_me(Y, xp, surv_p, tau_sqd, phi, gamma, Loc, Scale,
                          Shape)
    R = data_all['R_at_knots'][local_fit_no, :]

    Z = np.empty((n_s, n_t))
    Z[:] = np.nan
    for idx in np.arange(n_t):
        X_s_tmp = X[:, idx] - np.sqrt(tau_sqd) * norm.rvs(size=n_s)
        lower_limit = R[idx]**phi
        X_s_tmp[X_s_tmp < lower_limit] = lower_limit + 0.01
Пример #7
0
def solveIK1Ray(skelDict,
                effectorData,
                x3ds,
                effectorIndices_3d,
                E,
                effectorIndices_2d,
                outerIts=10,
                rootMat=None):
    """
	solveIK routine form Label.py - Has Single ray constraint equations enables

	Given effectors (joint, offset, weight) and constraints for those (3d and 2d), solve for the skeleton pose.
	Effector offsets, weights and targets are 3-vectors
		
	Args:
		skelDict (GskelDict): The Skeleton to process
		effectorData (big o'l structure!):
			effectorJoints, effectorOffsets, effectorWeights, usedChannels, usedChannelWeights, usedCAEs, usedCAEsSplits
		x3ds (float[][3]): 3D Reconstructions
		effectorIndices_3d (?): What's this?
		E (): Equations for 1-Ray constraints, or MDMA.
		effectorIndices_2d (?): What's this?
		outerIts (int): IK Iterations to solve the skeleton. Default = 10
		rootMat (float[3][4]): reference frame of the Skeleton. Default = None
		
	Returns:
		None: The result is an update of the skelDict to the solution - chanValues, channelMats, and Gs.
		
	Requires:
		Character.pose_skeleton_with_chan_mats
		ISCV.derror_dchannel_single_ray
		ISCV.JTJ_single_ray
	"""
    if rootMat is None: rootMat = np.eye(3, 4, dtype=np.float32)
    effectorJoints, effectorOffsets, effectorWeightsOld, usedChannels, usedChannelWeights, usedCAEs, usedCAEsSplits = effectorData
    chanValues = skelDict['chanValues']
    jointParents = skelDict['jointParents']
    Gs = skelDict['Gs']
    Ls = skelDict['Ls']
    jointChans = skelDict['jointChans']
    jointChanSplits = skelDict['jointChanSplits']
    numChannels = jointChanSplits[-1]
    numEffectors = len(effectorJoints)
    num3ds = len(effectorIndices_3d)
    num2ds = len(effectorIndices_2d)
    effectorOffsets = np.copy(effectorOffsets[:, :, 3])
    effectorWeights = np.zeros(numEffectors, dtype=np.float32)
    effectorWeights[
        effectorIndices_3d] = 1  # TODO Why does this fail? effectorWeightsOld[effectorIndices_3d,0,3]
    effectorWeights[
        effectorIndices_2d] = 1  # effectorWeightsOld[effectorIndices_2d,0,3]
    numUsedChannels = len(usedChannels)
    channelMats = np.zeros((numChannels, 3, 4), dtype=np.float32)
    effectors = np.zeros((numEffectors, 3), dtype=np.float32)
    residual = np.zeros((num3ds, 3), dtype=np.float32)
    residual2 = np.zeros((num2ds, 2), dtype=np.float32)
    derrors = np.zeros((numUsedChannels, numEffectors, 3), dtype=np.float32)
    delta = np.zeros((numUsedChannels), dtype=np.float32)
    JTJ = np.zeros((numUsedChannels, numUsedChannels), dtype=np.float32)
    JTB = np.zeros((numUsedChannels), dtype=np.float32)
    JT = derrors.reshape(numUsedChannels, -1)
    JTJdiag = np.diag_indices_from(JTJ)
    for it in xrange(outerIts):
        # TODO, only usedChannels are changing, only update the matrices that have changed after the first iteration.
        # updates the channelMats and Gs
        Character.pose_skeleton_with_chan_mats(channelMats, Gs, skelDict,
                                               chanValues, rootMat)
        bestScore = ISCV.pose_effectors_single_ray(
            effectors, residual, residual2, Gs, effectorJoints,
            effectorOffsets, effectorWeights, x3ds, effectorIndices_3d, E,
            effectorIndices_2d)
        if np.sum(residual * residual) + np.sum(
                residual2 * residual2) <= 1e-5 * (num3ds + num2ds):
            break  # early termination
        ISCV.derror_dchannel_single_ray(derrors, channelMats, usedChannels,
                                        usedChannelWeights, usedCAEs,
                                        usedCAEsSplits, jointChans, effectors,
                                        effectorWeights)
        # J = d_effectors/dc
        # err(c) = x3ds - effectors[effectorIndices_3d], e0 + E effectors[effectorIndices_2d]; err(c+delta) = x3ds - effectors[effectorIndices_3d] - J[effectorIndices_3d] delta, e0 + E effectors[effectorIndices_2d] + E J[effectorIndices_2d] delta  = 0
        # J dc = B; (J[effectorIndices_3d] ; E J[effectorIndices_2d]) dc = B ; e0
        # DLS method : solve (JTJ + k^2 I) delta = JTB
        ISCV.JTJ_single_ray(
            JTJ, JTB, JT, residual, effectorIndices_3d, E, effectorIndices_2d,
            residual2)  #np.dot(JT, B, out=JTB); np.dot(JT, JT.T, out=JTJ)
        JTJ[JTJdiag] += 1
        JTJ[JTJdiag] *= 1.1
        # delta[:] = np.linalg.solve(JTJ, JTB)
        _, delta[:], _ = LAPACK.dposv(JTJ, JTB)  # Use Positive Definite Solver
        chanValues[usedChannels] += delta
        # TODO: add channel limits

        # # J_transpose method, 3d only: scaling problems with translation
        #JT = derrors[:,effectorIndices_3d,:].reshape(numUsedChannels,-1)
        #np.dot(JT, B, out=delta)
        #np.dot(JT.T,delta,out=JJTB)
        #delta *= np.dot(B,JJTB)/(np.dot(JJTB,JJTB)+1)
        #delta[:3] *= 100000.
        #testScale = ISCV.Jtranspose_SR(delta, JJTB, JT, residual,effectorIndices_3d,residual2,effectorIndices_2d)
    Character.pose_skeleton(Gs, skelDict, chanValues, rootMat)
Пример #8
0
def solveIK(skelDict,
            chanValues,
            effectorData,
            effectorTargets,
            outerIts=10,
            rootMat=None):
    """
	Given an initial skeleton pose (chanValues), effectors (ie constraints: joint, offset, weight, target), solve for the skeleton pose.
	Effector weights and targets are 3x4 matrices.
		* Setting 1 in the weight's 4th column makes a position constraint.
		* Setting 100 in the weight's first 3 columns makes an orientation constraint.
		
	Args:
		skelDict (GskelDict): The Skeleton to process
		chanValues (float[]): Initial pose of the skeleton as Translation and many rotations applied to joints in the skelDict.
		effectorData (big o'l structure!):
			effectorJoints, effectorOffsets, effectorWeights, usedChannels, usedChannelWeights, usedCAEs, usedCAEsSplits
		effectorTargets (?): What's this?
		outerIts (int): IK Iterations to solve the skeleton. Default = 10
		rootMat (float[3][4]): reference frame of the Skeleton. Default = None
		
	Returns:
		None: The result is an update of the skelDict to the solution - chanValues, channelMats, and Gs.
		
	Requires:
		Character.pose_skeleton_with_chan_mats
		ISCV.pose_effectors
		ISCV.derror_dchannel
		ISCV.JTJ
	"""
    effectorJoints, effectorOffsets, effectorWeights, usedChannels, usedChannelWeights, usedCAEs, usedCAEsSplits = effectorData
    jointParents = skelDict['jointParents']
    Gs = skelDict['Gs']
    Ls = skelDict['Ls']
    jointChans = skelDict['jointChans']
    jointChanSplits = skelDict['jointChanSplits']
    numChannels = jointChanSplits[-1]
    numEffectors = len(effectorJoints)
    numUsedChannels = len(usedChannels)
    channelMats = np.zeros((numChannels, 3, 4), dtype=np.float32)
    #usedEffectors   = np.array(np.where(np.sum(effectorWeights,axis=(1,2)) != 0)[0], dtype=np.int32)
    usedEffectors = np.array(np.where(effectorWeights.reshape(-1) != 0)[0],
                             dtype=np.int32)
    # numUsedEffectors= len(usedEffectors)
    effectors = np.zeros((numEffectors, 3, 4), dtype=np.float32)
    residual = np.zeros((numEffectors, 3, 4), dtype=np.float32)
    derrors = np.zeros((numUsedChannels, numEffectors, 3, 4), dtype=np.float32)
    # steps           = np.ones((numUsedChannels),dtype=np.float32)*0.2
    # steps[np.where(jointChans[usedChannels] < 3)[0]] = 30.
    # steps = 1.0/steps
    delta = np.zeros((numUsedChannels), dtype=np.float32)
    # JJTB            = np.zeros((numEffectors*12),dtype=np.float32)
    JTJ = np.zeros((numUsedChannels, numUsedChannels), dtype=np.float32)
    JTB = np.zeros((numUsedChannels), dtype=np.float32)
    JT = derrors.reshape(numUsedChannels, -1)
    JTJdiag = np.diag_indices_from(JTJ)
    B = residual.reshape(-1)
    # TODO, calculate the exact requirements on the tolerance
    B_len = len(B)
    tolerance = 0.00001
    it_eps = (B_len**0.5) * tolerance
    for it in xrange(outerIts):
        # TODO, only usedChannels are changing, only update the matrices that have changed after the first iteration.
        # TODO Look into damping, possibly clip residuals?
        # updates the channelMats and Gs
        Character.pose_skeleton_with_chan_mats(channelMats, Gs, skelDict,
                                               chanValues, rootMat)
        bestScore = ISCV.pose_effectors(effectors, residual, Gs,
                                        effectorJoints, effectorOffsets,
                                        effectorWeights, effectorTargets)
        if np.linalg.norm(B) < it_eps: break  # early termination
        ISCV.derror_dchannel(derrors, channelMats, usedChannels,
                             usedChannelWeights, usedCAEs, usedCAEsSplits,
                             jointChans, effectors, effectorWeights)
        # if True: # DLS method : solve (JTJ + k^2 I) delta = JTB
        ISCV.JTJ(
            JTJ, JTB, JT, B,
            usedEffectors)  #np.dot(JT, B, out=JTB); np.dot(JT, JT.T, out=JTJ)
        JTJ[JTJdiag] += 1
        JTJ[JTJdiag] *= 1.1
        _, delta[:], _ = LAPACK.dposv(JTJ, JTB)  # Use Positive Definite Solver
        # Use General Solver
        # delta[:] = np.linalg.solve(JTJ, JTB)
        # elif it==0: # SVD method: solve J delta = B
        # 	delta[:] = np.linalg.lstsq(JT.T[usedEffectors], B[usedEffectors], rcond=0.0001)[0].reshape(-1)
        # else:     # J transpose method
        # 	testScale = ISCV.J_transpose(delta, JJTB, JT, B)
        # 	#np.dot(JT, B, out=delta); np.dot(JT.T,delta,out=JJTB); delta *= np.dot(B,JJTB)/(np.dot(JJTB,JJTB)+1.0)
        #scale = np.max(np.abs(delta*steps))
        #if scale > 1.0: delta *= 1.0/scale
        #np.clip(delta,-steps,steps,out=delta)
        chanValues[usedChannels] += delta
        # TODO: add channel limits
        #bestScore = ISCV.lineSearch(chanValues, usedChannels, delta, Gs, Ls, jointParents, jointChans, jointChanSplits,
        #							rootMat, effectorJoints, effectorOffsets, effectorWeights, effectorTargets, innerIts, bestScore)
    #print np.mean(B*B)
    Character.pose_skeleton(Gs, skelDict, chanValues, rootMat)