Пример #1
0
def inner_product(cypher1, cypher2):
    # We also set up an Encryptor, Evaluator, and Decryptor here.
    evaluator = Evaluator(context)
    decryptor = Decryptor(context, secret_key)

    for i in range(len(cypher1)):
        evaluator.multiply(cypher1[i], cypher2[i])

    encrypted_result = Ciphertext()
    evaluator.add_many(cypher1, encrypted_result)

    return encrypted_result
Пример #2
0
def dot_product():
    print("Example: Weighted Average")

    # In this example we demonstrate the FractionalEncoder, and use it to compute
    # a weighted average of 10 encrypted rational numbers. In this computation we
    # perform homomorphic multiplications of ciphertexts by plaintexts, which is
    # much faster than regular multiplications of ciphertexts by ciphertexts.
    # Moreover, such `plain multiplications' never increase the ciphertext size,
    # which is why we have no need for evaluation keys in this example.

    # We start by creating encryption parameters, setting up the SEALContext, keys,
    # and other relevant objects. Since our computation has multiplicative depth of
    # only two, it suffices to use a small poly_modulus.
    parms = EncryptionParameters()
    parms.set_poly_modulus("1x^2048 + 1")
    parms.set_coeff_modulus(seal.coeff_modulus_128(2048))
    parms.set_plain_modulus(1 << 8)

    context = SEALContext(parms)
    print_parameters(context)

    keygen = KeyGenerator(context)
    keygen2 = KeyGenerator(context)
    public_key = keygen.public_key()
    secret_key = keygen.secret_key()

    secret_key2 = keygen.secret_key()

    # We also set up an Encryptor, Evaluator, and Decryptor here.
    encryptor = Encryptor(context, public_key)
    evaluator = Evaluator(context)
    decryptor = Decryptor(context, secret_key2)

    # Create a vector of 10 rational numbers (as doubles).
    # rational_numbers = [3.1, 4.159, 2.65, 3.5897, 9.3, 2.3, 8.46, 2.64, 3.383, 2.795]
    rational_numbers = np.random.rand(10)

    # Create a vector of weights.
    # coefficients = [0.1, 0.05, 0.05, 0.2, 0.05, 0.3, 0.1, 0.025, 0.075, 0.05]
    coefficients = np.random.rand(10)

    my_result = np.dot(rational_numbers, coefficients)

    # We need a FractionalEncoder to encode the rational numbers into plaintext
    # polynomials. In this case we decide to reserve 64 coefficients of the
    # polynomial for the integral part (low-degree terms) and expand the fractional
    # part to 32 digits of precision (in base 3) (high-degree terms). These numbers
    # can be changed according to the precision that is needed; note that these
    # choices leave a lot of unused space in the 2048-coefficient polynomials.
    encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3)

    # We create a vector of ciphertexts for encrypting the rational numbers.
    encrypted_rationals = []
    rational_numbers_string = "Encoding and encrypting: "
    for i in range(10):
        # We create our Ciphertext objects into the vector by passing the
        # encryption parameters as an argument to the constructor. This ensures
        # that enough memory is allocated for a size 2 ciphertext. In this example
        # our ciphertexts never grow in size (plain multiplication does not cause
        # ciphertext growth), so we can expect the ciphertexts to remain in the same
        # location in memory throughout the computation. In more complicated examples
        # one might want to call a constructor that reserves enough memory for the
        # ciphertext to grow to a specified size to avoid costly memory moves when
        # multiplications and relinearizations are performed.
        encrypted_rationals.append(Ciphertext(parms))
        encryptor.encrypt(encoder.encode(rational_numbers[i]), encrypted_rationals[i])
        rational_numbers_string += (str)(rational_numbers[i])[:6]
        if i < 9: rational_numbers_string += ", "
    print(rational_numbers_string)

    # Next we encode the coefficients. There is no reason to encrypt these since they
    # are not private data.
    encoded_coefficients = []
    encoded_coefficients_string = "Encoding plaintext coefficients: "


    encrypted_coefficients =[]

    for i in range(10):
        encoded_coefficients.append(encoder.encode(coefficients[i]))
        encrypted_coefficients.append(Ciphertext(parms))
        encryptor.encrypt(encoded_coefficients[i], encrypted_coefficients[i])
        encoded_coefficients_string += (str)(coefficients[i])[:6]
        if i < 9: encoded_coefficients_string += ", "
    print(encoded_coefficients_string)

    # We also need to encode 0.1. Multiplication by this plaintext will have the
    # effect of dividing by 10. Note that in SEAL it is impossible to divide
    # ciphertext by another ciphertext, but in this way division by a plaintext is
    # possible.
    div_by_ten = encoder.encode(0.1)

    # Now compute each multiplication.

    prod_result = [Ciphertext() for i in range(10)]
    prod_result2 = [Ciphertext() for i in range(10)]

    print("Computing products: ")
    for i in range(10):
        # Note how we use plain multiplication instead of usual multiplication. The
        # result overwrites the first argument in the function call.
        evaluator.multiply_plain(encrypted_rationals[i], encoded_coefficients[i], prod_result[i])
        evaluator.multiply(encrypted_rationals[i], encrypted_coefficients[i], prod_result2[i])
    print("Done")

    # To obtain the linear sum we need to still compute the sum of the ciphertexts
    # in encrypted_rationals. There is an easy way to add together a vector of
    # Ciphertexts.

    encrypted_result = Ciphertext()
    encrypted_result2 = Ciphertext()

    print("Adding up all 10 ciphertexts: ")
    evaluator.add_many(prod_result, encrypted_result)
    evaluator.add_many(prod_result2, encrypted_result2)

    print("Done")

    # Perform division by 10 by plain multiplication with div_by_ten.
    # print("Dividing by 10: ")
    # evaluator.multiply_plain(encrypted_result, div_by_ten)
    # print("Done")

    # How much noise budget do we have left?
    print("Noise budget in result: " + (str)(decryptor.invariant_noise_budget(encrypted_result)) + " bits")

    # Decrypt, decode, and print result.
    plain_result = Plaintext()
    plain_result2 = Plaintext()
    print("Decrypting result: ")
    decryptor.decrypt(encrypted_result, plain_result)
    decryptor.decrypt(encrypted_result2, plain_result2)
    print("Done")

    result = encoder.decode(plain_result)
    print("Weighted average: " + (str)(result)[:8])

    result2 = encoder.decode(plain_result2)
    print("Weighted average: " + (str)(result2)[:8])

    print('\n\n', my_result)
Пример #3
0
class CipherMatrix:
    """

    """
    def __init__(self, matrix=None):
        """

        :param matrix: numpy.ndarray to be encrypted.
        """

        self.parms = EncryptionParameters()
        self.parms.set_poly_modulus("1x^2048 + 1")
        self.parms.set_coeff_modulus(seal.coeff_modulus_128(2048))
        self.parms.set_plain_modulus(1 << 8)

        self.context = SEALContext(self.parms)

        # self.encoder = IntegerEncoder(self.context.plain_modulus())
        self.encoder = FractionalEncoder(self.context.plain_modulus(),
                                         self.context.poly_modulus(), 64, 32,
                                         3)

        self.keygen = KeyGenerator(self.context)
        self.public_key = self.keygen.public_key()
        self.secret_key = self.keygen.secret_key()

        self.encryptor = Encryptor(self.context, self.public_key)
        self.decryptor = Decryptor(self.context, self.secret_key)

        self.evaluator = Evaluator(self.context)

        self._saved = False
        self._encrypted = False
        self._id = '{0:04d}'.format(np.random.randint(1000))

        if matrix is not None:
            assert len(
                matrix.shape) == 2, "Only 2D numpy matrices accepted currently"
            self.matrix = np.copy(matrix)
            self.encrypted_matrix = np.empty(self.matrix.shape, dtype=object)
            for i in range(self.matrix.shape[0]):
                for j in range(self.matrix.shape[1]):
                    self.encrypted_matrix[i, j] = Ciphertext()

        else:
            self.matrix = None
            self.encrypted_matrix = None

        print(self._id, "Created")

    def __repr__(self):
        """

        :return:
        """
        print("Encrypted:", self._encrypted)
        if not self._encrypted:
            print(self.matrix)
            return ""

        else:
            return '[]'

    def __str__(self):
        """

        :return:
        """
        print("| Encryption parameters:")
        print("| poly_modulus: " + self.context.poly_modulus().to_string())

        # Print the size of the true (product) coefficient modulus
        print("| coeff_modulus_size: " + (
            str)(self.context.total_coeff_modulus().significant_bit_count()) +
              " bits")

        print("| plain_modulus: " +
              (str)(self.context.plain_modulus().value()))
        print("| noise_standard_deviation: " +
              (str)(self.context.noise_standard_deviation()))

        if self.matrix is not None:
            print(self.matrix.shape)

        return str(type(self))

    def __add__(self, other):
        """

        :param other:
        :return:
        """
        assert isinstance(
            other, CipherMatrix), "Can only be added with a CipherMatrix"

        A_enc = self._encrypted
        B_enc = other._encrypted

        if A_enc:
            A = self.encrypted_matrix
        else:
            A = self.matrix

        if B_enc:
            B = other.encrypted_matrix
        else:
            B = other.matrix

        assert A.shape == B.shape, "Dimension mismatch, Matrices must be of same shape. Got {} and {}".format(
            A.shape, B.shape)

        shape = A.shape

        result = CipherMatrix(np.zeros(shape, dtype=np.int32))
        result._update_cryptors(self.get_keygen())

        if A_enc:
            if B_enc:

                res_mat = result.encrypted_matrix
                for i in range(shape[0]):
                    for j in range(shape[1]):
                        self.evaluator.add(A[i, j], B[i, j], res_mat[i, j])

                result._encrypted = True

            else:
                res_mat = result.encrypted_matrix
                for i in range(shape[0]):
                    for j in range(shape[1]):
                        self.evaluator.add_plain(A[i, j],
                                                 self.encoder.encode(B[i, j]),
                                                 res_mat[i, j])

                result._encrypted = True

        else:
            if B_enc:

                res_mat = result.encrypted_matrix
                for i in range(shape[0]):
                    for j in range(shape[1]):
                        self.evaluator.add_plain(B[i, j],
                                                 self.encoder.encode(A[i, j]),
                                                 res_mat[i, j])

                result._encrypted = True

            else:

                result.matrix = A + B
                result._encrypted = False

        return result

    def __sub__(self, other):
        """

        :param other:
        :return:
        """
        assert isinstance(other, CipherMatrix)
        if other._encrypted:
            shape = other.encrypted_matrix.shape

            for i in range(shape[0]):
                for j in range(shape[1]):
                    self.evaluator.negate(other.encrypted_matrix[i, j])

        else:
            other.matrix = -1 * other.matrix

        return self + other

    def __mul__(self, other):
        """

        :param other:
        :return:
        """

        assert isinstance(
            other, CipherMatrix), "Can only be multiplied with a CipherMatrix"

        # print("LHS", self._id, "RHS", other._id)
        A_enc = self._encrypted
        B_enc = other._encrypted

        if A_enc:
            A = self.encrypted_matrix
        else:
            A = self.matrix

        if B_enc:
            B = other.encrypted_matrix
        else:
            B = other.matrix

        Ashape = A.shape
        Bshape = B.shape

        assert Ashape[1] == Bshape[0], "Dimensionality mismatch"
        result_shape = [Ashape[0], Bshape[1]]

        result = CipherMatrix(np.zeros(shape=result_shape))

        if A_enc:
            if B_enc:

                for i in range(Ashape[0]):
                    for j in range(Bshape[1]):

                        result_array = []
                        for k in range(Ashape[1]):

                            res = Ciphertext()
                            self.evaluator.multiply(A[i, k], B[k, j], res)

                            result_array.append(res)

                        self.evaluator.add_many(result_array,
                                                result.encrypted_matrix[i, j])

                result._encrypted = True

            else:

                for i in range(Ashape[0]):
                    for j in range(Bshape[1]):

                        result_array = []
                        for k in range(Ashape[1]):
                            res = Ciphertext()
                            self.evaluator.multiply_plain(
                                A[i, k], self.encoder.encode(B[k, j]), res)

                            result_array.append(res)

                        self.evaluator.add_many(result_array,
                                                result.encrypted_matrix[i, j])

                result._encrypted = True

        else:
            if B_enc:

                for i in range(Ashape[0]):
                    for j in range(Bshape[1]):

                        result_array = []
                        for k in range(Ashape[1]):
                            res = Ciphertext()
                            self.evaluator.multiply_plain(
                                B[i, k], self.encoder.encode(A[k, j]), res)

                            result_array.append(res)

                        self.evaluator.add_many(result_array,
                                                result.encrypted_matrix[i, j])

                result._encrypted = True

            else:

                result.matrix = np.matmul(A, B)
                result._encrypted = False

        return result

    def save(self, path):
        """

        :param path:
        :return:
        """

        save_dir = os.path.join(path, self._id)

        if self._saved:
            print("CipherMatrix already saved")

        else:
            assert not os.path.isdir(save_dir), "Directory already exists"
            os.mkdir(save_dir)

        if not self._encrypted:
            self.encrypt()

        shape = self.encrypted_matrix.shape

        for i in range(shape[0]):
            for j in range(shape[1]):

                element_name = str(i) + '-' + str(j) + '.ahem'
                self.encrypted_matrix[i, j].save(
                    os.path.join(save_dir, element_name))

        self.secret_key.save("/keys/" + "." + self._id + '.wheskey')

        self._saved = True
        return save_dir

    def load(self, path, load_secret_key=False):
        """

        :param path:
        :param load_secret_key:
        :return:
        """

        self._id = path.split('/')[-1]
        print("Loading Matrix:", self._id)

        file_list = os.listdir(path)
        index_list = [[file.split('.')[0].split('-'), file]
                      for file in file_list]

        M = int(max([int(ind[0][0]) for ind in index_list])) + 1
        N = int(max([int(ind[0][1]) for ind in index_list])) + 1
        del self.encrypted_matrix
        self.encrypted_matrix = np.empty([M, N], dtype=object)

        for index in index_list:
            i = int(index[0][0])
            j = int(index[0][1])

            self.encrypted_matrix[i, j] = Ciphertext()
            self.encrypted_matrix[i, j].load(os.path.join(path, index[1]))

        if load_secret_key:
            self.secret_key.load("/keys/" + "." + self._id + '.wheskey')

        self.matrix = np.empty(self.encrypted_matrix.shape)
        self._encrypted = True

    def encrypt(self, matrix=None, keygen=None):
        """

        :param matrix:
        :return:
        """

        assert not self._encrypted, "Matrix already encrypted"

        if matrix is not None:
            assert self.matrix is None, "matrix already exists"
            self.matrix = np.copy(matrix)

        shape = self.matrix.shape

        self.encrypted_matrix = np.empty(shape, dtype=object)

        if keygen is not None:
            self._update_cryptors(keygen)

        for i in range(shape[0]):
            for j in range(shape[1]):
                val = self.encoder.encode(self.matrix[i, j])
                self.encrypted_matrix[i, j] = Ciphertext()
                self.encryptor.encrypt(val, self.encrypted_matrix[i, j])

        self._encrypted = True

    def decrypt(self, encrypted_matrix=None, keygen=None):
        """

        :return:
        """

        if encrypted_matrix is not None:
            self.encrypted_matrix = encrypted_matrix

        assert self._encrypted, "No encrypted matrix"

        del self.matrix
        shape = self.encrypted_matrix.shape

        self.matrix = np.empty(shape)

        if keygen is not None:
            self._update_cryptors(keygen)

        for i in range(shape[0]):
            for j in range(shape[1]):
                plain_text = Plaintext()
                self.decryptor.decrypt(self.encrypted_matrix[i, j], plain_text)
                self.matrix[i, j] = self.encoder.decode(plain_text)

        self._encrypted = False
        return np.copy(self.matrix)

    def get_keygen(self):
        """

        :return:
        """
        return self.keygen

    def _update_cryptors(self, keygen):
        """

        :param keygen:
        :return:
        """

        self.keygen = keygen
        self.public_key = keygen.public_key()
        self.secret_key = keygen.secret_key()

        self.encryptor = Encryptor(self.context, self.public_key)
        self.decryptor = Decryptor(self.context, self.secret_key)

        return
Пример #4
0
class FHECryptoEngine(CryptoEngine):
    def __init__(self):
        CryptoEngine.__init__(self, defs.ENC_MODE_FHE)
        self.log_id = 'FHECryptoEngine'
        self.encrypt_params = None
        self.context = None
        self.encryptor = None
        self.evaluator = None
        self.decryptor = None

        return

    def load_keys(self):
        self.private_key = SecretKey()
        self.private_key.load(defs.FN_FHE_PRIVATE_KEY)

        self.public_key = PublicKey()
        self.public_key.load(defs.FN_FHE_PUBLIC_KEY)
        
        return True

    def generate_keys(self):
        if self.encrypt_params == None or \
           self.context == None:
            self.init_encrypt_params()

        keygen = KeyGenerator(self.context)

        # Generate the private key
        self.private_key = keygen.secret_key()
        self.private_key.save(defs.FN_FHE_PRIVATE_KEY)

        # Generate the public key
        self.public_key = keygen.public_key()
        self.public_key.save(defs.FN_FHE_PUBLIC_KEY)

        return True

    def init_encrypt_params(self):
        self.encrypt_params = EncryptionParameters()
        self.encrypt_params.set_poly_modulus("1x^2048 + 1")
        self.encrypt_params.set_coeff_modulus(seal.coeff_modulus_128(2048))
        self.encrypt_params.set_plain_modulus(1 << 8)

        self.context = SEALContext(self.encrypt_params)

        return

    def initialize(self, use_old_keys=False):
        # Initialize encryption params
        self.init_encrypt_params()

        # Check if the public & private key files exist
        if os.path.isfile(defs.FN_FHE_PUBLIC_KEY) and \
           os.path.isfile(defs.FN_FHE_PRIVATE_KEY) and \
           use_old_keys == True:

            self.log("Keys already exist. Reusing them instead.")
            if not self.load_keys():
                self.log("Failed to load keys")
                return False

        else:
            # If not, then attempt to generate new ones
            if not self.generate_keys():
                self.log("Failed to generate keys")
                return False

        # Setup the rest of the crypto engine
        self.encryptor = Encryptor(self.context, self.public_key)
        self.evaluator = Evaluator(self.context)
        self.decryptor = Decryptor(self.context, self.private_key)

        # Set the initialized flag
        self.initialized = True

        return True

    def encrypt(self, data):
        if not self.initialized:
            self.log("Not initialized")
            return False

        # Setup the encoder
        encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3)

        # Create the array of encrypted data objects
        encrypted_data = []
        for raw_data in data:
            encrypted_data.append(Ciphertext(self.encrypt_params))
            self.encryptor.encrypt( encoder.encode(raw_data), encrypted_data[-1] )

        # Pickle each Ciphertext, base64 encode it, and store it in the array
        for i in range(0, len(encrypted_data)):
            encrypted_data[i].save("fhe_enc.bin")
            encrypted_data[i] = base64.b64encode( pickle.dumps(encrypted_data[i]) )

        return encrypted_data

    def evaluate(self, encrypted_data, lower_idx=0, higher_idx=-1):
        result = Ciphertext()

        # Setup the encoder
        encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3)

        # Unpack the data first
        unpacked_data = []
        for d in encrypted_data[lower_idx:higher_idx]:
            unpacked_data.append(pickle.loads(base64.b64decode(d)))

        # Perform operations
        self.evaluator.add_many(unpacked_data, result)
        div = encoder.encode(1/len(unpacked_data))
        self.evaluator.multiply_plain(result, div)

        # Pack the result
        result = base64.b64encode( pickle.dumps(result) )

        return result

    def decrypt(self, raw_data):
        if not self.initialized:
            self.log("Not initialized")
            return False

        # Setup the encoder
        encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3)
        
        # Unpickle, base64 decode, and decrypt each ciphertext result
        decrypted_data = []
        for d in raw_data:
            encrypted_data = pickle.loads( base64.b64decode(d) )
            plain_data = Plaintext()
            self.decryptor.decrypt(encrypted_data, plain_data)
            decrypted_data.append( str(encoder.decode(plain_data)) )

        return decrypted_data