keygen = KeyGenerator(context)
public_key = keygen.public_key()
secret_key = keygen.secret_key()
encryptor = Encryptor(context, public_key)
evaluator = Evaluator(context)
decryptor = Decryptor(context, secret_key)

value=7
plain1 = encoder.encode(value1)
print("Encoded " + (str)(value) + " as polynomial " + plain1.to_string() + " (plain1)")

encrypted _data= Ciphertext()
encryptor.encrypt(plain, encrypted_data)
print("Noise budget in encrypted1: " + (str)(decryptor.invariant_noise_budget(encrypted_data)) + " bits")

# operations that can be performed --->

# result stored in encrypted1 data
evaluator.negate(encrypted1_data)

# result stored in encrypted1 data, encrpyted1 is modified
evaluator.add(encrypted1_data, encrypted2_data)

# result stored in encrypted1 data, encrpyted1 is modified
evaluator.multiply(encrypted1_data, encrypted2_data)


plain_result = Plaintext()
decryptor.decrypt(encrypted_data, plain_result)
print("Plaintext polynomial: " + plain_result.to_string())
print("Decoded integer: " + (str)(encoder.decode_int32(plain_result)))
Пример #2
0
class CipherMatrix:
    """

    """
    def __init__(self, matrix=None):
        """

        :param matrix: numpy.ndarray to be encrypted.
        """

        self.parms = EncryptionParameters()
        self.parms.set_poly_modulus("1x^2048 + 1")
        self.parms.set_coeff_modulus(seal.coeff_modulus_128(2048))
        self.parms.set_plain_modulus(1 << 8)

        self.context = SEALContext(self.parms)

        # self.encoder = IntegerEncoder(self.context.plain_modulus())
        self.encoder = FractionalEncoder(self.context.plain_modulus(),
                                         self.context.poly_modulus(), 64, 32,
                                         3)

        self.keygen = KeyGenerator(self.context)
        self.public_key = self.keygen.public_key()
        self.secret_key = self.keygen.secret_key()

        self.encryptor = Encryptor(self.context, self.public_key)
        self.decryptor = Decryptor(self.context, self.secret_key)

        self.evaluator = Evaluator(self.context)

        self._saved = False
        self._encrypted = False
        self._id = '{0:04d}'.format(np.random.randint(1000))

        if matrix is not None:
            assert len(
                matrix.shape) == 2, "Only 2D numpy matrices accepted currently"
            self.matrix = np.copy(matrix)
            self.encrypted_matrix = np.empty(self.matrix.shape, dtype=object)
            for i in range(self.matrix.shape[0]):
                for j in range(self.matrix.shape[1]):
                    self.encrypted_matrix[i, j] = Ciphertext()

        else:
            self.matrix = None
            self.encrypted_matrix = None

        print(self._id, "Created")

    def __repr__(self):
        """

        :return:
        """
        print("Encrypted:", self._encrypted)
        if not self._encrypted:
            print(self.matrix)
            return ""

        else:
            return '[]'

    def __str__(self):
        """

        :return:
        """
        print("| Encryption parameters:")
        print("| poly_modulus: " + self.context.poly_modulus().to_string())

        # Print the size of the true (product) coefficient modulus
        print("| coeff_modulus_size: " + (
            str)(self.context.total_coeff_modulus().significant_bit_count()) +
              " bits")

        print("| plain_modulus: " +
              (str)(self.context.plain_modulus().value()))
        print("| noise_standard_deviation: " +
              (str)(self.context.noise_standard_deviation()))

        if self.matrix is not None:
            print(self.matrix.shape)

        return str(type(self))

    def __add__(self, other):
        """

        :param other:
        :return:
        """
        assert isinstance(
            other, CipherMatrix), "Can only be added with a CipherMatrix"

        A_enc = self._encrypted
        B_enc = other._encrypted

        if A_enc:
            A = self.encrypted_matrix
        else:
            A = self.matrix

        if B_enc:
            B = other.encrypted_matrix
        else:
            B = other.matrix

        assert A.shape == B.shape, "Dimension mismatch, Matrices must be of same shape. Got {} and {}".format(
            A.shape, B.shape)

        shape = A.shape

        result = CipherMatrix(np.zeros(shape, dtype=np.int32))
        result._update_cryptors(self.get_keygen())

        if A_enc:
            if B_enc:

                res_mat = result.encrypted_matrix
                for i in range(shape[0]):
                    for j in range(shape[1]):
                        self.evaluator.add(A[i, j], B[i, j], res_mat[i, j])

                result._encrypted = True

            else:
                res_mat = result.encrypted_matrix
                for i in range(shape[0]):
                    for j in range(shape[1]):
                        self.evaluator.add_plain(A[i, j],
                                                 self.encoder.encode(B[i, j]),
                                                 res_mat[i, j])

                result._encrypted = True

        else:
            if B_enc:

                res_mat = result.encrypted_matrix
                for i in range(shape[0]):
                    for j in range(shape[1]):
                        self.evaluator.add_plain(B[i, j],
                                                 self.encoder.encode(A[i, j]),
                                                 res_mat[i, j])

                result._encrypted = True

            else:

                result.matrix = A + B
                result._encrypted = False

        return result

    def __sub__(self, other):
        """

        :param other:
        :return:
        """
        assert isinstance(other, CipherMatrix)
        if other._encrypted:
            shape = other.encrypted_matrix.shape

            for i in range(shape[0]):
                for j in range(shape[1]):
                    self.evaluator.negate(other.encrypted_matrix[i, j])

        else:
            other.matrix = -1 * other.matrix

        return self + other

    def __mul__(self, other):
        """

        :param other:
        :return:
        """

        assert isinstance(
            other, CipherMatrix), "Can only be multiplied with a CipherMatrix"

        # print("LHS", self._id, "RHS", other._id)
        A_enc = self._encrypted
        B_enc = other._encrypted

        if A_enc:
            A = self.encrypted_matrix
        else:
            A = self.matrix

        if B_enc:
            B = other.encrypted_matrix
        else:
            B = other.matrix

        Ashape = A.shape
        Bshape = B.shape

        assert Ashape[1] == Bshape[0], "Dimensionality mismatch"
        result_shape = [Ashape[0], Bshape[1]]

        result = CipherMatrix(np.zeros(shape=result_shape))

        if A_enc:
            if B_enc:

                for i in range(Ashape[0]):
                    for j in range(Bshape[1]):

                        result_array = []
                        for k in range(Ashape[1]):

                            res = Ciphertext()
                            self.evaluator.multiply(A[i, k], B[k, j], res)

                            result_array.append(res)

                        self.evaluator.add_many(result_array,
                                                result.encrypted_matrix[i, j])

                result._encrypted = True

            else:

                for i in range(Ashape[0]):
                    for j in range(Bshape[1]):

                        result_array = []
                        for k in range(Ashape[1]):
                            res = Ciphertext()
                            self.evaluator.multiply_plain(
                                A[i, k], self.encoder.encode(B[k, j]), res)

                            result_array.append(res)

                        self.evaluator.add_many(result_array,
                                                result.encrypted_matrix[i, j])

                result._encrypted = True

        else:
            if B_enc:

                for i in range(Ashape[0]):
                    for j in range(Bshape[1]):

                        result_array = []
                        for k in range(Ashape[1]):
                            res = Ciphertext()
                            self.evaluator.multiply_plain(
                                B[i, k], self.encoder.encode(A[k, j]), res)

                            result_array.append(res)

                        self.evaluator.add_many(result_array,
                                                result.encrypted_matrix[i, j])

                result._encrypted = True

            else:

                result.matrix = np.matmul(A, B)
                result._encrypted = False

        return result

    def save(self, path):
        """

        :param path:
        :return:
        """

        save_dir = os.path.join(path, self._id)

        if self._saved:
            print("CipherMatrix already saved")

        else:
            assert not os.path.isdir(save_dir), "Directory already exists"
            os.mkdir(save_dir)

        if not self._encrypted:
            self.encrypt()

        shape = self.encrypted_matrix.shape

        for i in range(shape[0]):
            for j in range(shape[1]):

                element_name = str(i) + '-' + str(j) + '.ahem'
                self.encrypted_matrix[i, j].save(
                    os.path.join(save_dir, element_name))

        self.secret_key.save("/keys/" + "." + self._id + '.wheskey')

        self._saved = True
        return save_dir

    def load(self, path, load_secret_key=False):
        """

        :param path:
        :param load_secret_key:
        :return:
        """

        self._id = path.split('/')[-1]
        print("Loading Matrix:", self._id)

        file_list = os.listdir(path)
        index_list = [[file.split('.')[0].split('-'), file]
                      for file in file_list]

        M = int(max([int(ind[0][0]) for ind in index_list])) + 1
        N = int(max([int(ind[0][1]) for ind in index_list])) + 1
        del self.encrypted_matrix
        self.encrypted_matrix = np.empty([M, N], dtype=object)

        for index in index_list:
            i = int(index[0][0])
            j = int(index[0][1])

            self.encrypted_matrix[i, j] = Ciphertext()
            self.encrypted_matrix[i, j].load(os.path.join(path, index[1]))

        if load_secret_key:
            self.secret_key.load("/keys/" + "." + self._id + '.wheskey')

        self.matrix = np.empty(self.encrypted_matrix.shape)
        self._encrypted = True

    def encrypt(self, matrix=None, keygen=None):
        """

        :param matrix:
        :return:
        """

        assert not self._encrypted, "Matrix already encrypted"

        if matrix is not None:
            assert self.matrix is None, "matrix already exists"
            self.matrix = np.copy(matrix)

        shape = self.matrix.shape

        self.encrypted_matrix = np.empty(shape, dtype=object)

        if keygen is not None:
            self._update_cryptors(keygen)

        for i in range(shape[0]):
            for j in range(shape[1]):
                val = self.encoder.encode(self.matrix[i, j])
                self.encrypted_matrix[i, j] = Ciphertext()
                self.encryptor.encrypt(val, self.encrypted_matrix[i, j])

        self._encrypted = True

    def decrypt(self, encrypted_matrix=None, keygen=None):
        """

        :return:
        """

        if encrypted_matrix is not None:
            self.encrypted_matrix = encrypted_matrix

        assert self._encrypted, "No encrypted matrix"

        del self.matrix
        shape = self.encrypted_matrix.shape

        self.matrix = np.empty(shape)

        if keygen is not None:
            self._update_cryptors(keygen)

        for i in range(shape[0]):
            for j in range(shape[1]):
                plain_text = Plaintext()
                self.decryptor.decrypt(self.encrypted_matrix[i, j], plain_text)
                self.matrix[i, j] = self.encoder.decode(plain_text)

        self._encrypted = False
        return np.copy(self.matrix)

    def get_keygen(self):
        """

        :return:
        """
        return self.keygen

    def _update_cryptors(self, keygen):
        """

        :param keygen:
        :return:
        """

        self.keygen = keygen
        self.public_key = keygen.public_key()
        self.secret_key = keygen.secret_key()

        self.encryptor = Encryptor(self.context, self.public_key)
        self.decryptor = Decryptor(self.context, self.secret_key)

        return
Пример #3
0
def pickle_ciphertext():
    parms = EncryptionParameters()

    parms.set_poly_modulus("1x^2048 + 1")

    parms.set_coeff_modulus(seal.coeff_modulus_128(2048))

    parms.set_plain_modulus(1 << 8)

    context = SEALContext(parms)

    # Print the parameters that we have chosen
    print_parameters(context);

    encoder = IntegerEncoder(context.plain_modulus())


    keygen = KeyGenerator(context)
    public_key = keygen.public_key()
    secret_key = keygen.secret_key()

    # To be able to encrypt, we need to construct an instance of Encryptor. Note that
    # the Encryptor only requires the public key.
    encryptor = Encryptor(context, public_key)

    # Computations on the ciphertexts are performed with the Evaluator class.
    evaluator = Evaluator(context)

    # We will of course want to decrypt our results to verify that everything worked,
    # so we need to also construct an instance of Decryptor. Note that the Decryptor
    # requires the secret key.
    decryptor = Decryptor(context, secret_key)

    # We start by encoding two integers as plaintext polynomials.
    value1 = 5;
    plain1 = encoder.encode(value1);
    print("Encoded " + (str)(value1) + " as polynomial " + plain1.to_string() + " (plain1)")

    value2 = -7;
    plain2 = encoder.encode(value2);
    print("Encoded " + (str)(value2) + " as polynomial " + plain2.to_string() + " (plain2)")

    # Encrypting the values is easy.
    encrypted1 = Ciphertext()
    encrypted2 = Ciphertext()
    print("Encrypting plain1: ", encrypted1)
    encryptor.encrypt(plain1, encrypted1)
    print("Done (encrypted1)", encrypted1)

    print("Encrypting plain2: ")
    encryptor.encrypt(plain2, encrypted2)
    print("Done (encrypted2)")






    # output = open('ciphertest.pkl', 'wb')
    # dill.dumps(encrypted_save, output)
    # output.close()
    # encrypted1 = dill.load(open('ciphertest.pkl', 'rb'))


    output = open('session.pkl', 'wb')
    dill.dump_session('session.pkl')

    del encrypted1
    sill.load_session('session.pkl')







    # To illustrate the concept of noise budget, we print the budgets in the fresh
    # encryptions.
    print("Noise budget in encrypted1: " + (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")
    print("Noise budget in encrypted2: " + (str)(decryptor.invariant_noise_budget(encrypted2)) + " bits")

    # As a simple example, we compute (-encrypted1 + encrypted2) * encrypted2.

    # Negation is a unary operation.
    evaluator.negate(encrypted1)

    # Negation does not consume any noise budget.
    print("Noise budget in -encrypted1: " + (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

    # Addition can be done in-place (overwriting the first argument with the result,
    # or alternatively a three-argument overload with a separate destination variable
    # can be used. The in-place variants are always more efficient. Here we overwrite
    # encrypted1 with the sum.
    evaluator.add(encrypted1, encrypted2)

    # It is instructive to think that addition sets the noise budget to the minimum
    # of the input noise budgets. In this case both inputs had roughly the same
    # budget going on, and the output (in encrypted1) has just slightly lower budget.
    # Depending on probabilistic effects, the noise growth consumption may or may
    # not be visible when measured in whole bits.
    print("Noise budget in -encrypted1 + encrypted2: " + (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

    # Finally multiply with encrypted2. Again, we use the in-place version of the
    # function, overwriting encrypted1 with the product.
    evaluator.multiply(encrypted1, encrypted2)

    # Multiplication consumes a lot of noise budget. This is clearly seen in the
    # print-out. The user can change the plain_modulus to see its effect on the
    # rate of noise budget consumption.
    print("Noise budget in (-encrypted1 + encrypted2) * encrypted2: " + (str)(
        decryptor.invariant_noise_budget(encrypted1)) + " bits")

    # Now we decrypt and decode our result.
    plain_result = Plaintext()
    print("Decrypting result: ")
    decryptor.decrypt(encrypted1, plain_result)
    print("Done")

    # Print the result plaintext polynomial.
    print("Plaintext polynomial: " + plain_result.to_string())

    # Decode to obtain an integer result.
    print("Decoded integer: " + (str)(encoder.decode_int32(plain_result)))
matrixPower_vector = [A]
trace_vector = [trace(A)]
#count=0

t1 = time.time()

# creates vector matrixPower_vector contaning each element as powers of matrix A upto A^n
# Also creates a vector trace_vector which contains trace of matrix A, A^2 ... A^(n-1)
for i in range(1, n):
    matrixPower_vector.append(raise_power(matrixPower_vector[i - 1]))
    trace_vector.append(trace(matrixPower_vector[i]))

# Vector c is defined as coefficint vector for the charactersitic equation of the matrix
c = [Ciphertext(trace_vector[0])]
evaluator.negate(c[0])

# The following is the implementation of Newton-identities to calculate the value of coeffecients
for i in range(1, n):
    c_new = Ciphertext(trace_vector[i])
    for j in range(i):
        tc = Ciphertext()
        evaluator.multiply(trace_vector[i - 1 - j], c[j], tc)
        evaluator.add(c_new, tc)
    evaluator.negate(c_new)
    frac = encoderF.encode(1 / (i + 1))
    evaluator.multiply_plain(c_new, frac)
    c.append(c_new)

matrixPower_vector = [iden_matrix(n)] + matrixPower_vector
c0 = Ciphertext()
evaluator = Evaluator(context)
decryptor = Decryptor(context, secret_key)

for i in range(len(A)):
	A_plain.append(encoder.encode(A[i]))
	A_cipherObject.append(Ciphertext())
	encryptor.encrypt(A_plain[i],A_cipherObject[i])
	print("Noise budget of "+ str(i)+" "+str((decryptor.invariant_noise_budget(A_cipherObject[i]))) + " bits")

A_cipherObject=chunk(A_cipherObject)
C=A_cipherObject
#shallow copy

# partial pivoting
for i in range(3,-1,-1):
	evaluator.negate(C[i][0])
	evaluator.add(C[i][0], C[i+1][0])
	plain_result = Plaintext()
	decryptor.decrypt(C[i][0], plain_result)
	if (int(encoder.decode_int32(plain_result))>0):
		for j in range(8):
# add code to combine appended matrix and normal matrix together

D=A_cipherObject
#shallow copy

# reducing to diagnol matrix
for i in range(4):
	for j in range (8):
		if (j!=i):
			plain_result = Plaintext()
Пример #6
0
def example_integer_encoder():
    print("Example: Encoders / Integer Encoder")
    #[IntegerEncoder] (For BFV scheme only)
    #
    #The IntegerEncoder encodes integers to BFV plaintext polynomials as follows.
    #First, a binary expansion of the integer is computed. Next, a polynomial is
    #created with the bits as coefficients. For example, the integer
    #
    #    26 = 2^4 + 2^3 + 2^1
    #
    #is encoded as the polynomial 1x^4 + 1x^3 + 1x^1. Conversely, plaintext
    #polynomials are decoded by evaluating them at x=2. For negative numbers the
    #IntegerEncoder simply stores all coefficients as either 0 or -1, where -1 is
    #represented by the unsigned integer plain_modulus - 1 in memory.
    #
    #Since encrypted computations operate on the polynomials rather than on the
    #encoded integers themselves, the polynomial coefficients will grow in the
    #course of such computations. For example, computing the sum of the encrypted
    #encoded integer 26 with itself will result in an encrypted polynomial with
    #larger coefficients: 2x^4 + 2x^3 + 2x^1. Squaring the encrypted encoded
    #integer 26 results also in increased coefficients due to cross-terms, namely,
    #
    #    (2x^4 + 2x^3 + 2x^1)^2 = 1x^8 + 2x^7 + 1x^6 + 2x^5 + 2x^4 + 1x^2;
    #
    #further computations will quickly increase the coefficients much more.
    #Decoding will still work correctly in this case (evaluating the polynomial
    #at x=2), but since the coefficients of plaintext polynomials are really
    #integers modulo plain_modulus, implicit reduction modulo plain_modulus may
    #yield unexpected results. For example, adding 1x^4 + 1x^3 + 1x^1 to itself
    #plain_modulus many times will result in the constant polynomial 0, which is
    #clearly not equal to 26 * plain_modulus. It can be difficult to predict when
    #such overflow will take place especially when computing several sequential
    #multiplications.
    #
    #The IntegerEncoder is easy to understand and use for simple computations,
    #and can be a good tool to experiment with for users new to Microsoft SEAL.
    #However, advanced users will probably prefer more efficient approaches,
    #such as the BatchEncoder or the CKKSEncoder.

    parms = EncryptionParameters(scheme_type.BFV)
    poly_modulus_degree = 4096
    parms.set_poly_modulus_degree(poly_modulus_degree)
    parms.set_coeff_modulus(CoeffModulus.BFVDefault(poly_modulus_degree))

    #There is no hidden logic behind our choice of the plain_modulus. The only
    #thing that matters is that the plaintext polynomial coefficients will not
    #exceed this value at any point during our computation; otherwise the result
    #will be incorrect.

    parms.set_plain_modulus(512)
    context = SEALContext.Create(parms)
    print_parameters(context)

    keygen = KeyGenerator(context)
    public_key = keygen.public_key()
    secret_key = keygen.secret_key()
    encryptor = Encryptor(context, public_key)
    evaluator = Evaluator(context)
    decryptor = Decryptor(context, secret_key)

    #We create an IntegerEncoder.
    encoder = IntegerEncoder(context)

    #First, we encode two integers as plaintext polynomials. Note that encoding
    #is not encryption: at this point nothing is encrypted.
    value1 = 5
    plain1 = encoder.encode(value1)
    print("Encode {} as polynomial {} (plain1), ".format(
        value1, plain1.to_string()))

    value2 = -7
    plain2 = encoder.encode(value2)
    print("    encode {} as polynomial {} (plain2)".format(
        value2, plain2.to_string()))

    #Now we can encrypt the plaintext polynomials.
    encrypted1 = Ciphertext()
    encrypted2 = Ciphertext()
    print("Encrypt plain1 to encrypted1 and plain2 to encrypted2.")
    encryptor.encrypt(plain1, encrypted1)
    encryptor.encrypt(plain2, encrypted2)
    print("    + Noise budget in encrypted1: {} bits".format(
        decryptor.invariant_noise_budget(encrypted1)))
    print("    + Noise budget in encrypted2: {} bits".format(
        decryptor.invariant_noise_budget(encrypted2)))

    #As a simple example, we compute (-encrypted1 + encrypted2) * encrypted2.
    encryptor.encrypt(plain2, encrypted2)
    encrypted_result = Ciphertext()
    print(
        "Compute encrypted_result = (-encrypted1 + encrypted2) * encrypted2.")
    evaluator.negate(encrypted1, encrypted_result)
    evaluator.add_inplace(encrypted_result, encrypted2)
    evaluator.multiply_inplace(encrypted_result, encrypted2)
    print("    + Noise budget in encrypted_result: {} bits".format(
        decryptor.invariant_noise_budget(encrypted_result)))
    plain_result = Plaintext()
    print("Decrypt encrypted_result to plain_result.")
    decryptor.decrypt(encrypted_result, plain_result)

    #Print the result plaintext polynomial. The coefficients are not even close
    #to exceeding our plain_modulus, 512.
    print("    + Plaintext polynomial: {}".format(plain_result.to_string()))

    #Decode to obtain an integer result.
    print("Decode plain_result.")
    print("    + Decoded integer: {} ...... Correct.".format(
        encoder.decode_int32(plain_result)))
Пример #7
0
print("Encrypting plain2: ")
encryptor.encrypt(plain2, encrypted2)
print("Done (encrypted2)")

# To illustrate the concept of noise budget, we print the budgets in the fresh
# encryptions.
print("Noise budget in encrypted1: " +
      (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")
print("Noise budget in encrypted2: " +
      (str)(decryptor.invariant_noise_budget(encrypted2)) + " bits")

# As a simple example, we compute (-encrypted1 + encrypted2) * encrypted2.

# Negation is a unary operation.
evaluator.negate(encrypted1)

# Negation does not consume any noise budget.
print("Noise budget in -encrypted1: " +
      (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

evaluator.add(encrypted1, encrypted2)

print("Noise budget in -encrypted1 + encrypted2: " +
      (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

#evaluator.multiply(encrypted1, encrypted2)

#print("Noise budget in (-encrypted1 + encrypted2) * encrypted2: " + (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

# Now we decrypt and decode our result.
Пример #8
0
def example_basics_i():
    print_example_banner("Example: Basics I")

    # In this example we demonstrate setting up encryption parameters and other
    # relevant objects for performing simple computations on encrypted integers.

    # SEAL uses the Fan-Vercauteren (FV) homomorphic encryption scheme. We refer to
    # https://eprint.iacr.org/2012/144 for full details on how the FV scheme works.
    # For better performance, SEAL implements the "FullRNS" optimization of FV, as
    # described in https://eprint.iacr.org/2016/510.

    # The first task is to set up an instance of the EncryptionParameters class.
    # It is critical to understand how these different parameters behave, how they
    # affect the encryption scheme, performance, and the security level. There are
    # three encryption parameters that are necessary to set:

    #     - poly_modulus (polynomial modulus);
    #     - coeff_modulus ([ciphertext] coefficient modulus);
    #     - plain_modulus (plaintext modulus).

    # A fourth parameter -- noise_standard_deviation -- has a default value of 3.19
    # and should not be necessary to modify unless the user has a specific reason
    # to and knows what they are doing.

    # The encryption scheme implemented in SEAL cannot perform arbitrary computations
    # on encrypted data. Instead, each ciphertext has a specific quantity called the
    # `invariant noise budget' -- or `noise budget' for short -- measured in bits.
    # The noise budget of a freshly encrypted ciphertext (initial noise budget) is
    # determined by the encryption parameters. Homomorphic operations consume the
    # noise budget at a rate also determined by the encryption parameters. In SEAL
    # the two basic homomorphic operations are additions and multiplications, of
    # which additions can generally be thought of as being nearly free in terms of
    # noise budget consumption compared to multiplications. Since noise budget
    # consumption is compounding in sequential multiplications, the most significant
    # factor in choosing appropriate encryption parameters is the multiplicative
    # depth of the arithmetic circuit that needs to be evaluated. Once the noise
    # budget in a ciphertext reaches zero, it becomes too corrupted to be decrypted.
    # Thus, it is essential to choose the parameters to be large enough to support
    # the desired computation; otherwise the result is impossible to make sense of
    # even with the secret key.
    parms = EncryptionParameters()

    # We first set the polynomial modulus. This must be a power-of-2 cyclotomic
    # polynomial, i.e. a polynomial of the form "1x^(power-of-2) + 1". The polynomial
    # modulus should be thought of mainly affecting the security level of the scheme;
    # larger polynomial modulus makes the scheme more secure. At the same time, it
    # makes ciphertext sizes larger, and consequently all operations slower.
    # Recommended degrees for poly_modulus are 1024, 2048, 4096, 8192, 16384, 32768,
    # but it is also possible to go beyond this. Since we perform only a very small
    # computation in this example, it suffices to use a very small polynomial modulus
    parms.set_poly_modulus("1x^2048 + 1")

    # Next we choose the [ciphertext] coefficient modulus (coeff_modulus). The size
    # of the coefficient modulus should be thought of as the most significant factor
    # in determining the noise budget in a freshly encrypted ciphertext: bigger means
    # more noise budget. Unfortunately, a larger coefficient modulus also lowers the
    # security level of the scheme. Thus, if a large noise budget is required for
    # complicated computations, a large coefficient modulus needs to be used, and the
    # reduction in the security level must be countered by simultaneously increasing
    # the polynomial modulus.

    # To make parameter selection easier for the user, we have constructed sets of
    # largest allowed coefficient moduli for 128-bit and 192-bit security levels
    # for different choices of the polynomial modulus. These recommended parameters
    # follow the Security white paper at http://HomomorphicEncryption.org. However,
    # due to the complexity of this topic, we highly recommend the user to directly
    # consult an expert in homomorphic encryption and RLWE-based encryption schemes
    # to determine the security of their parameter choices.

    # Our recommended values for the coefficient modulus can be easily accessed
    # through the functions

    #     coeff_modulus_128bit(int)
    #     coeff_modulus_192bit(int)

    # for 128-bit and 192-bit security levels. The integer parameter is the degree
    # of the polynomial modulus.

    # In SEAL the coefficient modulus is a positive composite number -- a product
    # of distinct primes of size up to 60 bits. When we talk about the size of the
    # coefficient modulus we mean the bit length of the product of the small primes.
    # The small primes are represented by instances of the SmallModulus class; for
    # example coeff_modulus_128bit(int) returns a vector of SmallModulus instances.

    # It is possible for the user to select their own small primes. Since SEAL uses
    # the Number Theoretic Transform (NTT) for polynomial multiplications modulo the
    # factors of the coefficient modulus, the factors need to be prime numbers
    # congruent to 1 modulo 2*degree(poly_modulus). We have generated a list of such
    # prime numbers of various sizes, that the user can easily access through the
    # functions

    #     small_mods_60bit(int)
    #     small_mods_50bit(int)
    #     small_mods_40bit(int)
    #     small_mods_30bit(int)

    # each of which gives access to an array of primes of the denoted size. These
    # primes are located in the source file util/globals.cpp.

    # Performance is mainly affected by the size of the polynomial modulus, and the
    # number of prime factors in the coefficient modulus. Thus, it is important to
    # use as few factors in the coefficient modulus as possible.

    # In this example we use the default coefficient modulus for a 128-bit security
    # level. Concretely, this coefficient modulus consists of only one 56-bit prime
    # factor: 0xfffffffff00001.
    parms.set_coeff_modulus(seal.coeff_modulus_128(2048))

    # The plaintext modulus can be any positive integer, even though here we take
    # it to be a power of two. In fact, in many cases one might instead want it to
    # be a prime number; we will see this in example_batching(). The plaintext
    # modulus determines the size of the plaintext data type, but it also affects
    # the noise budget in a freshly encrypted ciphertext, and the consumption of
    # the noise budget in homomorphic multiplication. Thus, it is essential to try
    # to keep the plaintext data type as small as possible for good performance.
    # The noise budget in a freshly encrypted ciphertext is

    #     ~ log2(coeff_modulus/plain_modulus) (bits)

    # and the noise budget consumption in a homomorphic multiplication is of the
    # form log2(plain_modulus) + (other terms).
    parms.set_plain_modulus(1 << 8)

    # Now that all parameters are set, we are ready to construct a SEALContext
    # object. This is a heavy class that checks the validity and properties of
    # the parameters we just set, and performs and stores several important
    # pre-computations.
    context = SEALContext(parms)

    # Print the parameters that we have chosen
    print_parameters(context)

    # Plaintexts in the FV scheme are polynomials with coefficients integers modulo
    # plain_modulus. To encrypt for example integers instead, one can use an
    # `encoding scheme' to represent the integers as such polynomials. SEAL comes
    # with a few basic encoders:

    # [IntegerEncoder]
    # Given an integer base b, encodes integers as plaintext polynomials as follows.
    # First, a base-b expansion of the integer is computed. This expansion uses
    # a `balanced' set of representatives of integers modulo b as the coefficients.
    # Namely, when b is odd the coefficients are integers between -(b-1)/2 and
    # (b-1)/2. When b is even, the integers are between -b/2 and (b-1)/2, except
    # when b is two and the usual binary expansion is used (coefficients 0 and 1).
    # Decoding amounts to evaluating the polynomial at x=b. For example, if b=2,
    # the integer

    #     26 = 2^4 + 2^3 + 2^1

    # is encoded as the polynomial 1x^4 + 1x^3 + 1x^1. When b=3,

    #     26 = 3^3 - 3^0

    # is encoded as the polynomial 1x^3 - 1. In memory polynomial coefficients are
    # always stored as unsigned integers by storing their smallest non-negative
    # representatives modulo plain_modulus. To create a base-b integer encoder,
    # use the constructor IntegerEncoder(plain_modulus, b). If no b is given, b=2
    # is used.

    # [FractionalEncoder]
    # The FractionalEncoder encodes fixed-precision rational numbers as follows.
    # It expands the number in a given base b, possibly truncating an infinite
    # fractional part to finite precision, e.g.

    #     26.75 = 2^4 + 2^3 + 2^1 + 2^(-1) + 2^(-2)

    # when b=2. For the sake of the example, suppose poly_modulus is 1x^1024 + 1.
    # It then represents the integer part of the number in the same way as in
    # IntegerEncoder (with b=2 here), and moves the fractional part instead to the
    # highest degree part of the polynomial, but with signs of the coefficients
    # changed. In this example we would represent 26.75 as the polynomial

    #     -1x^1023 - 1x^1022 + 1x^4 + 1x^3 + 1x^1.

    # In memory the negative coefficients of the polynomial will be represented as
    # their negatives modulo plain_modulus.

    # [PolyCRTBuilder]
    # If plain_modulus is a prime congruent to 1 modulo 2*degree(poly_modulus), the
    # plaintext elements can be viewed as 2-by-(degree(poly_modulus) / 2) matrices
    # with elements integers modulo plain_modulus. When a desired computation can be
    # vectorized, using PolyCRTBuilder can result in massive performance improvements
    # over naively encrypting and operating on each input number separately. Thus,
    # in more complicated computations this is likely to be by far the most important
    # and useful encoder. In example_batching() we show how to use and operate on
    # encrypted matrix plaintexts.

    # For performance reasons, in homomorphic encryption one typically wants to keep
    # the plaintext data types as small as possible, which can make it challenging to
    # prevent data type overflow in more complicated computations, especially when
    # operating on rational numbers that have been scaled to integers. When using
    # PolyCRTBuilder estimating whether an overflow occurs is a fairly standard task,
    # as the matrix slots are integers modulo plain_modulus, and each slot is operated
    # on independently of the others. When using IntegerEncoder or FractionalEncoder
    # it is substantially more difficult to estimate when an overflow occurs in the
    # plaintext, and choosing the plaintext modulus very carefully to be large enough
    # is critical to avoid unexpected results. Specifically, one needs to estimate how
    # large the largest coefficient in  the polynomial view of all of the plaintext
    # elements becomes, and choose the plaintext modulus to be larger than this value.
    # SEAL comes with an automatic parameter selection tool that can help with this
    # task, as is demonstrated in example_parameter_selection().

    # Here we choose to create an IntegerEncoder with base b=2.
    encoder = IntegerEncoder(context.plain_modulus())

    # We are now ready to generate the secret and public keys. For this purpose we need
    # an instance of the KeyGenerator class. Constructing a KeyGenerator automatically
    # generates the public and secret key, which can then be read to local variables.
    # To create a fresh pair of keys one can call KeyGenerator::generate() at any time.
    keygen = KeyGenerator(context)
    public_key = keygen.public_key()
    secret_key = keygen.secret_key()

    # To be able to encrypt, we need to construct an instance of Encryptor. Note that
    # the Encryptor only requires the public key.
    encryptor = Encryptor(context, public_key)

    # Computations on the ciphertexts are performed with the Evaluator class.
    evaluator = Evaluator(context)

    # We will of course want to decrypt our results to verify that everything worked,
    # so we need to also construct an instance of Decryptor. Note that the Decryptor
    # requires the secret key.
    decryptor = Decryptor(context, secret_key)

    # We start by encoding two integers as plaintext polynomials.
    value1 = 5
    plain1 = encoder.encode(value1)
    print("Encoded " + (str)(value1) + " as polynomial " + plain1.to_string() +
          " (plain1)")

    value2 = -7
    plain2 = encoder.encode(value2)
    print("Encoded " + (str)(value2) + " as polynomial " + plain2.to_string() +
          " (plain2)")

    # Encrypting the values is easy.
    encrypted1 = Ciphertext()
    encrypted2 = Ciphertext()
    print("Encrypting plain1: ")
    encryptor.encrypt(plain1, encrypted1)
    print("Done (encrypted1)")

    print("Encrypting plain2: ")
    encryptor.encrypt(plain2, encrypted2)
    print("Done (encrypted2)")

    # To illustrate the concept of noise budget, we print the budgets in the fresh
    # encryptions.
    print("Noise budget in encrypted1: " +
          (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")
    print("Noise budget in encrypted2: " +
          (str)(decryptor.invariant_noise_budget(encrypted2)) + " bits")

    # As a simple example, we compute (-encrypted1 + encrypted2) * encrypted2.

    # Negation is a unary operation.
    evaluator.negate(encrypted1)

    # Negation does not consume any noise budget.
    print("Noise budget in -encrypted1: " +
          (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

    # Addition can be done in-place (overwriting the first argument with the result,
    # or alternatively a three-argument overload with a separate destination variable
    # can be used. The in-place variants are always more efficient. Here we overwrite
    # encrypted1 with the sum.
    evaluator.add(encrypted1, encrypted2)

    # It is instructive to think that addition sets the noise budget to the minimum
    # of the input noise budgets. In this case both inputs had roughly the same
    # budget going on, and the output (in encrypted1) has just slightly lower budget.
    # Depending on probabilistic effects, the noise growth consumption may or may
    # not be visible when measured in whole bits.
    print("Noise budget in -encrypted1 + encrypted2: " +
          (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

    # Finally multiply with encrypted2. Again, we use the in-place version of the
    # function, overwriting encrypted1 with the product.
    evaluator.multiply(encrypted1, encrypted2)

    # Multiplication consumes a lot of noise budget. This is clearly seen in the
    # print-out. The user can change the plain_modulus to see its effect on the
    # rate of noise budget consumption.
    print("Noise budget in (-encrypted1 + encrypted2) * encrypted2: " +
          (str)(decryptor.invariant_noise_budget(encrypted1)) + " bits")

    # Now we decrypt and decode our result.
    plain_result = Plaintext()
    print("Decrypting result: ")
    decryptor.decrypt(encrypted1, plain_result)
    print("Done")

    # Print the result plaintext polynomial.
    print("Plaintext polynomial: " + plain_result.to_string())

    # Decode to obtain an integer result.
    print("Decoded integer: " + (str)(encoder.decode_int32(plain_result)))