def GaussSeidel(A, b, guess, MAXITER, TOLL):
    n = len(b)
    xk = guess
    D = sparse.diags(
        A.diagonal(),
        0,
        format='csr',
    )
    L = sparse.tril(A, format='csr')
    U = sparse.triu(A, format='csr')

    T = -(linalg.inv(D + L)) * U
    c = (linalg.inv(D + L)) * b

    i = 0
    err = TOLL + 1
    while i < MAXITER:
        x = T * xk + c
        err = np.linalg.norm(x - xk, 1) / np.linalg.norm(x, 1)
        xk = x
        i += 1
        if i % 10 == 0:
            print(i, err)
        if err < TOLL:
            print("Converged at iteration:", i)
            break
    return xk
Пример #2
0
    def __init__(self, topo, quad, topo_q, lx, g, H):
        self.topo = topo
        self.quad = quad
        self.topo_q = topo_q  # topology for the quadrature points as 0 forms
        self.g = g
        self.H = H
        det = 0.5 * lx / topo.nx
        self.detInv = 1.0 / det

        # 1 form matrix inverse
        self.M1 = Pmat(topo, quad).M
        self.M1inv = la.inv(self.M1)

        # 0 form matrix inverse
        self.M0 = Umat(topo, quad).M
        self.M0inv = la.inv(self.M0)

        # 1 form gradient matrix
        self.D10 = BoundaryMat(topo).M
        self.D01 = self.D10.transpose()

        # 0 form to 1 from gradient operator
        self.A = self.detInv * self.D10

        # 1 form to 0 form gradient operator
        self.B = -1.0 * self.detInv * self.M0inv * self.D01 * self.M1
Пример #3
0
def solveAdjointNonlinearHeat1D(    model,
                                    theta=0.5,
                                    initialAdjointSolution=None ):
    '''
    '''
    # Allocate
    timeSeries      = np.zeros( (len(model.time), model.size) )

    # Define helper functions
    def updateTime( timeIndex ):
        model.updateTime( timeIndex )
    
    # Initialize
    if initialAdjointSolution is not None:
        timeSeries[-1]  = initialAdjointSolution.copy()

    updateTime(len(model.time)-1)
    massInverse     = linalg.inv(model.mass)
    previousState   = massInverse.dot( (model.stiffness+model.nonsymmetricStiffness).dot(timeSeries[-1]) + model.load )

    # Loop
    for i in range( len(model.time)-1, 0, -1 ):
        updateTime( i-1 )
        dt              = model.time[i] - model.time[i-1]
        massInverse     = linalg.inv(model.mass)
        timeSeries[i-1] = solveLinearSystem(    1.0/dt*np.identity(model.size)  \
                                                    + theta*massInverse.dot( model.stiffness + model.nonsymmetricStiffness ),
                                                1.0/dt*timeSeries[i]            \
                                                    - theta*massInverse.dot(model.load) - (1.0-theta)*previousState,
                                                sparse=False  )
        
        # Update for next iteration
        previousState   = massInverse.dot( (model.stiffness+model.nonsymmetricStiffness).dot(timeSeries[i-1]) + model.load )
    
    return timeSeries
Пример #4
0
    def __init__(self, topo, quad, X, dX, dt, grav):
        self.topo = topo
        self.quad = quad
        self.X = X
        self.dX = dX
        self.dt = dt
        self.grav = grav
        self.linear = False
        self.topo_q = Topo(topo.nx, quad.n)

        # 1 form matrix inverse
        self.M1 = Pmat(topo, quad, dX).M
        self.M1inv = la.inv(self.M1)

        # 0 form matrix inverse
        self.M0 = Umat(topo, quad, dX).M
        self.M0inv = la.inv(self.M0)

        # 1 form gradient matrix
        self.E10 = BoundaryMat(topo).M
        self.E01 = -1.0 * self.E10.transpose()

        self.PtQ = PtQmat(topo, quad, dX).M
        self.PtQT = PtQmat(topo, quad, dX).M.transpose()
        self.UtQ = UtQmat(topo, quad, dX).M
        self.UtQT = UtQmat(topo, quad, dX).M.transpose()

        # helmholtz operator
        GRAD = 0.5 * self.grav * self.dt * self.E01 * self.M1
        DIV = 0.5 * self.dt * self.M1 * self.E10
        HELM = self.M1 - DIV * self.M0inv * GRAD
        self.HELMinv = la.inv(HELM)
        self.DM0inv = DIV
        self.M0invG = self.M0inv * GRAD
Пример #5
0
def solve_lu(pr, l, u, pc, b):
    """ Solves the linear system Ax = b via forward and backward substitution
    given the decomposition pr * A * pc = l * u.
    Parameters
    ----------
    pr : scipy.sparse.csr_matrix
    row permutation matrix of LU-decomposition
    l : scipy.sparse.csr_matrix
    lower triangular unit diagonal matrix of LU-decomposition
    u : scipy.sparse.csr_matrix
    upper triangular matrix of LU-decomposition
    pc : scipy.sparse.csr_matrix
    column permutation matrix of LU-decomposition
    b : numpy.ndarray
    vector of the right-hand-side of the linear system
    Returns
    -------
    x : numpy.ndarray
    solution of the linear system
    """
    pr = scipy.sparse.csc_matrix(pr)
    pc = scipy.sparse.csc_matrix(pc)
    inverse_pr = sla.inv(pr)
    inverse_pc = sla.inv(pc)
    y_1 = sla.spsolve(inverse_pr, b)
    y_2 = sla.spsolve_triangular(l, y_1)
    y_3 = sla.spsolve_triangular(u, y_2, lower=False)
    solution = sla.spsolve(inverse_pc, y_3)
    return solution
Пример #6
0
    def __motion_update_sparse(self, command, U):
        r = self.robotFeaturesDim
        previousMeanState = self.estimate()
        meanStateChange = self.motionModel.exact_move(previousMeanState,
                                                      command)
        newMeanState = clipState(previousMeanState + meanStateChange)

        # TO IMPROVE
        angle = previousMeanState[2, 0]  # TO IMPROVE
        gradMeanMotion = np.zeros_like(self.H)  # TO IMPROVE
        gradMeanMotion[2, 0:2] = command[0] * np.array(
            [-math.sin(angle), math.cos(angle)])  # TO IMPROVE

        Sx = sparse.bsr_matrix(self.Sx)
        sH = sparse.bsr_matrix(self.H)
        invU = sparse.coo_matrix(inv(U))
        sparseGradMeanMotion = sparse.bsr_matrix(gradMeanMotion)

        delta = Sx.T.dot(sparseGradMeanMotion).dot(Sx)
        G = Sx.dot(linalg.inv(sparse.eye(r) + delta) - sparse.eye(r)).dot(Sx.T)
        phi = sparse.eye(self.dimension) + G
        Hp = phi.T.dot(sH).dot(phi)
        deltaH = Hp.dot(Sx).dot(linalg.inv(invU + Sx.T.dot(Hp).dot(Sx))).dot(
            Sx.T).dot(Hp)
        # H = inv(Hp + dots(self.Sx, U, self.Sx.T))
        H = Hp - deltaH
        # self.b = self.b - dot(previousMeanState.T, self.H - H) + dot(meanStateChange.T, H)
        self.H = H.todense()
        self.b = H.dot(newMeanState).T
        self.mu = newMeanState
Пример #7
0
    def _eval_error(self, ls, noise_type):
        """
        Evaluates the error (AtN^-1A)^-1

        Parameters
        ----------
        ls: instance of linsolve
            instance of linsolve solver containing the linear system of equations.
                noise_type: string
            Type of noise or error, can be 'uncorr', 'partial' or 'uncorr'.
            'uncorr' assumes the the error measurements associated with the measurements
            are uncorrelated with each other.
            'partial' assumes that the error measurements associated with the mesurements
            are correlated with adjacent measurements.
            'corr' considers correlation between all the flux measurements.
            Default is 'uncorr'.
        """
        A = self.get_A(ls)
        An = (A - np.min(A))/(np.max(A) - np.min(A))
        An_sparse = csc_matrix(A[:, :, 0])
        N = self.get_noise_matrix(noise_type=noise_type)
        Ninv = csc_matrix(Ninv)
        N_sparse = csc_matrix(N)
        Ninv = inv(N_sparse)
        At = An_sparse.T
        AtNi = At.dot(Ninv)
        AtNiA = AtNi.dot(An_sparse)
        AtNiAi = inv(AtNiA).todense()
        return AtNiAi
Пример #8
0
def solve_lu(pr, l, u, pc, b):
    """ Solves the linear system Ax = b via forward and backward substitution
    given the decomposition pr * A * pc = l * u.

    => A = pr^-1 * l * u * pc^-1

    Parameters
    ----------
    pr : scipy.sparse.csr_matrix
        row permutation matrix of LU-decomposition
    l : scipy.sparse.csr_matrix
        lower triangular unit diagonal matrix of LU-decomposition
    u : scipy.sparse.csr_matrix
        upper triangular matrix of LU-decomposition
    pc : scipy.sparse.csr_matrix
        column permutation matrix of LU-decomposition
    b : numpy.ndarray
        vector of the right-hand-side of the linear system

    Returns
    -------
    x : numpy.ndarray
        solution of the linear system
    """
    _ = slina.spsolve(sm.csc_matrix(slina.inv(sm.csc_matrix(pr))), b)
    _ = slina.spsolve_triangular(l, _, lower=True)
    _ = slina.spsolve_triangular(u, _, lower=False)
    _ = slina.spsolve(sm.csc_matrix(slina.inv(sm.csc_matrix(pc))), _)
    return _
Пример #9
0
def solve_ln(spss, A, b, x, dtype):
    spss.set_verbose(1)
    A = A.astype(dtype)

    b = b.astype(dtype)
    x = x.astype(dtype)

    if np.iscomplexobj(A):
        A = A + 0.1 * 1j * A
        b = b - 0.1 * 1j * b

    spss.set_csr_matrix(A)
    spss.solve(b, x, 0)
    #print(list(x))
    #print(np.array(np.dot(inv(A.tocsc()).todense(), b)).flatten())
    err = (np.array(np.dot(inv(A.tocsc()).todense(), b)).flatten() - x)
    th = 1e-7 if dtype == np.float32 or dtype == np.complex64 else 1e-16

    print("x: ", list(x))
    print("x (ref):",
          list(np.array(np.dot(inv(A.tocsc()).todense(), b)).flatten()))
    print("err:", np.abs(err))

    if np.max(np.abs(err)) > th:
        assert False, "error is too large"
    else:
        print("max err:", np.max(np.abs(err)))
Пример #10
0
def MCS_scheme(m, N, U_0, delta_t, theta, A, A_0, A_1, A_2, b, b_0, b_1, b_2,
               r_f):
    start = datetime.now()
    U = U_0
    I = np.identity(m)
    lhs_1 = csc_matrix(I - theta * delta_t * A_1)
    inv_lhs_1 = inv(lhs_1)
    lhs_2 = csc_matrix(I - theta * delta_t * A_2)
    inv_lhs_2 = inv(lhs_2)
    for n in range(0, N):
        Y_0 = U + delta_t * F(n - 1, U, A, b, r_f, delta_t)
        rhs_1 = Y_0 + theta * delta_t * (b_1 * exp(r_f * delta_t * n) - F_1(
            n - 1, U, A_1, b_1, r_f, delta_t))  #we update b_1
        Y_1 = inv_lhs_1 * rhs_1
        rhs_2 = Y_1 + theta * delta_t * (b_2 * exp(r_f * delta_t * n) - F_2(
            n - 1, U, A_2, b_2, r_f, delta_t))  #we update b_2
        Y_2 = inv_lhs_2 * rhs_2

        Y_0_hat = Y_0 + theta * delta_t * (
            F_0(n, Y_2, A_0, b_0, r_f, delta_t) -
            F_0(n - 1, U, A_0, b_0, r_f, delta_t))
        Y_0_tilde = Y_0_hat + (0.5 - theta) * delta_t * (
            F(n, Y_2, A, b, r_f, delta_t) - F(n - 1, U, A, b, r_f, delta_t))

        rhs_1 = Y_0_tilde + theta * delta_t * (
            b_1 * exp(r_f * delta_t * n) -
            F_1(n - 1, U, A_1, b_1, r_f, delta_t))  #we update b_1
        Y_1_tilde = inv_lhs_1 * rhs_1
        rhs_2 = Y_1_tilde + theta * delta_t * (
            b_2 * exp(r_f * delta_t * n) -
            F_2(n - 1, U, A_2, b_2, r_f, delta_t))  #we update b_2
        U = inv_lhs_2 * rhs_2
    end = datetime.now()
    time = (end - start).total_seconds()
    return U, time
Пример #11
0
    def __sparsification(self):
        x = np.arange(self.robotFeaturesDim)
        y0, yp = self.__partition_links()
        Sx = sparse.coo_matrix(self.__build_projection_matrix(x))
        Sy0 = sparse.coo_matrix(self.__build_projection_matrix(y0))
        Sxy0 = sparse.coo_matrix(
            self.__build_projection_matrix(np.concatenate((x, y0))))
        Sxyp = sparse.coo_matrix(
            self.__build_projection_matrix(np.concatenate((x, yp))))
        Sxy0yp = sparse.coo_matrix(
            self.__build_projection_matrix(np.concatenate((x, y0, yp))))
        H = sparse.bsr_matrix(self.H)

        Hp = Sxy0yp.dot(Sxy0yp.T).dot(H).dot(Sxy0yp).dot(Sxy0yp.T)

        Ht = H - (0 if not y0.size else Hp.dot(Sy0).dot(linalg.inv(Sy0.T.dot(Hp).dot(Sy0))).dot(Sy0.T).dot(Hp)) \
                + Hp.dot(Sxy0).dot(linalg.inv(Sxy0.T.dot(Hp).dot(Sxy0))).dot(Sxy0.T).dot(Hp) \
                - H.dot(Sx).dot(linalg.inv(Sx.T.dot(H).dot(Sx))).dot(Sx.T).dot(H)
        eps = 1e-5
        Htt = Ht.todense()
        Htt[np.abs(Htt) < eps] = 0
        bt = self.b + (Ht - H).dot(self.mu)

        self.H = Htt
        self.b = bt
Пример #12
0
def test_SBPProterty():
    #This routine will check that the finite difference
    #operators and the inner product matrices satisfy the
    #SBP property at least when N = 4

    N = 4
    dx = 2 / N

    Dp = ConstructDp(dx, N)
    Dm = ConstructDm(dx, N)
    Ppinv, Pminv = ConstructPpminv(dx, N)
    Pp = inv(Ppinv)
    Pm = inv(Pminv)

    ##    Pm           = csr_matrix([[0,0,0,0,0,0],\
    ##                               [0,1,0,0,0,0],\
    ##                               [0,0,1,0,0,0],\
    ##                               [0,0,0,1,0,0],\
    ##                               [0,0,0,0,1,0],\
    ##                               [0,0,0,0,0,0]])*dx
    ##
    Qp = Pp.dot(Dp)
    Qm = Pm.dot(Dm)

    Q = Qp + Qm.transpose()

    FAlist = [-3, -2, -1, 0, 1, 2, 3]
    LAlist = [-2, -1, 0, 1, 2, 3, -3]

    FBlist = [-6, -4, -2, 0, 2, 4, 6]
    LBlist = [6, -6, -4, -2, 0, 2, 4]

    for i in range(6):
        FA = FAlist[i]
        FB = FBlist[i]
        LA = LAlist[i]
        LB = LBlist[i]

        A = np.array([FA, 0, 0, 0, LA])
        B = np.array([FB, 0, 0, 0, 0, LB])
        #A = np.array([FA,0,0,0,0,0,0,0,LA])
        #B = np.array([FB,0,0,0,0,0,0,0,0,LB])

        err = abs(LB * LA - FB * FA - A.dot(Q.dot(B)))
        assert err < 0.0001

    for i in range(6):
        FA = FAlist[i]
        FB = FBlist[i]
        LA = LAlist[i]
        LB = LBlist[i]

        A = np.array([FA, 6, 8, 2, LA])
        B = np.array([FB, -3, -9, 2, 3, LB])
        #A = np.array([FA,6,8,2,2,2,2,2,LA])
        #B = np.array([FB,-3,-9,2,3,3,5,7,9,LB])

        err = abs(LB * LA - FB * FA - A.dot(Q.dot(B)))
        assert err < 0.0001
Пример #13
0
 def init_point(self, A_w, A_z, Q_w, Q_z, c_w, c_z, b, u):
     y_ = inv(A_z.dot(A_z.T)).dot(2 * b - A_z.dot(u))
     z = (A_z.T.dot(y_) + u) / 2
     y = inv(A_z.dot(A_z.T)).dot(A_z).dot(c_z)
     s = 1 / 2 * (A_z.T.dot(y) - c_z)
     w = np.zeros(A_w.shape[1])
     v = -s
     v = np.clip(v, 1e-5, None)
     s = np.clip(s, 1e-5, None)
     z = np.clip(z, 1e-5, u - 1e-5)
     return w, z, y, s, v
Пример #14
0
    def __init__(self,
                 sess,
                 n,
                 filename,
                 jump_prob=0.05,
                 drop_tol=1e-8,
                 verbose=False):
        """
        Computes PPR using LU decomposition.

        Args:
            sess (Session): tensorflow session.
            n (int): Number of nodes.
            filename (str): A csv file denoting the graph.
            jump_prob (float): Jumping probability of PPR.
            drop_tol (float): Drops entries with absolute value lower than this value when computing inverse of LU.
            verbose (bool): Prints step messages if True.
        """
        self.alias = 'ludc'
        self.verbose = verbose
        self.pp("initializing")
        self.sess = sess
        self.n = n
        self.c = jump_prob
        d = 1 - self.c
        t = drop_tol
        exact = False
        if t is None:
            t = np.power(n, -0.5)
        elif t == 0:
            exact = True
        self.pp("reading")
        self.node2index, H = read_matrix(filename, d=-d, add_identity=True)
        self.pp("sorting H")
        self.perm = degree_reverse_rank_perm(H)
        H = reorder_matrix(H, self.perm).tocsc()
        self.pp("computing LU decomposition")
        if exact:
            self.LU = splu(H)
        else:
            self.LU = spilu(H, drop_tol=t)
        Linv = inv(self.LU.L).tocoo()
        Uinv = inv(self.LU.U).tocoo()
        self.pp("tf init")
        with tf.variable_scope('ppr_lu_decomposition_tf'):
            t_Linv = tf.SparseTensorValue(list(zip(Linv.row, Linv.col)),
                                          Linv.data,
                                          dense_shape=self.LU.L.shape)
            t_Uinv = tf.SparseTensorValue(list(zip(Uinv.row, Uinv.col)),
                                          Uinv.data,
                                          dense_shape=self.LU.U.shape)
            self.t_q = tf.placeholder(tf.float64, shape=[self.n, 1])
            self.t_r = _sdmm(t_Uinv, _sdmm(t_Linv, self.c * self.t_q))
Пример #15
0
    def fit(self, R, hidden_size=100, iteration=5):
        from scipy.sparse.linalg import inv

        # data(R) must be csr_matrix format n by m
        self.R = R
        left_size, right_size = R.shape

        # init
        self.X = csr_matrix(np.random.normal(size=(left_size, hidden_size)))
        self.Y = csr_matrix(np.random.normal(size=(right_size, hidden_size)))

        # confidence level
        self.C = csr_matrix(R.copy() * self.alpha +
                            np.array([1] * (left_size * right_size)).reshape(
                                (left_size, right_size)))

        # cost
        cost = self.cost_function()
        print('cost: ' + str(cost))

        # iterate
        for iterate in range(iteration):
            print('iter: ' + str(iterate))
            print('User Matrix')
            for u, Cu in enumerate(self.C):
                C_diag = diags(Cu.toarray()[0], shape=[right_size, right_size])
                self.X[u] = inv(
                    self.Y.T.dot(C_diag).dot(self.Y) +
                    eye(hidden_size) * self.reg).dot(self.Y.T).dot(C_diag).dot(
                        R[u].T).T

                self.progress(u, left_size)

            print('\nMovie Matrix')
            for i, Ci in enumerate(self.C.T):
                C_diag = diags(Ci.toarray()[0], shape=[left_size, left_size])
                self.Y[i] = inv(
                    self.X.T.dot(C_diag).dot(self.X) +
                    eye(hidden_size) * self.reg).dot(self.X.T).dot(C_diag).dot(
                        R.T[i].T).T

                self.progress(i, right_size)

            self.cost = self.cost_function()
            print('\ncost: ' + str(self.cost))

        # save prediciton matrix
        self.prediction = self.X.dot(self.Y.T)

        return self.cost
Пример #16
0
	def __init__(self,topo,quad):
		self.shift = topo.nx*topo.ny*topo.n*topo.n

		Uxx = UxxMat(topo,quad).M
		Uxy = UxyMat(topo,quad).M
		Uyx = UyxMat(topo,quad).M
		Uyy = UyyMat(topo,quad).M

		UxxInv = la.inv(Uxx)
		UyyInv = la.inv(Uyy)

		# U tangent to normal transformation matrices
		self.Uxtn = UxxInv*Uxy
		self.Uytn = UyyInv*Uyx
Пример #17
0
def multistepFDM_cg(vertices,
                    edges,
                    fixed,
                    q,
                    fcs=[],
                    lcs=[],
                    l0cs=[],
                    steps=250,
                    lin_solver=cg,
                    i_tol=1e-5,
                    callbacks=no_callbacks,
                    cond_num=False):
    v = len(vertices)
    q0 = copy(q)
    ndof, tdof = table_of_nodal_DsOF(v, fixed)
    mD, mDf = mDmDf(ndof, tdof, vertices, edges, q0)
    if cond_num == True:
        print('01', '  max =', mD.max(), '  nrm1 =', sm_norm(inv(mD), 1),
              '  nrmF =', sm_norm(inv(mD)), '  cn =', cond(mD.A, 1))
    x0 = zero_m(mDf.shape)
    cc = __solve_lin_syst_it(mD, -mDf, x0, lin_solver, i_tol, None, callbacks)
    xyz = table_of_nodal_coordinates(cc, vertices, tdof)

    l = list_of_element_lengths(edges, xyz)
    f = list_of_element_forces(l, q0)

    for i in xrange(2, steps + 1):
        for fj in fcs:
            q0[fj[0]] = fj[1] / l[fj[0]]
        for lj in lcs:
            q0[lj[0]] = f[lj[0]] / lj[1]
        for l0j in l0cs:
            i0 = l0j[0]
            l0 = l0j[1][0]
            ae0 = l0j[1][1]
            ffj = f[i0]
            ll = (ae0 + ffj) * l0 / ae0
            q0[i0] = ffj / ll
        mD, mDf = mDmDf(ndof, tdof, vertices, edges, q0)
        if i % 10 == 1:
            print(i, '  max =', mD.max(), '  nrm1 =', sm_norm(inv(mD), 1),
                  '  nrmF =', sm_norm(inv(mD)), '  cn =', cond(mD.A, 1))
        cc = __solve_lin_syst_it(mD, -mDf, x0, lin_solver, i_tol, None,
                                 callbacks)
        xyz = table_of_nodal_coordinates(cc, vertices, tdof)
        l = list_of_element_lengths(edges, xyz)
        f = list_of_element_forces(l, q0)

    return (xyz, f, q0)
Пример #18
0
def findPilot(Ybus, V, gIdx, lIdx, cll, nPilot = 1):
    dS_dVm, dS_dVa = dSbus_dV(Ybus, V)
    S = dS_dVm.imag

    Sgg = S[np.ix_(gIdx, gIdx)]
    Sgl = S[np.ix_(gIdx, lIdx)]
    Slg = S[np.ix_(lIdx, gIdx)]
    Sll = S[np.ix_(lIdx, lIdx)]

    # Compute elements quantity
    nG, nL = Sgl.shape 

    # Pilot node selection
    M = inv(Sll) #(3)
    B = -1 * inv(Sll) * Slg #(4)

    Qx = eye(nL)
    pIdx = []
    pOption = list(range(nL))
    
    CLL = diags(cll) #Load disturbances are modelled by a vector of Gaussian random variables with means equal to 0 and a covariance matrix denominated CLL.
    PL = M * CLL * M.transpose()
    #Inicializar
    C = csc_matrix((0, nL)) #Crear matriz de dimension 0 x nL
    for i in range(nPilot):
        fitBest = 1e6
        bestIdx = 0
        for j in pOption:
            Crow = csc_matrix(([1], ([0], [j])), shape=(1, nL))
            Ctmp = vstack([C, Crow], format='csc')
            CB = Ctmp * B 
            F = (CB).transpose() * inv(CB *CB.transpose())
            F = csc_matrix(F).reshape(nG, i+1)
            X = (eye(nL) - B * F * Ctmp)
            I = np.trace(( PL * X.transpose() * Qx * X).toarray())
            
            if I < fitBest:
                Cbest = 1 * Ctmp
                fitBest = 1 * I
                bestIdx = 1 * j
        
        C = 1 * Cbest
        pOption.remove(bestIdx)
        pIdx.append(bestIdx)

    pilotBus = [lIdx[i] for i in pIdx]

    return pilotBus
Пример #19
0
    def __init__(self, topo, quad, topo_q, lx, ly, f, g, apvm, hb):
        self.topo = topo
        self.quad = quad
        self.topo_q = topo_q  # topology for the quadrature points as 0 forms
        self.g = g
        self.apvm = apvm
        det = 0.5 * lx / topo.nx
        self.detInv = 1.0 / det
        self.hb = hb

        # 1 form matrix inverse
        M1 = Umat(topo, quad).M
        self.M1inv = la.inv(M1)

        # 2 form matrix inverse
        M2 = Wmat(topo, quad).M
        self.M2inv = la.inv(M2)

        # 0 form matrix inverse
        self.M0 = Pmat(topo, quad).M
        M0inv = la.inv(self.M0)
        D10 = BoundaryMat10(topo).M
        D01 = D10.transpose()
        self.D01M1 = self.detInv * D01 * M1

        self.D10 = self.detInv * D10
        self.M0inv = M0inv

        # 2 form gradient matrix
        self.D21 = BoundaryMat(topo).M
        self.D12 = -1.0 * self.D21.transpose()
        self.D12M2 = self.detInv * self.D12 * M2

        # 0 form coriolis vector
        Mxto0 = Xto0(topo, quad).M
        fx = f * np.ones(
            (topo_q.n * topo_q.n * topo.nx * topo.ny), dtype=np.float64)
        self.f = Mxto0 * fx

        self.M0f = self.M0 * self.f

        self.Uh = Uhmat(topo, quad)
        self.WU = WtQUmat(topo, quad)
        self.PU = PtQUmat(topo, quad)
        self.Rq = RotationalMat(topo, quad)

        self.q = np.zeros((self.M0f.shape[0]), dtype=np.float64)
        self.hvec = Phvec(topo, quad)
Пример #20
0
def get_iteration_matrix_v_cycle(problem_list, pre_smoother_list, post_smoother_list, transfer_list, nu1=1, nu2=1):
    """ Uses the attached smoothers and transferclasses to compute the iteration matrix recursively
    :return: a iteration matrix and the preconditioner
    """
    if len(problem_list) == 1:
        return problem_list[0].A - problem_list[0].A, spla.inv(problem_list[0].A)
    else:
        N = problem_list[0].ndofs
        I = sp.eye(N, format='csc')
        Pinv_c = get_iteration_matrix_v_cycle(problem_list[1:],
                                              pre_smoother_list[1:],
                                              post_smoother_list[1:],
                                              transfer_list[1:])[1]

        CG_P_inv = transfer_list[0].I_2htoh.dot(Pinv_c.dot(transfer_list[0].I_hto2h))
        CG_correction = I - CG_P_inv.dot(problem_list[0].A)

        if nu1 == 0:
            pre_smooth = I
        else:
            pre_smooth = combine_N_P_inv(problem_list[0].A, [pre_smoother_list[0].Pinv] * nu1)

        if nu2 == 0:
            post_smooth = I
        else:
            post_smooth = combine_N_P_inv(problem_list[0].A, [post_smoother_list[0].Pinv] * nu2)

        pre = I - pre_smooth.dot(problem_list[0].A)
        post = I - post_smooth.dot(problem_list[0].A)

        it_matrix = pre.dot(CG_correction.dot(post))
        precond_inv = combine_N_P_inv(problem_list[0].A,
                                      [pre_smooth, CG_P_inv, post_smooth])

        return it_matrix, precond_inv
Пример #21
0
    def kernelized_optimize(self):
        # fact: H^T(HH^T + lambda*I_N) == (lambda*I_d + H^TH)H^T
        # instead of inverting a dxd matrix, we invert an nxn matrix.
        # So our ridge formula becomes:
        # (lambda*I_d + H^TH)^(-1)H^T = H^T(HH^T + lambdaI_N)^(-1)
        if self.sparse:
            piece_to_invert = self.X.dot(
                self.X.T) + sp.identity(self.N) * self.lam
        else:
            piece_to_invert = self.X.dot(
                self.X.T) + np.identity(self.N) * self.lam
        assert piece_to_invert.shape == (self.N, self.N)  # yay!

        # invert this NxN matrix.
        if self.verbose:
            print("invert matrix:")
            print("time: {}".format(time.asctime(time.localtime(time.time()))))
        if self.sparse:
            inverted_piece = splin.inv(piece_to_invert)
        else:
            inverted_piece = np.linalg.inv(piece_to_invert)
        if self.verbose:
            print("done inverting via kernel trick at time: {}".format(
                time.asctime(time.localtime(time.time()))))

        # dot with H^T.dot(y)
        if self.verbose:
            print("dot with H^T at time: {}".format(
                time.asctime(time.localtime(time.time()))))
        self.W = self.X.T.dot(inverted_piece).dot(self.Y)
        if self.verbose:
            print("done dotting with H^T at time: {}".format(
                time.asctime(time.localtime(time.time()))))
        assert self.W.shape == (self.d, self.C)
Пример #22
0
def run_solver(
    faces_rel_matrix, incidence_matrix, faces_fmm_matrix, faces_ID_deleted_list, faces_list, faces_deleted_list
):

    from main.RNM_Solver import Solver

    rows, cols = faces_rel_matrix.shape

    if isinstance(faces_rel_matrix, sparse.csr_matrix):
        admitance_matrix = splinalg.inv(faces_rel_matrix)
    else:
        admitance_matrix = np.linalg.inv(faces_rel_matrix)

    flux = Solver.SolveMagneticCircuit(incidence_matrix, admitance_matrix, faces_fmm_matrix)
    # 	flux = flux.tocsr()
    # Organize the flux
    number_complete_flux = len(faces_ID_deleted_list) + flux.shape[0]
    complete_flux = np.zeros((number_complete_flux, 1))

    counter = 0
    counter_face = 0
    for each in xrange(number_complete_flux):
        if not each in faces_ID_deleted_list:
            complete_flux[each, 0] = flux[counter, 0]
            counter += 1
        else:
            faces_list.insert(each, faces_deleted_list[counter_face])
            counter_face += 1
    return complete_flux
Пример #23
0
def global_katz(node1, node2, adj_matrix, beta=0.5, depth=2):
    """
    This index is based on the ensemble of all paths, which
    directly sums over the collection of paths and is exponentially damped by
    length to give the shorter paths more weights.
    :param node1:
    :param node2:
    :param adj_matrix:
    :param beta: beta coefficient in Katz similarity
    :param depth: how many times to iterate
    :return:
    """

    # 1st way
    # coef = beta
    # matrix = adj_matrix
    # result = coef * matrix[node1, node2]
    # np.dot(adj_matrix, adj_matrix)
    # for i in range(1, depth):
    #     coef *= beta
    #     matrix = np.dot(matrix, adj_matrix)
    #     result += coef * matrix[node1, node2]
    # return result

    # 2nd way
    I = csr_matrix(np.eye(adj_matrix.shape[0]))
    try:
        katz = inv(I - adj_matrix * beta) - I
        print("Katz is successfully calculated with matrix.shape =",
              adj_matrix.shape)
        return katz[node1, node2]
    except:
        print(adj_matrix)
        print("Quitting from Katz when matrix shape is", adj_matrix.shape)
        exit()
Пример #24
0
 def filter(self,m,M):
     """
     Predicts the estimates and updates them with the observation.
     
     Parameters
     -------
     m : array
         The measured packet counts
     M : matrix
         The measurement matrix
     """
     x, Q, P, F, e = (self.x, self.Q, self.P, self.F, self.e)
     
     # Predict
     x = F.dot(x)
     P = ((F.dot(P)).dot(F.T)) + Q
     
     # Update
     y = m - (M.dot(x))
     S = e**2*Is(M.shape[0]) + ((M.dot(P)).dot(M.T))
     K = (P.dot(M.T)).dot(inv(S))  # Kalman gain
     x = x + (K.dot(y))
     P = (Is(P.shape[0]) - (K.dot(M))).dot(P)
     P[P<0] = 0  # TODO: Must be tested!
     
     self.P, self.x = (P, x)
    def learn_embedding(self):
        """
        Apply HOPE embedding
        """
        A = nx.to_scipy_sparse_matrix(self._graph, format='csc')
        I = identity(self._graph.number_of_nodes(), format='csc')
        M_g = I - -self._beta * A
        M_l = self._beta * A
        # A = nx.to_numpy_matrix(self._graph)
        # M_g = np.eye(len(self._graph.nodes())) - self._beta * A
        # M_l = self._beta * A
        # S = inv(M_g).dot(M_l)
        S = np.dot(inv(M_g), M_l)

        u, s, vt = svds(S, k=self._d // 2)
        X1 = np.dot(u, np.diag(np.sqrt(s)))
        X2 = np.dot(vt.T, np.diag(np.sqrt(s)))
        self._X = np.concatenate((X1, X2), axis=1)

        p_d_p_t = np.dot(u, np.dot(np.diag(s), vt))
        eig_err = np.linalg.norm(p_d_p_t - S)
        print('SVD error (low rank): %f' % eig_err)

        # create dictionary of nodes
        nodes = list(self._graph.nodes())
        projections = {}
        for i in range(len(nodes)):
            y = self._X[i]
            y = np.reshape(y, newshape=(1, self._d))
            projections.update({nodes[i]: y[0]})
        # X is the embedding matrix, S is the similarity, projections is the embedding dictionary
        return projections, S, self._X, X1, X2
def neumann_kernel(A, lambda_max, v_max, alpha=0.5):
    n = A.get_shape()[0]
    D_v = sp.diags([v_max], [0], shape=(n, n), format='csc')
    return csr_matrix(
        inv(
            sp.eye(n, format='csc') -
            ((alpha * D_v * csc_matrix(A) * D_v) / lambda_max)))
Пример #27
0
def solvePoissonPeriodic(dx, Ng, rho, kBT, tol, maxiter, phi0):
    phi = phi0
    D = np.zeros((Ng + 1, Ng + 1))
    A = laplacian1DPeriodic(Ng)

    resid = 1.
    k = 0

    dx2 = dx * dx
    c0 = rho[(Ng + 1) / 2] / epsilon0
    c1 = e / kBT
    c2 = rho / epsilon0

    while (resid > tol) & (k <= maxiter):
        F = A.dot(phi) - dx2 * c0 * np.exp(c1 * (phi - phi[
            (Ng + 1) / 2])) + dx2 * c2

        np.fill_diagonal(
            D, -dx2 * c0 * c1 * np.exp(c1 * (phi - phi[(Ng + 1) / 2])))

        J = spp.csc_matrix(A + D)
        dphi = sppla.inv(J).dot(F)

        phi = phi - dphi
        resid = la.norm(dphi)
        k += 1
    #end while

    return phi
    def absorbTime(self):
        P = self.getTransitionMatrix(probabilities=True)
        components,labels = csgraph.connected_components(P, directed=True, connection='strong',return_labels=True)
        if components == 1:
            print("no absorbing states")
            return
            
        transientStates = np.ones(P.shape[0],dtype=bool)

        for component in range(components):
            indices = np.where(labels==component)[0]
            n = len(indices)
            if n==1:
                probSum = P[indices,indices].sum()
            else:            
                probSum = P[np.ix_(indices,indices)].sum()
            if np.isclose(probSum,n):
                transientStates[indices] = False

        indices = np.where(transientStates)[0]
        n = len(indices)
        if n==1:
            Q = P[indices,indices]
        else:
            Q = P[np.ix_(indices,indices)]
        #N will be dense  
        N = inv(eye(n)-Q).A
        N2 = N*(2*N[np.arange(n),np.arange(n)]-np.eye(n))-np.power(N,2)
        t = np.zeros(P.shape[0])
        t[indices] = np.sum(N,axis=1)
        for index in indices:
            print( self.mapping[index],t[index] )
Пример #29
0
 def linrel(self, X_t, y_t, X, mu, c):
     """Linrel algorithm"""
     temp = X_t.T * X_t + mu*identity(X_t.shape[1])
     temp = inv(temp)
     temp = X * temp * X_t.T
     score = (temp*y_t).toarray() + c/2 * numpy.linalg.norm(temp.toarray(), axis=1).reshape((temp.shape[0],1))
     return score
Пример #30
0
def solvePoisson(dx, Ng, rho, kBT, tol, maxiter, phi0):
    phi = phi0
    D = np.zeros((Ng, Ng))
    A = laplacian1D(Ng)

    resid = 1.
    k = 0

    dx2 = dx * dx
    c0 = rho[Ng / 2] / epsilon0
    c1 = e / kBT
    c2 = rho / epsilon0

    while (resid > tol) & (k <= maxiter):
        F = A.dot(phi) - dx2 * c0 * np.exp(c1 * (phi - phi[Ng / 2])) + dx2 * c2
        F[0] = phi[0]
        F[-1] = phi[-1]

        np.fill_diagonal(D, -dx2 * c0 * c1 * np.exp(c1 * (phi - phi[Ng / 2])))
        D[0, 0] = -dx2 * c0 * c1
        D[-1, -1] = -dx2 * c0 * c1

        J = spp.csc_matrix(A + D)
        dphi = sppla.inv(J).dot(F)

        phi = phi - dphi
        resid = la.norm(dphi)
        k += 1
    #end while

    return phi
Пример #31
0
def jacobian_cond(m=None, scaled=True, ord=None, pinv=False, jac=None):
    """
    Get the condition number of the scaled or unscaled Jacobian matrix of a model.

    Args:
        m: calculate the condition number of the Jacobian from this model.
        scaled: if True use scaled Jacobian, else use unscaled
        ord: norm order, None = Frobenius, see scipy.sparse.linalg.norm for more
        pinv: Use pseudoinverse, works for non-square matrixes
        jac: (optional) perviously calculated jacobian

    Returns:
        (float) Condition number
    """
    if jac is None:
        jac, nlp = get_jacobian(m, scaled)
    jac = jac.tocsc()
    if jac.shape[0] != jac.shape[1] and not pinv:
        _log.warning("Nonsquare Jacobian using pseudo inverse")
        pinv = True
    if not pinv:
        jac_inv = spla.inv(jac)
        return spla.norm(jac, ord) * spla.norm(jac_inv, ord)
    else:
        jac_inv = la.pinv(jac.toarray())
        return spla.norm(jac, ord) * la.norm(jac_inv, ord)
Пример #32
0
    def test_mass_matrix_inverse(self):
        # get mesh
        mesh = get_2p1d_mesh_for_testing(ypts=5, zpts=5)
        spatial_methods = {
            "macroscale": pybamm.FiniteVolume(),
            "current collector": pybamm.ScikitFiniteElement(),
        }
        # create model
        a = pybamm.Variable("a", domain="negative electrode")
        b = pybamm.Variable("b", domain="current collector")
        model = pybamm.BaseModel()
        model.rhs = {a: pybamm.Laplacian(a), b: 4 * pybamm.Laplacian(b)}
        model.initial_conditions = {a: pybamm.Scalar(3), b: pybamm.Scalar(10)}
        model.boundary_conditions = {
            a: {"left": (0, "Neumann"), "right": (0, "Neumann")},
            b: {"negative tab": (0, "Neumann"), "positive tab": (0, "Neumann")},
        }
        model.variables = {"a": a, "b": b}

        # create discretisation
        disc = pybamm.Discretisation(mesh, spatial_methods)
        disc.process_model(model)

        # test that computing mass matrix block-by-block (as is done during
        # discretisation) gives the correct result
        # Note: inverse is more efficient in csc format
        mass_inv = inv(csc_matrix(model.mass_matrix.entries))
        np.testing.assert_equal(
            model.mass_matrix_inv.entries.toarray(), mass_inv.toarray()
        )
def Matrices_Psuedo(Tau, Pr, Ra, sigma, D, R, N_modes, Y):  # Correct

    # Extract X & Ra
    mu = Y[-1, 0]
    Ra = mu
    X = Y[0:-1]
    nr = len(R) - 2

    D3 = np.zeros((nr, nr, N_modes))
    D2 = np.zeros((nr, nr, N_modes))
    for ii in xrange(N_modes):
        D3[:, :, ii] = D3_SP(D, R, ii)
        D2[:, :, ii] = Stokes_D2_SP(D, R, ii)

    # Part a) Linear Operator
    L = L_0_SPAR(D, R, sigma, Tau, Pr, Ra, N_modes)
    M = M_0_SPAR(D, R, N_modes)
    M_inv = inv(M.tocsc())

    # Part b) Non-Linear Terms
    N1 = N_Full(X, L.shape, N_modes, nr, D3, D2, D, R)
    N2 = N2_Full(X, L.shape, N_modes, nr, D3, D2, D, R)

    # Aim to make L sparse
    #Return I, N1, N2, F all multiplied by M_inv and L_inv

    return M_inv, L.todense(), N1, N2
Пример #34
0
    def _linear_naive_solver(A, B):
        """
        Solve Ax = B.

        Parameters:
            A (scipy.sparse.csr_matrix): sparse 2d matrix
            B (scipy.sparse.csr_matrix): sparse 2d matrix

        Returns:
            x (scipy.sparse.csr_matrix): answer for linear equation Ax = B
        """
        print("solving linear equation...")
        print(datetime.datetime.now())

        # inverse(A.T * A)
        print("inversing matrix")
        AT = A.transpose()
        ATA = AT.dot(A)
        if not Solver._is_invertible(ATA):
            print("matrix is not invertible, using pseudo-inverse instead")
            ATAI = sparse.csr_matrix(np.linalg.pinv(ATA.todense()))
        else:
            ATAI = inv(ATA)
        x = ATAI.dot(AT).dot(B)
        print(datetime.datetime.now())
        return x
Пример #35
0
def spinv(M):
    """
    Compute an inverse of a matrix using the appropriate sparse or dense
    function
    """
    if spar.issparse(M):
        return spla.inv(M)
    else:
        return nla.inv(M)
Пример #36
0
def GaussSeidel(A, b, MAXITER, TOLL):
    n = len(b)
    xk = np.ones(shape = n,dtype = float)
     
    D = sparse.diags(A.diagonal(), 0, format = 'csc',)
    L = sparse.tril(A, format = 'csc')
    U = sparse.triu(A, format = 'csc')
    
    T = -(linalg.inv(D+L))* U
    c = (linalg.inv(D+L))* b
    
    i = 0
    err = TOLL + 1
    while i < MAXITER and err > TOLL:
        x = T*xk + c
        err = np.linalg.norm(x-xk, 1)/np.linalg.norm(x,1)
        xk = x
        i += 1

    return xk, i
Пример #37
0
def detrend(values):
  """
  From "An advanced detrending method with application to HRV analysis." ,T arvainen MP, Ranta-Aho PO, Karjalainen PA., 2002
  Get a 1D numpy array, return detrended array
  """
  T = len(values)
  lamb = 10
  I = eye(T)
  # instead of using Matlab speye/ones/spdiags, use scipy sparse.diags on the right list
  L = [1,-2,1]+[0]*(T-2-3)
  D2 = diags(L, range(len(L)), shape=(len(L), len(L)+2))
  return ((I-inv(I + (lamb**2)*D2.H*D2))*values)
Пример #38
0
def kwok_lau(graph, v, k, epsilon, path_length_scaler, volbd_scaler):
    num_vertices = graph.shape[0]
    volbd = k * volbd_scaler
    vertices = list(range(num_vertices))
    print("N: {0}\nVolume bound: {1}\n".format(num_vertices, volbd))

    p = [np.zeros(num_vertices, int)]
    p[0][v] = 1
    last = p[-1]
    
# length of walk to compute
# need to get W!
    I = mlib.identity(num_vertices, int)
# assuming symmetric here
    L, D_vector = csglib.laplacian(graph, return_diag=True)
    D = mlib.diags(D_vector, (0), format='csc')

    lazy_walk = 0.5 * (I + lalib.inv(D) * graph)

    num_iterations = math.ceil(num_vertices ** 2 * math.log(num_vertices, 2))
    for t in range(1, num_iterations):
        p.append(last * lazy_walk)
        last = p[-1]

# value function for sorting:
    sortkey = lambda t: (lambda vertex: p[t][vertex] / D_vector[vertex])

# initialize set now
    S = dict()

    S[0,1] = p[0][v]
    outset = S[0,1]
# when S has one element, the conductance is 1
# conductance is <= 1
    outcond = 2
    for t in range(1, num_iterations):
# so#rt all at once here?
        p[t] = p[t-1] * lazy_walk
    
        for j in range(1, num_vertices):
# compute new S[t,j]
# don't want to include the entire graph, that's dumb...
# should also put another bound in here for later
            S[t,j] = computeS(sortkey(t), vertices, j, num_vertices)
            # find smallest S_{t,j}
            currcond = conductance(S[t,j], L, D)
            if (currcond < outcond and volume(S[t,j], D) <= volbd):
                outset = S[t,j]
                outcond = currcond
    return outset
Пример #39
0
  def calculate_posterior(i):
    # This function calculates the posterior for u[i,:] and 
    # sigma[i,:]. Note: this function makes use of variables which are 
    # outside of its scope.
    logger.debug('evaluating the filtered solution for data set %s ...' % i)
    # identify observation points where we do not want to estimate the 
    # filtered solution
    mask = _get_mask(x,sigma[i],fill)
    # number of unmasked entries
    K = np.sum(~mask)
    # build differentiation matrices
    L,D = build_L_and_D(tuple(mask))
    # form weight matrix
    W = _diag(1.0/sigma[i,~mask])
    # compute penalty parameter
    lamb = _penalty(cutoff,p,sigma[i,~mask])
    # form left and right hand side of the system to solve
    lhs = W.T.dot(W) + L.T.dot(L)/lamb**2
    rhs = W.T.dot(W).dot(u[i,~mask])
    # generate LU decomposition of left-hand side
    lu = spla.splu(lhs)
    # compute the smoothed derivative of the posterior mean
    post_mean = np.empty((N,))
    post_mean[~mask] = D.dot(lu.solve(rhs))
    post_mean[mask] = np.nan
    # compute the posterior standard deviation. 
    if exact:
      cov = D.dot(spla.inv(lhs)).dot(D.T)
      var = np.diag(cov.toarray())
    else:  
      # compute uncertainty through repeated random perturbations of 
      # the data and prior vector.
      ivar = _IterativeVariance(post_mean[~mask])
      for j in range(samples):
        w1 = np.random.normal(0.0,1.0,K)
        w2 = np.random.normal(0.0,1.0,K)
        # generate sample of the posterior
        post_sample = lu.solve(rhs + W.T.dot(w1) + L.T.dot(w2)/lamb)
        # differentiate the sample
        post_sample = D.dot(post_sample)
        ivar.add_sample(post_sample)
    
      var = ivar.get_variance() 

    post_sigma = np.empty((N,))
    post_sigma[~mask] = np.sqrt(var)
    post_sigma[mask] = np.inf
      
    logger.debug('done')
    return post_mean,post_sigma
Пример #40
0
def se_covariance(param, W, sparse=False):
    """
    This computes a covariance matrix for a SAR-type error specification:

    ( (I - param * W)^T(I - param * W) )^{-1}

    and always returns a dense matrix.

    This first calls se_precision, and then inverts the results of that call.

    """
    prec = se_precision(param, W, sparse=sparse)
    if sparse:
        return spla.inv(prec)
    return np.linalg.inv(prec)
Пример #41
0
    def __init__(self, A, omega, *args, **kwargs):
        """Initialization routine for the smoother

        Args:
            A (scipy.sparse.csc_matrix): sparse matrix A of the system to solve
            omega (float): a weighting factor
            *args: Variable length argument list
            **kwargs: Arbitrary keyword arguments
        """
        super(WeightedJacobi, self).__init__(A, *args, **kwargs)

        self.P = sp.spdiags(self.A.diagonal(), 0, self.A.shape[0], self.A.shape[1],
                            format='csc')
        # precompute inverse of the preconditioner for later usage
        self.Pinv = omega * spLA.inv(self.P)
Пример #42
0
    def construct_efficient_steady_state_solver_matrices(self, epsilon):
        num_dms = self.number_density_matrices()
        n_vectors, higher_coupling_elements, higher_coupling_row_indices, higher_coupling_column_indices, \
                lower_coupling_elements, lower_coupling_row_indices, lower_coupling_column_indices = generate_hierarchy_and_tier_couplings(num_dms, self.num_aux_dm_indices, self.truncation_level, \
                                                                                       self.dm_per_tier())
        
        dtype = 'complex128'
        
        # first construct inverse operator
        op_to_invert = sp.kron(sp.eye(num_dms, dtype=dtype), -self.liouvillian() + epsilon*np.eye(self.system_dimension**2))
         
        diag_vectors = np.copy(n_vectors)
        aux_dm_idx = 0
        for site in self.environment:
            if site:
                for osc in site:
                    if isinstance(osc, OBOscillator):
                        aux_dm_idx += 1
                    elif isinstance(osc, UBOscillator):
                        diag_vectors[:,aux_dm_idx] = n_vectors[:,aux_dm_idx] + n_vectors[:,aux_dm_idx+1]
                        diag_vectors[:,aux_dm_idx+1] = n_vectors[:,aux_dm_idx+1] - n_vectors[:,aux_dm_idx] 
                        aux_dm_idx += 2
                aux_dm_idx += self.num_matsubara_freqs
 
        op_to_invert += sp.kron(sp.diags(np.dot(diag_vectors, self.diag_coeffs), dtype=dtype), sp.eye(self.system_dimension**2, dtype=dtype))
        inverse_op = spla.inv(op_to_invert)
        
        # now construct hierarchy matrix starting with relaxation parameter
        hm = sp.eye(self.M_dimension(), dtype=dtype).multiply(epsilon) #sp.kron(epsilon*sp.eye(num_dms, dtype=dtype), sp.eye(self.system_dimension**2, dtype=dtype))

        # include temperature correction / Markovian truncation term for Matsubara frequencies
        if self.temperature_correction:
            hm -= sp.kron(sp.eye(self.number_density_matrices(), dtype=dtype), np.sum(self.tc_terms, axis=0)).astype(dtype)
        
        # off diag bits
        for n in range(self.num_aux_dm_indices):
            higher_coupling_matrix = sp.coo_matrix((higher_coupling_elements[n], (higher_coupling_row_indices[n], higher_coupling_column_indices[n])), shape=(num_dms, num_dms), dtype=dtype).tocsr()
            lower_coupling_matrix = sp.coo_matrix((lower_coupling_elements[n], (lower_coupling_row_indices[n], lower_coupling_column_indices[n])), shape=(num_dms, num_dms), dtype=dtype).tocsr()
            hm -= sp.kron(higher_coupling_matrix.multiply(self.phix_coeffs[n]) + lower_coupling_matrix.multiply(self.thetax_coeffs[n]), self.Vx_operators[n]) \
                            + sp.kron(lower_coupling_matrix.multiply(self.thetao_coeffs[n]), self.Vo_operators[n])

        return hm.tocsc().astype(dtype), inverse_op.tocsr()
Пример #43
0
def spinv(a):
    """
    Compute the inverse of a sparse or dense matrix

    Parameters
    ----------

    a       :   array or sparse matrix
                Object with one or more columns
    
    Returns
    -------

    ai, the inverse of a
    """
    if SP.issparse(a):
        ai = SPla.inv(a)
    else:
        ai = la.inv(a)
    return ai
 def svd_eye_minus_hat_matrix(self):
     """
     Following Craven & Wahba find the singular value decomposition of 
         F = D Q R^{-1/2} 
     This function returns the non-zero singular values S and the
     corresponding left singular vectors in U, satisfying
         I - Hp = D U [ si**2 / ( 6(1-p) si**2 + p ) ] U.T D**(-1)
     where si is the ith singular value.
     """
     # TODO: is it indeed faster to take the non-sparse inverse?!
     method = 4
     if method==0:
         sqrt_invR = sqrtm(spla.inv(self.R).A)
     elif method==1:
         sqrt_invR = sqrtm(la.inv(self.R.todense()))
     elif method==2:
         invR = la.inv(self.R.todense())
         eR, oR = la.eigh(invR)
         sqrt_invR = oR.dot(np.diag(np.sqrt(eR))).dot(oR.T)
     elif method==3:
         eR, oR = la.eigh(self.R.todense())
         sqrt_invR = oR.dot(np.diag(1./np.sqrt(eR))).dot(oR.T)
     elif method==4:
         # TODO: 
         #     deal with the error
         #     File "splines.py", line 378, in svd_eye_minus_hat_matrix
         #     eR, oR = la.eig_banded(self.R.data[self.R.offsets>=0][::-1])
         #     File "/ph2users/eldada/lib/anaconda/lib/python2.7/site-packages/scipy/linalg/decomp.py",
         #     line 563, in eig_banded
         #     raise LinAlgError("eig algorithm did not converge")
         try:
             eR, oR = la.eig_banded(self.R.data[self.R.offsets>=0][::-1])
             sqrt_invR = oR.dot(np.diag(1./np.sqrt(eR))).dot(oR.T)
         except LinAlgError:
             # if eig_banded fails try the eigh
             eR, oR = la.eigh(self.R.todense())
             sqrt_invR = oR.dot(np.diag(1./np.sqrt(eR))).dot(oR.T)
     U, S, VT = la.svd(self.D * self.Q * sqrt_invR, full_matrices=False)
     return U,S
Пример #45
0
def get_funcMap(coefS,coefT,eivalS,eivalT):
    k = coefS.shape[0]
    t = coefS.shape[1]
    w_func = 1
    w_com = 1
    w_reg = 1

    data_1 = (coefS.T.repeat(k,axis=0).flatten())*w_func
    row_ind_1 = np.arange(k*t).repeat(k)
    col_ind_1 = np.tile(np.arange(k*k),t)    
    
    lS = np.tile(eivalS,(eivalS.shape[0],1))    
    lT = np.tile(eivalT,(eivalS.shape[0],1)).T
    matEival = (lT-lS) * (lT-lS)
    data_2 = (matEival.T.repeat(k,axis=0).flatten())*w_com
    row_ind_2 = (np.arange(k*k)+(k*t)).repeat(k)
    col_ind_2 = np.tile(np.arange(k*k),k)
        
    data_3 = (np.ones(k*k))*w_reg
    row_ind_3 = np.arange(k*k)+((k*t)+(k*k))
    col_ind_3 = np.arange(k*k)
    
    M = (k*t)+(k*k)+(k*k)
    N = k*k
    data = np.concatenate((data_1,data_2,data_3),axis=0)
    row_ind = np.concatenate((row_ind_1,row_ind_2,row_ind_3),axis=0)
    col_ind = np.concatenate((col_ind_1,col_ind_2,col_ind_3),axis=0)
    a = csr_matrix((data,(row_ind,col_ind)),shape=(M,N))
    b1 = (coefT.T.flatten())*w_func
    b2 = (np.zeros(k*k))*w_com
    b3 = (np.zeros(k*k))*w_reg
    b = (np.concatenate((b1,b2,b3),axis=0))[:,None]
    aTa = a.T.dot(a)
    aTb = a.T.dot(b)
    funcMap = (inv(aTa).dot(aTb)).reshape(k,k)
    return funcMap
def calculaW(X,Y,Xteste,Yteste,Xdev,Ydev): #funcao nao normaliza Y
    errorg=[]
    errortg=[]
    #calcula o W usando os valores de X e Y de train e de dev
    final=[-1,0,0]
    print "A fazer calculos para obter o W"
    #print "A calcular transposta de X"
    #print "Transposta calculada, a outros calculos"

    Xt=X.transpose()
    print "A testar lambdas:"
    lambs=[10**x for x in xrange(-3,8)]
    xg=map(lambda x: np.log10(x),lambs)
    #lambs=[100]
    #xg=[2]
    for lamb in lambs:
    #for lamb in [0.0000000000000000000000000001]:
        
        
        #calculo do w para cada lambda        
        

        temp=Xt*X
         
        shape=temp.shape        
        lambd=sparse.identity(shape[0])*lamb
        temp=temp+lambd
        
        temp=linalg.inv(temp)
        temp=temp*Xt
        temp=temp*Y
        #fim do calculo
        
        error=erro(Xdev,Ydev,temp)
        errortg.append(erro(Xteste,Yteste,temp))
        print lamb,error
        errorg.append(error) 
        if final[0]>error or final[0]==-1:
            final[0]=error
            final[1]=lamb
            final[2]=temp
    
    #valores returnados: temp->W final, final[0]->erro medio associado a esse valor, final[1]-> lambda
    try:
        import os
        os.environ['DISPLAY']
        import matplotlib.pyplot as plt
        plt.figure(1)
        plt.subplot(211)
        plt.title("Evolucao do erro Dev")
        plt.plot(xg,errorg,"b",xg,errorg,"ro")
        plt.subplot(212)
        plt.title("Evolucao do erro Teste")
        plt.plot(xg,errortg,"b",xg,errortg,"ro")
        #plt.savefig("formula.png")
        plt.show()
    except :
        import os
        try:
            del os.environ['DISPLAY']
        except:
            pass
        print "Nao foi encontrado display\nO grafico vai ser escrito num ficheiro"
        print "Os dados usados sao:"+f
        import matplotlib as mpl
        mpl.use('Agg')
        import matplotlib.pyplot as plt
        plt.figure(1)
        plt.subplot(211)
        plt.title("Evolucao do erro Dev")
        plt.plot(xg,errorg,"b",xg,errorg,"ro")
        plt.subplot(212)
        plt.title("Evolucao do erro Teste")
        plt.plot(xg,errortg,"b",xg,errortg,"ro")
        plt.savefig("formula.png")

    return final[2],final[0],final[1]
Пример #47
0
def kernel_AS (X, labels, num_initial=1, num_eval=1, pi=0.05, eta=0.5, w0=None, init_pt=None, verbose=True, all_fs=False, sparse=False, tinv=False):
	"""
	X 			--> r x n matrix of feature values for each point.
	labels 		--> true labels for each point.
	pi 			--> prior target probability
	eta 		--> jump probability
	num_initial --> number of initial points to start from.
	num_eval 	--> number of points to be investigated
	"""
	#X = np.array(X)
	r,n = X.shape
	labels = np.array(labels)

	if init_pt is not None:
		if not isinstance(init_pt, list):
			init_pt = [init_pt]

		num_initial = len(init_pt)
		idxs = init_pt
		if not (labels[idxs]).all():
			if verbose:
				print "Warning: start points provided not targets. Converting to targets."
			labels[idxs] = 1
			true_targets = (np.array(labels)==1).nonzero()[0]
			
		unlabeled_idxs = [i for i in range(n) if i not in idxs]
	else:
		# Random start node
		true_targets = (np.array(labels)==1).nonzero()[0]
		# %%% Randomly pick 1 target point as the first point
		idxs = [true_targets[i] for i in nr.permutation(range(len(true_targets)))[:num_initial]]
		unlabeled_idxs = [i for i in range(n) if i not in idxs]
		# %%% Randomly pick 1 target point as the first point

	num_initial = min(n-1,num_initial)
	num_eval = min(num_eval, n-num_initial)

	if sparse:
		Ir = ss.eye(r)
	else:
		Ir = np.eye(r)

	# Lambda from TK's notes can be written using eta as follows
	l = (1-eta)/eta
	# omega0 as in TK's code
	if w0 is None: w0 = 1/n

	# Set up initial BD and C
	B = 1/(1+w0)*np.ones(n) # Need to update B every iteration
	B[idxs] = l/(1+l)
	D = np.squeeze(X.T.dot(X.dot(np.ones((n,1))))) #TODO: if we don't need to keep this, we can remove it.
	Dinv = 1./D
	BDinv = np.squeeze(B*Dinv)

	if sparse:
		BDinv_ss = ss.diags([BDinv],[0]).tocsr()

	if verbose:
		print 'Start point: \n', idxs

	y = pi*np.ones(n)
	y[idxs] = 1
	I_B = 1-B
	q = I_B*y # Need to update q every iteration

	# the atleast 2d transpose is there to make it be the same as diag(__)

	# import IPython
	# IPython.embed()
	if verbose: 
		print "Constructing C"
		t1 = time.time()

	if sparse:
		C = (Ir - X.dot(BDinv_ss.dot(X.T)))	
	else:
		C = (Ir - X.dot(BDinv[:,None]*X.T))

	if verbose:
		print time.time() - t1

	# import IPython
	# IPython.embed()

	if verbose:
		print "Inverting"
	t1 = time.time()
	if sparse:
		Cinv = ssl.inv(C.tocsc()) # Need to update Cinv every iteration
	else:
		Cinv = nlg.inv(C)

	dtinv = time.time() - t1
	if verbose:
		print "Time for inverse:", dtinv


	hits = np.zeros((num_eval+num_initial,1))
	hits[0] = num_initial
	selected = [ix for ix in idxs]

	if sparse:
		f = q + BDinv_ss.dot(((X.T.dot(Cinv.dot(X.dot(q))))))
	else:
		f = q + BDinv*((X.T.dot(Cinv.dot(X.dot(q)))))

	# Number of true targets
	true_n = sum(labels==1)
	found_n = num_initial

	#temp
	# dinvA = (np.diag(Dinv)).dot(X.T.dot(X))
	# B2 = np.ones(n)*1/(1+w0)
	# B2[idxs] = l/(1+l)
	# yp = np.ones(n)*pi
	# yp[idxs] = labels[idxs]
	if all_fs:
		fs = [f]

	# Modifying the element 
	for i in range(num_eval):

		# import IPython
		# IPython.embed()
		t1 = time.time()

		# assert len(unlabeled_idxs) == n - num_initial - i
		# if len(unlabeled_idxs) != len(np.unique(unlabeled_idxs)):
		# 	print "ERROR: NOT ALL UNLABELED IDXS ARE UNIQUE"

		# Find next index to investigate
		uidx = np.argmax(f[unlabeled_idxs])
		idx = unlabeled_idxs[uidx]
		# if idx == n:
		# 	print "ERROR: SELECTING SELECTED PT", idx
		# 	import IPython
		# 	IPython.embed()

		del unlabeled_idxs[uidx]

		# assert idx not in unlabeled_idxs

		found_n += labels[idx]
		if found_n==true_n:
			if verbose:
				print "Found all", found_n, "targets. Breaking out."
			break

		# Update relevant matrices

		if sparse:
			BDinv_ss[idx,idx] *= (1+w0)*l/(1+l) 
		else:
			BDinv[idx] *= (1+w0)*l/(1+l) 

		q[idx] = labels[idx]*1/(1+l)
		gamma = -(l/(1+l)-1/(1+w0))*Dinv[idx]

		Xi = X[:,[idx]] # ith feature vector

		# t7 = time.time()
		Cif = Cinv.dot(Xi)
		# t8 = time.time()
		# d7 = t8 - t7
		# import IPython
		# IPython.embed()
		if sparse:
			Cinv = Cinv - gamma*(Cif.dot(Cif.T))/(1 + (gamma*Xi.T.dot(Cif))[0,0])
		else:
			Cinv = Cinv - gamma*(Cif.dot(Cif.T))/(1 + gamma*Xi.T.dot(Cif))
		
		# t9 = time.time()
		# d8 = t9 - t8

		if sparse:
			f = q + BDinv_ss.dot(((X.T.dot(Cinv.dot(X.dot(q))))))
		else:
			f = q + BDinv*((X.T.dot(Cinv.dot(X.dot(q)))))

		# t0 = time.time()
		# d9 = t0 - t9

		if all_fs:
			fs.append(f)

		# import IPython
		# IPython.embed()

		elapsed = time.time() - t1
		selected.append(idx)
		hits[i+1] = found_n

		## temp ##
		# B2[idx] = l/(l+1)
		# yp[idx] = float(labels[idx])
		# Ap = np.diag(B2).dot(dinvA)
		# q2 = (np.eye(n) - np.diag(B2)).dot(yp)
		# f2 = nlg.inv(np.eye(n) - Ap).dot(q2)
		# print nlg.norm(f-f2)
		## temp ##

		if verbose:
			if (i%1)==0 or i==1:
				print 'Iter: %i, Selected: %i, Best f: %f, Hits: %i/%i, Time: %f'%(i,selected[i+num_initial], f[idx], hits[i+1], (i+num_initial+1), elapsed)
			print '%d %d %f %d\n'%(i, hits[i+1]/true_n, elapsed, selected[i+num_initial])


	# Ap = np.diag(B2).dot(dinvA)
	# q2 = (np.eye(n) - np.diag(B2)).dot(yp)
	# f2 = nlg.inv(np.eye(n) - Ap).dot(q2)
	if all_fs:
		if tinv: return f, hits, selected, fs, dtinv
		return f, hits, selected, fs
	if tinv: return f, hits, selected, dtinv
	return f, hits, selected
Пример #48
0
def _instability_analysis_from_N2_profile_raw(zc, N2, f0, beta, k, l, zf, ubar, vbar, etax, etay, Ah,
                                              sort='LI', num=4, depth=None, **kwargs):
    nz = len(zc)

    ### vertical discretization ###

    # ~~~~~ zf[0]==0, phi[0] ~~~~
    #
    # ----- zc[0], N2[0] --------
    #
    # ----- zf[1], phi[1] -------
    # ...
    # ---- zc[nz-1], N2[nz-1] ---
    #
    # ~~~~ zf[nz], phi[nz] ~~~~~~

    # just for notation's sake
    # (user shouldn't worry about discretization)
    dzc = np.hstack(np.diff(zc))
    dzf = np.diff(zf)
    
    ##################
    # We want a matrix representation of the operator such that
    #
    #     np.dot(L, psi) = omega * np.dot(G, psi)
    ##################
    
    omega = np.zeros( (num, len(l), len(k)), dtype=np.complex128 )
    psi = np.zeros( (nz+1, num, len(l), len(k)), dtype=np.complex128 )
    
    for j in range(len(l)):
        for i in range(len(k)):
            
            if Ah == 0.:
                L = lil_matrix((nz+1, nz+1), dtype=np.float64)
            else:
                L = lil_matrix((nz+1, nz+1), dtype=np.complex128)
            G = L.copy()

            ################
            # n = 0 (surface)
            #
            # From the discretized equations above, at the surface we get
            #     L[0, 0] = (( k (U[0] + U[1])/2 + l (V[0] + V[1])/2 ) / dzf[0] 
            #                 - .5*( k ( (U[0] - U[1])/dzf[0] - N2[0]**2/f0 * etay[0] ) + l ( (V[0] - V[1])/dzf[0] + N2[0]**2/f0 * etax[0] ))) 
            #     L[0, 1] = (( k (U[0] + U[1])/2 + l (V[0] + V[1])/2 ) / (-dzf[0]) 
            #                 - .5*( k ( (U[0] - U[1])/dzf[0] - N2[0]/f0 * etay[0] ) + l ( (V[0] - V[1])/dzf[0] + N2[0]/f0 * etax[0] )))
            # and
            #     G[0, 0] = dzf[0]**-1
            #     G[0, 1] = -dzf[0]**-1
            ################
            R = k[i] * .5*(ubar[0]+ubar[1]) + l[j] * .5*(vbar[0]+vbar[1]) 
            D = dzf[0]**-1
            S = .5 * ( k[i] * ( (ubar[0]-ubar[1])*D - N2[0]/f0 * etay[0] )
                                                + l[j] * ( (vbar[0]-vbar[1])*D + N2[0]/f0 * etax[0] ) )

            L[0, 0] = R * D - S
            L[0, 1] = R * (-D) - S
            G[0, 0] = D
            G[0, 1] = - D
            # L[0, 0] = R - S * D**-1
            # L[0, 1] = R * (-1.) - S * D**-1
            # G[0, 0] = 1.
            # G[0, 1] = - 1.

            ################
            # n = nz (bottom)
            #
            # From symmetry, at the bottom
            #     L[nz, nz-1] = (( k (U[nz-1] + U[nz])/2 + l (V[nz-1] + V[nz])/2 ) / dzf[nz-1] 
            #           - .5*( k ( (U[nz-1] - U[nz])/dzf[nz-1] - N2[nz-1]**2/f0 * etay[1] ) + l ( (V[nz-1] - V[nz])/dzf[nz-1] + N2[nz-1]**2/f0 * etax[1] ))) 
            #     L[nz, nz] = (( k (U[nz-1] + U[nz])/2 + l (V[nz-1] + V[nz])/2 ) / (-dzf[nz-1]) 
            #           - .5*( k ( (U[nz-1] - U[nz])/dzf[nz-1] - N2[nz-1]/f0 * etay[1] ) + l ( (V[nz-1] - V[nz])/dzf[nz-1] + N2[nz-1]/f0 * etax[1] )))
            # and
            #     G[nz, nz-1] = dzf[nz-1]**-1
            #     G[nz, nz] = -dzf[nz-1]**-1
            ################
            R = k[i] * .5*(ubar[nz-1]+ubar[nz]) + l[j] * .5*(vbar[nz-1]+vbar[nz]) 
            D = dzf[nz-1]**-1
            S = .5 * ( k[i] * ( (ubar[nz-1]-ubar[nz])*D - N2[nz-1]/f0 * etay[1] )
                                                + l[j] * ( (vbar[nz-1]-vbar[nz])*D + N2[nz-1]/f0 * etax[1] ) )

            L[nz, nz-1] = R * D - S
            L[nz, nz] = R * (-D) - S
            G[nz, nz-1] = D
            G[nz, nz] = - D
            # L[nz, nz-1] = R - S * D**-1
            # L[nz, nz] = R * (-1.) - S * D**-1
            # G[nz, nz-1] = 1.
            # G[nz, nz] = - 1.

            ################
            # 0 < n < nz (interior)
            #
            # In the interior, we have
            #     L[n, n-1] = (k U[n] + l V[n] - i Ah K**2) * f**2/dzc[n] / (N2[n-1] * dzf[n-1])
            #     L[n, n] = (k U[n] + l V[n] - i Ah K**2) 
            #                     * ( - f**2/dzc[n] * ( 1/(N2[n] * dzf[n]) + 1/(N2[n-1]*dzf[n-1]) ) - K**2 ) + k*Qy[n] - l*Qx[n] )
            #     L[n, n+1] = (k U[n] + l V[n] - i Ah K**2) * f**2/dzc[n] / (N2[n] * dzf[n])
            # and
            #     G[n, n-1] = f**2/dzc[n] / N2[n-1] / dzf[n-1]
            #     G[n, n] = ( - f**2/dzc[n] * ( 1/(N2[n]*dzf[n]) + 1/(N2[n-1]*dzf[n-1]) ) - K**2 )
            #     G[n, n+1] = f**2/dzc[n] / N2[n] / dzf[n]
            ################
            for n in range(1,nz):
                
                K2 = k[i]**2 + l[j]**2
                if Ah == 0.:
                    R = k[i] * ubar[n] + l[j] * vbar[n]
                else:
                    R = k[i] * ubar[n] + l[j] * vbar[n] - 1j * Ah * K2
                bf = f0**2 * dzc[n-1]**-1
                b_1 = N2[n-1] * dzf[n-1]
                b = N2[n] * dzf[n]
                B_1 = bf * b_1**-1 
                B = - (bf * (b**-1 + b_1**-1) + K2)
                Bt1 = bf * b**-1 

                N2Z = (N2[n]*dzf[n])**-1
                N2Z_1 = (N2[n-1]*dzf[n-1])**-1
                P = ( k[i] * ( beta - bf * ( ubar[n+1] * N2Z
                                                                - (N2Z + N2Z_1) * ubar[n]
                                                                + N2Z_1 * ubar[n-1] ) )
                            - l[j] * bf * ( vbar[n+1] * N2Z 
                                                           - (N2Z + N2Z_1) * vbar[n]
                                                           + N2Z_1 * vbar[n-1] )
                            )

                L[n, n-1] = R * B_1
                L[n, n] = R * B + P
                L[n, n+1] = R * Bt1
                G[n, n-1] = B_1
                G[n, n] = B
                G[n, n+1] = Bt1
        #             L[n, n-1] = R
        #             L[n, n] = R + P * B**-1
        #             L[n, n+1] = R
        #             G[n, n-1] = 1.
        #             G[n, n] = 1.
        #             G[n, n+1] = 1.        
                    
            # Return Nans if matrix G is singular
            try:
                # read in kwargs if any
                if len(kwargs) > 0:
                    val, func = eigs( csc_matrix(inv(csc_matrix(G)).dot(csc_matrix(L))), 
                                                 k=num, which='LI', v0=kwargs['init_vector'], 
                                     ncv=kwargs['num_Lanczos'], maxiter=kwargs['iteration'],
                                    tol=kwargs['tolerance'])  # default returns 6 eigenvectors
                else:
                    num_Lanczos = nz
                    iteration = 10*nz
                    val, func = eigs( csc_matrix(inv(csc_matrix(G)).dot(csc_matrix(L))), 
                                                 k=num, which='LI', ncv=num_Lanczos, maxiter=iteration,
                                       )  # default returns 6 eigenvectors
                # val, func = eigs( csc_matrix(L), M=csc_matrix(G), Minv=csc_matrix(inv(csc_matrix(G))), 
                #                 k=num, which='LI', ncv=num_Lanczos, maxiter=iteration, **kwargs )

                ###########
                # eigs returns complex values. For a linear-stability analysis, 
                # we don't want the eigenvalues to be real
                ###########
                omega[:, j, i] = val
                psi[:, :, j, i] = func  # Each column is the eigenfunction
            
            except RuntimeError:
                warnings.warn('The matrix is ill-conditioned or singular', RuntimeWarning)
                omega[:, j, i] = np.nan
                psi[:, :, j, i] = np.nan
    
    ###########
    # they are often sorted and normalized but not always,
    # so we have to do that here.
    # sort them by the imaginary part of the eigenvalues 
    # (growth rate)
    ###########
    omega1d = omega.reshape( (num, len(k)*len(l)) ).imag.max(axis=1)
    p = np.argsort(omega1d)[::-1]
    omega = omega[p]
    psi = psi[:, p]
    
    # return the first 'num' leading modes
    return zf, omega[:num], psi[:, :num]
    
Пример #49
0
def walk_generator(A):
    """ Return the walk-generating function of A. """
    I = sparse.identity(A.shape[1], dtype=float)
    inv_mat = linalg.inv((I-A).tocsc()).tocsr()
    return inv_mat
Пример #50
0
def predict(model, Xi, X, Y, eps0=1e-1, maxdist=1e3, compute_uncertainty=False,
        use_kd_trees=True, demean=True):
    """ Return the Gauss-Markov minimum variance estimate for points *Xi* given
    data *Y* observed at *X*.
    (DISEP Eqn 2.397)

    Arguments:
    ----------
    model: function, returns the isotropic structure function given a distance
    Xi: np.ndarray, (n x 2)
    X: np.ndarray, (n x 2)
    Y: np.ndarray, (n)
    eps0: zero lag variance, or measurement error
    compute_uncertainty: boolean, optional

    Returns:
    --------
    (np.ndarray, np.ndarray)
    Predictions and prediction uncertainty (variance)

    Notes:
    ------
    Oceanographers call this optimal interpolation, or objective analysis.
    Geologists call this simple kriging.
    """
    # Matrix inversion and multiplication are somewhat slow
    # Error variance is extremely slow with the current algorithm
    if demean:
        Ym = Y.mean()
    else:
        Ym = 0.0
    Yd = Y-Ym
    
    if use_kd_trees:
        kdx = scipy.spatial.cKDTree(X)
        kdxi = scipy.spatial.cKDTree(Xi)
        Rxx = _model_covariance_matrix_kd(model, kdx, kdx, maxdist=maxdist) \
                + sparse.diags(eps0*np.ones_like(Y), 0)
        Rxy = _model_covariance_matrix_kd(model, kdx, kdxi, maxdist=maxdist)

        Rxx_inv = splinalg.inv(Rxx)
        alpha = Rxx_inv*Rxy
        # all matrices are CSC
        Yi = alpha.T*Yd + Ym

        if compute_uncertainty:
            Ryy = _model_covariance_matrix_kd(model, kdxi, kdxi, maxdist=maxdist)
            epsi = _uncertainty(Ryy, Rxy, Rxx_inv)
        else:
            epsi = np.nan*np.empty_like(Yi)

    else:
        if hasattr(eps0, "__iter__"):
            Rxx = _model_covariance_matrix(model, X, X) + np.diag(eps0)
        else:
            Rxx = _model_covariance_matrix(model, X, X) + np.diag(eps0*np.ones_like(Y))
        Rxy = _model_covariance_matrix(model, X, Xi)

        Rxx_inv = np.linalg.inv(Rxx)
        alpha = np.dot(Rxx_inv, Rxy)
        Yi = np.dot(alpha.T, Yd) + Ym

        if compute_uncertainty:
            Ryy = _model_covariance_matrix(model, Xi, Xi)
            epsi = _uncertainty(Ryy, Rxy, Rxx_inv)
        else:
            epsi = np.nan*np.empty_like(Yi)

    return Yi, epsi
Пример #51
0
def compute_fundamental(P):
    """
    """
    n = P.shape[0]
    F = inv(eye(n, format='csc') - P.tocsc()).todense()
    return F    
Пример #52
0
def SpectralLearning(M2,K,initSingle,Single,Pair21,Pair31,Triple,transObs,marks,emission_file):
	""" The main spectral learning algorithm """
	transObs2 = {}
	for i in transObs.keys():
		transObs2[transObs[i]] = i

#	'Computes SVD of observation pairs matrix'
	(U2,S2,V_T2) = ssl.svds(Pair31,K)
	U_T2 = np.matrix(U2.transpose())
	V_T2 = np.matrix(V_T2)
	U_T = np.matrix(np.zeros((K,M2)))
	S = np.zeros((K))
	V = np.matrix(np.zeros((M2,K)))
	for i in range(0,K):
		U_T[i,:] = U_T2[K-i-1,:]*np.sign(U_T2[K-i-1,0])
		S[i] = S2[K-i-1]
		V[:,i] = (V_T2[K-i-1,:]*np.sign(V_T2[K-i-1,0])).transpose()

# Pair_inv3 = (U^T * Pair31)^+
	Pair_inv3 = ss.dok_matrix((M2,K))
	for j in range(0,K):
		for i in range(0,M2):
			Pair_inv3[i,j] = V[i,j]/S[j]

#	'Finds the major observation by using U'
	mIdx = {}
	exist = {}
	for i in range(0,K):
		mV = 0
		mI = 0
		for j in range(0,M2):	
			if (j in exist):	continue
			v = U_T[i,j]**2
			if (v>mV):
				mV = v
				mI = j
		mIdx[i] = mI
		exist[mI] = True
#		print i,transObs2[mIdx[i]]

# 'Computes eigenvectors'
	eigVec = np.matrix(np.zeros((K,K)))
	for i in range(0,K):
		Cx = U_T * Triple[mIdx[i]] * Pair_inv3
#		[w,v] = eigs(Cx,1,maxiter=miter)
		[Ws,Vs] = nl.eig(Cx)
		v = Vs[:,0]
		eigVec[:,i] = np.matrix(np.real(v)*np.sign(np.real(v[0,0])))
	eigVec_inv = nl.inv(eigVec)

#	'Computes emission matrix'
	O = ss.dok_matrix((M2,K))
	O1 = eigVec_inv * U_T
	O2 = Pair_inv3 * eigVec
	for i in range(0,M2):
		if (i not in Triple):	continue
		Ox = O1 * Triple[i] * O2
		for j in range(0,K):	O[i,j] = abs(Ox[j,j])
	for j in range(0,K):	O[:,j] /= O[:,j].sum()

# 'Write emission matrix to the output file'
	f = open(emission_file,'w+')
	f.write(str(K)+'\t'+str(transObs.__len__())+'\t(Emission order)')
	for mark in marks:	f.write('\t'+mark)
	f.write('\n')
	for j in range(0,K):
		for i in sorted(transObs.keys()):
			f.write(str(j+1)+'\t'+str(i)+'\t'+str(O[transObs[i],j])+'\n')
	f.close()
#	U_T_O = U_T * O

#	'Computes Inverse of Emission Matrix'
#	O_inv = matrix(pinv(O.todense())) 
#	Pi = O_inv * initSingle
	A = ssl.inv((O.transpose()*O).tocsc())

# 'Computes initial state distribution vector'
	Pi = A * (O.transpose()*initSingle)
	s = abs(Pi).sum()
	for i in range(0,K):	
		Pi[i,0] = abs(Pi[i,0])/s	

#	'Computes transition matrix'
#	T = abs(O_inv*Pair21*O_inv.transpose()*inv(diagMatrix(Pi).todense()))
#	T1 = O_inv*Pair31
#	T2 = pinv(O_inv*Pair21)
#	T = abs(T1 * T2)
	T3 = O.transpose()*Pair31
	T2 = O.transpose()*Pair21
	T2_inv = ssl.inv((T2*T2.transpose()).tocsc())
	A_inv = ssl.inv(A)
	T = abs(A*(T3*T2.transpose())*T2_inv*A_inv)
	for j in range(0,K):	T[:,j] /= T[:,j].sum() 
	return (T,O,Pi)
    def get_random_walk_distance(self, source=None, target=None, parameter=1, saveto=""):
        """
        Compute the random walk effective distance:
        F. Iannelli, A. Koher, P. Hoevel, I.M. Sokolov (in preparation)
        
        Parameters
        ----------
             source : int or None
                If source is None, the distances from all nodes to the target is calculated
                Otherwise the integer has to correspond to a node index
            
            target : int or None
                If target is None, the distances from the source to all other nodes is calculated
                Otherwise the integer has to correspond to a node index
                
            parameter : float
                compound parameter which includes the infection and recovery rate alpha and beta, respectively, 
                the mobility rate kappa and the Euler-Mascheroni constant lambda:
                    log[ (alpha-beta)/kappa - lambda ]
        
            saveto : string
                If empty, the result is saved internally in self.dominant_path_distance           
                
        Returns:
        --------
            random_walk_distance : ndarray or float
                If source and target are specified, a float value is returned that specifies the distance.
                
                If either source or target is None a numpy array is returned.
                The position corresponds to the node ID. 
                shape = (Nnodes,)
                
                If both are None a numpy array is returned.
                Each row corresponds to the node ID. 
                shape = (Nnodes,Nnodes)
        """           
        
        assert (isinstance(parameter,float) or isinstance(parameter,int)) and parameter > 0
        assert isinstance(saveto,str)
        assert self.graph != None, "Load graph first."        
        
        P = adjacency_matrix(self.graph, weight="transition_rate").tocsc()
        assert np.all(np.isclose(P.sum(axis=1), 1, rtol=1e-15)), "The transition matrix has to be row normalized"
        
        one = eye( self.nodes, format="csc")
        Z = inv( one - P * np.exp(-parameter))
        D = diags(1./Z.diagonal(), format="csc")
        RWED = -np.log( Z.dot(D).toarray() )

        if source is not None:
            if target is not None:
                RWED = RWED[source, target]
            else:
                RWED = RWED[source,:]
        elif target is not None:
            RWED = RWED[:,target]

        if saveto is not "":
            save( saveto, RWED )
        
        return RWED
Пример #54
0
def _roi_extract(inputs):
    """ROI extract code, intended to be used by extract_rois.
    Needs to be a top-level function to allow it to be used with Pools.

    Parameters - a single two-element tuple, 'inputs'
    ----------
    frame : array
        An individual aligned frame from the imaging session.
    constants : dict
        Variables that do not change each loop and are pre-calculated to speed
        up extraction. Includes demixer, mask_stack, A, masked_pixels, and
        is_overlap.

    Returns - a single three-element tuple
    -------
    values : array
        n_rois length array of average pixel intensity for all pixels
        in each ROI
    demixed_values : array
        If demixer is None, the second returned value will also be None.
        Same format as values, but calculated from the demixed raw signal.
    frame : array
        Return back the frame as it was passed in, used for calculating a mean
        image.

    """

    frame, frame_idx, constants = inputs

    def put_back_nans(values, imaged_rois, n_rois):
        """Puts NaNs back in output arrays for ROIs that were not imaged this
        frame.
        """
        value_idx = 0
        roi_idx = 0
        final_values = np.empty(n_rois)
        while roi_idx < n_rois:
            if roi_idx in imaged_rois:
                final_values[roi_idx] = values[value_idx]
                value_idx += 1
            else:
                final_values[roi_idx] = np.nan
            roi_idx += 1
        return final_values

    n_rois = constants['A'].shape[1]
    masked_frame = frame[constants['masked_pixels']]

    # Determine which pixels and ROIs were imaged this frame
    # If none were, just return with all NaNs
    imaged_pixels = np.isfinite(masked_frame)
    if not np.any(imaged_pixels):
        nan_result = np.empty((n_rois, 1))
        nan_result.fill(np.nan)
        return (frame_idx, nan_result, nan_result)

    # If there is overlapping pixels between the ROIs calculate the full
    # pseudoinverse of A, if not use a shortcut
    if constants['is_overlap']:
        A = constants['A'][imaged_pixels, :]
        # Identify all of the rois that were imaged this frame
        imaged_rois = np.unique(
            constants['mask_stack'][:, imaged_pixels].nonzero()[0])
        if len(imaged_rois) < n_rois:
            A = A.tocsc()[:, imaged_rois].tocsr()
        # First assume ROIs are independent, else fall back to full pseudo-inv
        try:
            weights = inv(A.T * A) * A.T
        except RuntimeError:
            weights = csc_matrix(np.linalg.pinv(A.todense()))
    else:
        orig_masks = constants['mask_stack'].copy()
        imaged_masks = orig_masks[:, imaged_pixels]
        imaged_rois = np.unique(imaged_masks.nonzero()[0])
        if len(imaged_rois) < n_rois:
            orig_masks = orig_masks.tocsr()[imaged_rois, :].tocsc()
            imaged_masks = imaged_masks.tocsr()[imaged_rois, :].tocsc()
        orig_masks.data **= 2
        imaged_masks.data **= 2
        scale_factor = old_div(
            orig_masks.sum(axis=1), imaged_masks.sum(axis=1))
        scale_factor = np.array(scale_factor).flatten()
        weights = diags(scale_factor, 0) \
            * constants['mask_stack'][imaged_rois][:, imaged_pixels]

    # Extract signals
    values = weights * masked_frame[imaged_pixels, np.newaxis]
    weights_sums = weights.sum(axis=1)
    result = values + weights_sums

    if len(imaged_rois) < n_rois:
        result = put_back_nans(result, imaged_rois, n_rois)

    if constants['demixer'] is None:
        return (frame_idx, result, None)

    # Same as 'values' but with the demixed frame data
    demixed_frame = masked_frame + constants['demixer']
    demixed_values = weights * demixed_frame[imaged_pixels, np.newaxis]
    demixed_result = demixed_values + weights_sums

    if len(imaged_rois) < n_rois:
        demixed_result = put_back_nans(demixed_result, imaged_rois, n_rois)
    return (frame_idx, result, demixed_result)
Пример #55
0
def extract_rois(dataset, rois, signal_channel=0, remove_overlap=True,
                 n_processes=1, demix_channel=None):
    """Extracts imaging data from the current dataset using the
    supplied ROIs file.

    Parameters
    ----------
    dataset : ImagingDataset
        The dataset from which signals are to be extracted.
    rois : ROIList
        ROIList of rois to extract
    signal_channel : string or int, optional
        Channel containing the signal to be extracted, either an integer
        index or a name in self.channel_names.
    remove_overlap : bool, optional
        If True, remove any pixels that overlap between masks.
    n_processes : int, optional
        Number of processes to farm out the extraction across. Should be
        at least 1 and at most one less then the number of CPUs in the
        computer. Defaults to 1.
    demix_channel : int, optional
        Index of channel to demix from the signal channel. If None, do not
        demix signals.

    Returns
    ------
    signals : dict
        The extracted signals along with parameters and values calculated
        during extraction.
        See sima.ImagingDataset.extract for details of the signals format.

    See also
    --------
    sima.ImagingDataset.extract

    """

    signal_channel = dataset._resolve_channel(signal_channel)

    if n_processes > 1:
        pool = Pool(processes=n_processes)

    num_sequences = dataset.num_sequences
    num_planes, num_rows, num_columns, num_channels = dataset.frame_shape

    for roi in rois:
        roi.im_shape = (num_planes, num_rows, num_columns)
    masks = [hstack([mask.reshape((1, num_rows * num_columns))
             for mask in roi.mask]) for roi in rois]

    # Find overlapping pixels
    overlap = _identify_overlapping_pixels(masks)

    # Remove pixels that overlap between ROIs
    if remove_overlap:
        masks = _remove_pixels(masks, overlap)

    # If mask is boolean convert to float and normalize values such that
    # the sum of the weights in each ROI is 1
    for mask_idx, mask in zip(it.count(), masks):
        if mask.dtype == bool and mask.nnz:
            masks[mask_idx] = old_div(mask.astype('float'), mask.nnz)

    # Identify non-empty ROIs
    original_n_rois = len(masks)
    rois_to_include = np.array(
        [idx for idx, mask in enumerate(masks) if mask.nnz > 0])
    n_rois = len(rois_to_include)
    if n_rois != original_n_rois:
        with warnings.catch_warnings():
            warnings.simplefilter("always")
            warnings.warn("Empty ROIs will return all NaN values: " +
                          "{} empty ROIs found".format(
                              original_n_rois - n_rois))
    if not n_rois:
        raise ValueError('No valid ROIs found.')

    # Stack masks to a 2-d array
    mask_stack = vstack([masks[idx] for idx in rois_to_include]).tocsc()

    # Only include pixels that are included in a ROI
    masked_pixels = np.unique(mask_stack.nonzero()[1])
    mask_stack = mask_stack[:, masked_pixels]

    # A is defined as the pseudoinverse of the mask weights
    if n_rois != 1:
        try:
            A = mask_stack.T * inv(mask_stack * mask_stack.T).tocsc()
        except RuntimeError:
            A = csc_matrix(np.linalg.pinv(mask_stack.todense()))
    else:
        mask_mask_t = mask_stack * mask_stack.T
        mask_mask_t.data = old_div(1, mask_mask_t.data)
        A = mask_stack.T * mask_mask_t.tocsc()

    demixer = None
    if demix_channel is not None:
        demixed_signal = [None] * num_sequences
        demix_matrix = _demixing_matrix(dataset)
        demixer = demix_matrix[signal_channel, demix_channel] * \
            dataset.time_averages[demix_channel]
        demixer = demixer.flatten().astype('float32')[masked_pixels]

    raw_signal = [None] * num_sequences

    def _data_chunker(cycle, time_averages, channel=0):
        """Takes an aligned_data generator for a single cycle
        and returns df/f of each pixel formatted correctly for extraction"""
        while True:
            df_frame = (
                next(cycle)[..., channel] - time_averages[..., channel]
            ) / time_averages[..., channel]
            yield df_frame.flatten()

    for cycle_idx, sequence in zip(it.count(), dataset):

        signal = np.empty((n_rois, len(sequence)), dtype='float32')
        if demixer is not None:
            demix = np.empty((n_rois, len(sequence)), dtype='float32')

        constants = {}
        constants['demixer'] = demixer
        constants['mask_stack'] = mask_stack
        constants['A'] = A
        constants['masked_pixels'] = masked_pixels
        constants['is_overlap'] = len(overlap[0]) > 0 and not remove_overlap

        # Determine chunksize and limit to prevent pools from hanging
        chunksize = min(1 + old_div(len(sequence), n_processes), 200)

        # This will farm out signal extraction across 'n_processes' CPUs
        # The actual extraction is in _roi_extract, it's a separate
        # top-level function due to Pool constraints.
        if n_processes > 1:
            map_generator = pool.imap_unordered(_roi_extract, zip(
                _data_chunker(
                    iter(sequence), dataset.time_averages, signal_channel),
                it.count(), it.repeat(constants)), chunksize=chunksize)
        else:
            map_generator = map(_roi_extract, zip(
                _data_chunker(
                    iter(sequence), dataset.time_averages, signal_channel),
                it.count(), it.repeat(constants)))

        # Loop over generator and extract signals
        while True:
            try:
                frame_idx, raw_result, demix_result = next(map_generator)
            except StopIteration:
                break

            signal[:, frame_idx] = np.array(raw_result).flatten()
            if demixer is not None:
                demix[:, frame_idx] = np.array(demix_result).flatten()

        raw_signal[cycle_idx] = signal
        if demixer is not None:
            demix[np.isinf(demix)] = np.nan
            demixed_signal[cycle_idx] = demix

    if n_processes > 1:
        pool.close()
        pool.join()

    def put_back_nan_rois(signals, included_rois, n_rois):
        """Put NaN rows back in the signals file for ROIs that were never
        imaged or entirely overlapped with other ROIs and were removed.

        """

        final_signals = []
        for cycle_signals in signals:
            signals_idx = 0
            roi_idx = 0
            final_cycle_signals = np.empty((n_rois, cycle_signals.shape[1]))
            nan_row = np.empty((1, cycle_signals.shape[1]))
            nan_row.fill(np.nan)
            while roi_idx < n_rois:
                if roi_idx in included_rois:
                    final_cycle_signals[roi_idx] = cycle_signals[signals_idx]
                    signals_idx += 1
                else:
                    final_cycle_signals[roi_idx] = nan_row
                roi_idx += 1
            final_signals.append(final_cycle_signals)
        return final_signals

    if original_n_rois > n_rois:
        raw_signal = put_back_nan_rois(
            raw_signal, rois_to_include, original_n_rois)
        if demixer is not None:
            demixed_signal = put_back_nan_rois(
                demixed_signal, rois_to_include, original_n_rois)

    signals = {'raw': raw_signal}
    if demixer is not None:
        signals['demixed_raw'] = demixed_signal
    signals['_masks'] = [masks[idx].tolil() for idx in rois_to_include]
    signals['mean_frame'] = dataset.time_averages[..., signal_channel]
    if remove_overlap:
        signals['overlap'] = overlap
    signals['signal_channel'] = signal_channel
    if demix_channel is not None:
        signals['demix_channel'] = demix_channel
    signals['rois'] = [roi.todict() for roi in rois]
    timestamp = datetime.strftime(datetime.now(), '%Y-%m-%d-%Hh%Mm%Ss')
    signals['timestamp'] = timestamp

    return signals
Пример #56
0
m = inner(u, v)*dx
L = Constant(0.)*v*dx

bc = DirichletBC(V, Constant(0), DomainBoundary())
A, _ = assemble_system(a, L, bc)
M, _ = assemble_system(m, L, bc)

# Prepare A and M for scipy
rows, cols, values = A.data()
A = csr_matrix((values, cols, rows))

rows, cols, values = M.data()
M = csr_matrix((values, cols, rows))

print 'Inverting %d by %d matrix' % (V.dim(), V.dim())
timer = Timer('inverse')
timer.start()
T = inv(M).dot(A)
timer.stop()
print '\t\t done in %g' % timing('inverse')

# Plot
plt.figure()
plt.subplot(131)
plt.spy(A)
plt.subplot(132)
plt.spy(M)
plt.subplot(133)
plt.spy(T)
plt.show()
Пример #57
0
def reduce_arrays(n_bus, Ymat, slack_indices, Vset, S, types):
    """
    Reduction of the circuit magnitudes.

    Args:
        n_bus: Number of buses of the circuit

        Ymat: Circuit admittance matrix

        slack_indices: Array of indices of the slack nodes

        Vset: Vector of voltages of those nodes where the voltage is controlled (AKA Slack and PV buses)

        S: Vector of power injections at all the nodes

        types: Vector of nde types

    Output:
        Yred: Reduced admittance matrix (Without the rows and columns belonging to slack buses)

        I: Matrix of currents (In practice only one slack bus is selected, hence it is a vector) injected by the slack buses

        Sred: Array of power injections of the buses that are not of type slack

        types_red: Array of types of the buses that are not of type slack

        non_slack_indices: Array of indices of the buses that are not of type slack
    """

    # Compose the list of buses indices excluding the indices of the slack buses
    pv = np.where(types == 2)[0]
    pq = np.where(types == 1)[0]
    non_slack_indices = r_[pq, pv]

    # Types of the non slack buses
    types_red = types[non_slack_indices]

    # now to have efficient arrays of coefficients
    map_idx = zeros(len(types_red), dtype=np.int)
    npq = 0
    npv = 0
    for i in range(len(types_red)):
        if types_red[i] == 1:  # PQ
            map_idx[i] = npq
            npq += 1
        elif types_red[i] == 2:  # PV
            map_idx[i] = npv
            npv += 1

    # obtain the vector of the sums per row of the admittance matrix
    # Yrow = zeros(n_bus-1, dtype=complex_type)
    # for i in range(n_bus-1):
    #     Yrow[i] = Ymat[i, :].sum()
    # F = np.ndarray.flatten(np.array(Ymat.sum(axis=1)))
    # Ymat2 = Ymat
    # # Ymat2 = Ymat - np.diag(F/2)
    #
    # F = F[non_slack_indices]

    # Compose a reduced admittance matrix without the rows and columns that correspond to the slack buses
    Yred = Ymat[non_slack_indices, :][:, non_slack_indices]

    # matrix of the columns of the admittance matrix that correspond to the slack buses
    Yslack = Ymat[non_slack_indices, :][:, slack_indices]

    # vector of slack voltages (Complex)
    Vslack = Vset[slack_indices]

    # vector of currents being injected by the slack nodes (Matrix vector product)
    Iind = -1 * np.ndarray.flatten(array(Yslack.dot(Vslack)))

    # Invert Yred
    Zred = inv(Yred)

    # Vind = Zred * Iind  (not needed)

    # Vector of reduced power values (Non slack power injections)
    Sred = S[non_slack_indices]

    return Yred, Zred, Iind, Sred, Vslack, types_red, non_slack_indices, map_idx, npq, npv
Пример #58
0
m = 3  # Blocksize

#
# Large scale
#
n = 2500
A,B, w_ex = sakurai(n) # Mikota pair
import numpy
X,_ = numpy.linalg.qr(rand(n,3*m))
data=[]
tt = time.clock()
eigs,vecs, resnh = lobpcg(A,X,B, tol=1e-6, maxiter=500, retResidualNormsHistory=1,largest=True)
from scipy.sparse.linalg import eigs as eeigs
from scipy.sparse.linalg import inv, svds
#eigs2,vecs2 = eeigs(A,m,B)
ZZ=inv(B).dot(A)
ZZZ= ZZ.T.dot(ZZ)
Zs=svds(ZZZ,2499,return_singular_vectors=False)
print Zs #numpy.sqrt(Zs[-m:])
#eigs2,vecs2 = eeigs(ZZ.dot(A))
data.append(time.clock()-tt)
print 'Results by LOBPCG for n='+str(n)
print
print eigs
print
print 'Exact eigenvalues'
print
print w_ex[:m]
print
print 'Eig eigenvalues'
print
Пример #59
0
Cinv = sparse.diags(1/temp['conductivityfull'],0)
q = np.asmatrix(c1.InFlow).transpose()
mpiBz = scipy.linalg.pinv(Bz.todense())

q_newmethod = Bz.transpose()*C*Bz*(mpiBz*(Cinv*(mpiBz.transpose()*q)))
q_originalmethod = Bz.transpose()*C*Bz*P

print('original method works?', np.allclose(q, q_originalmethod, 
                                            rtol=np.mean(abs(q))*10**-4,
                                            atol=np.mean(abs(q))*10**-4))

print('new method works?', np.allclose(q, q_newmethod,
                                       rtol=np.mean(abs(q))*10**-4,
                                       atol=np.mean(abs(q))*10**-4))

print('Is it a right inverse?', 
      np.allclose(q, Bz.transpose()*mpiBz.transpose()*q,
                  rtol=np.mean(abs(q))*10**-4, atol=np.mean(abs(q))*10**-4))
      
print('Is it a right inverse?', 
      np.allclose(Bz.transpose()*C*Bz*P, Bz.transpose()*mpiBz.transpose()*q,
                  rtol=np.mean(abs(q))*10**-4, atol=np.mean(abs(q))*10**-4))

print('Is it a right inverse?', 
      np.allclose(C*Bz*P, mpiBz.transpose()*q,
                  rtol=np.mean(abs(q))*10**-4, atol=np.mean(abs(q))*10**-4))

print('Is it a right inverse?', 
      np.allclose(Bz*P, ssl.inv(C)*mpiBz.transpose()*q,
                  rtol=np.mean(abs(q))*10**-4, atol=np.mean(abs(q))*10**-4))
Пример #60
0
def reduce_arrays(n_bus, Ymat, slack_indices, Vset, S, types):
    """
    Reduction of the circuit magnitudes.

    Args:
        n_bus: Number of buses of the circuit

        Ymat: Circuit admittance matrix

        slack_indices: Array of indices of the slack nodes

        Vset: Vector of voltages of those nodes where the voltage is controlled (AKA Slack and PV buses)

        S: Vector of power injections at all the nodes

        types: Vector of nde types

    Output:

        Zred: Reduced impedance matrix

        C: Reduced voltage constant

        Sred: Array of power injections of the buses that are not of type slack

        Vset_red: Reduced set voltage module array

        pv_idx_red: indices of the PV nodes in the reduced schemae

        npv: Number of PV nodes

        Vslack: Slack voltages array

        non_slack_indices: Indices of the non-slack nodes in the complete scheme

        nbus: number of nodes in the reduced scheme
    """

    # Compose the list of buses indices excluding the indices of the slack buses
    non_slack_indices = list(range(n_bus))
    for i in slack_indices[::-1]:
        non_slack_indices.pop(i)
    non_slack_indices = array(non_slack_indices)
    nbus = len(non_slack_indices)

    # Types of the non slack buses
    types_red = types[non_slack_indices]

    # Compose a reduced admittance matrix without the rows and columns that correspond to the slack buses
    Yred = Ymat[non_slack_indices, :][:, non_slack_indices]

    # matrix of the columns of the admittance matrix that correspond to the slack buses
    Yslack = Ymat[non_slack_indices, :][:, slack_indices]

    # vector of slack voltages (Complex)
    Vslack = Vset[slack_indices]

    # vector of currents being injected by the slack nodes (Matrix vector product)
    Islack = -1 * Yslack.dot(Vslack)

    # Vector of reduced power values (Non slack power injections)
    Sred = S[non_slack_indices]

    # reduced impedance matrix
    Zred = inv(Yred)

    # Reduced voltage constant
    C = Zred.dot(Islack)

    # list of PV indices in the reduced scheme
    pv_idx_red = where(types_red == 2)[0]
    npv = len(pv_idx_red)

    # Set voltage modules in the reduced scheme
    Vset_red = abs(Vset)[non_slack_indices]

    return Zred, Yred, C, Sred, Vset_red, pv_idx_red, npv, Vslack, non_slack_indices, nbus