Пример #1
0
def print_best_genome(ga_engine):
    best = ga_engine.bestIndividual()
    gen = ga_engine.getCurrentGeneration()
    raw_fitn = best.getRawScore()
    print "Best genome at generation %d had fitness %f (raw %f), error %f." % \
      (gen, best.getFitnessScore(), raw_fitn, _fitness_to_error(raw_fitn))
    print "Best genome at generation %d:" % gen, pu.raw_genes(best, True)
    sys.stdout.flush()
Пример #2
0
def print_best_genome(ga_engine):
    best = ga_engine.bestIndividual()
    gen = ga_engine.getCurrentGeneration()
    raw_fitn = best.getRawScore()
    print "Best genome at generation %d had fitness %f (raw %f), error %f." % \
      (gen, best.getFitnessScore(), raw_fitn, _fitness_to_error(raw_fitn))
    print "Best genome at generation %d:" % gen, pu.raw_genes(best, True)
    sys.stdout.flush()
Пример #3
0
 def _set_indiv(self, indiv):
     self.indiv = indiv
     self.model = indiv.getParam('model')
     self.day = self.model.day
     self.loci = self.model.loci
     self.genome = pu.raw_genes(indiv, True)
     train_iter = self.model.dataset.train_data_iterator()
     train_data = [t for t in train_iter()]
     (self.data_in, self.data_out) = random.choice(train_data)
Пример #4
0
 def _set_indiv(self, indiv):
     self.indiv = indiv
     self.model = indiv.getParam('model')
     self.day = self.model.day
     self.loci = self.model.loci
     self.genome = pu.raw_genes(indiv, True)
     train_iter = self.model.dataset.train_data_iterator()
     train_data = [t for t in train_iter()]
     (self.data_in, self.data_out) = random.choice(train_data)
Пример #5
0
def _fitness(indiv):
    """Generic fitness function, calls preprocessors, transformer and
    postprocessors for each model, calculates error from error function."""
    global _model
    model = _model
    num_trials = indiv.getParam('num_trials')
    genome = pu.raw_genes(indiv, True)
    loci = model.loci

    def test_one(data_in, data_out):
        key = _make_cache_key(genome, data_in, data_out)
        _cache_mutex.acquire()
        try:
            error = _cache[key]
        except KeyError:
            _cache_mutex.release()
            model_out = process_data(data_in, genome, model, loci)

            assert (np.all(model_out.index == data_out.index))
            error = model.error_func(model_out.values, data_out.values)
            _cache_mutex.acquire()
            _cache[key] = error
        _cache_mutex.release()
        return error

    def test_loop():
        error = 0
        #start = time.time()
        train_iter = model.dataset.train_data_iterator()
        for (data_in, data_out) in train_iter():
            error += test_one(data_in, data_out)
        #print "Testing completed in ", time.time() - start
        #sys.stdout.flush()
        return error

    global _catch_exceptions_during_fitness_evaluation
    if _catch_exceptions_during_fitness_evaluation:
        try:
            error = test_loop()
        except Exception, e:
            print >> sys.stderr, "Caught exception during fitness evaluation!"
            print >> sys.stderr, "  Offending genome was:", genome[:]
            tb = "  " + traceback.format_exc(limit=50)[:-1]
            print >> sys.stderr, tb.replace("\n", "\n  ")
            print >> sys.stderr, "  Setting fitness to 0 to avoid selection."
            return 0
Пример #6
0
def _fitness(indiv):
    """Generic fitness function, calls preprocessors, transformer and
    postprocessors for each model, calculates error from error function."""
    global _model
    model = _model
    num_trials = indiv.getParam('num_trials')
    genome = pu.raw_genes(indiv, True)
    loci = model.loci

    def test_one(data_in, data_out):
        key = _make_cache_key(genome, data_in, data_out)
        _cache_mutex.acquire()
        try:
            error = _cache[key]
        except KeyError:
            _cache_mutex.release()
            model_out = process_data(data_in, genome, model, loci)
            
            assert(np.all(model_out.index == data_out.index))            
            error = model.error_func(model_out.values, data_out.values)
            _cache_mutex.acquire()
            _cache[key] = error
        _cache_mutex.release()
        return error
        
    def test_loop():
        error = 0
        #start = time.time()
        train_iter = model.dataset.train_data_iterator()
        for (data_in, data_out) in train_iter():
            error += test_one(data_in, data_out)
        #print "Testing completed in ", time.time() - start
        #sys.stdout.flush()
        return error

    global _catch_exceptions_during_fitness_evaluation
    if _catch_exceptions_during_fitness_evaluation:
        try:
            error = test_loop()
        except Exception, e:
            print >>sys.stderr, "Caught exception during fitness evaluation!"
            print >>sys.stderr, "  Offending genome was:", genome[:]
            tb = "  " + traceback.format_exc(limit=50)[:-1]
            print >>sys.stderr, tb.replace("\n", "\n  ")
            print >>sys.stderr, "  Setting fitness to 0 to avoid selection."
            return 0
def _run_models(models, dataset):
    data_desc = dataset.desc
    for model in models:
        if not is_mpi_slave(options):
            print "Optimizing parameters for model", model.name, "."
        run_GA(model, options)
        if is_mpi_slave(options):
            continue
        raw_genes = pu.raw_genes(model.genome, strip=True)
        print "Best genes found during evolution: ", raw_genes
        target, predictions = test_genome(raw_genes, model)
        _save_test_prediction(target, predictions, data_desc)
        error = concat_and_calc_error(predictions, target, model.error_func)
        print "Error on test phase for best genome found, " \
          "%s, %i days: %5.4f" % (data_desc, len(predictions), error)
        if not options.no_plot:
            plot_test_prediction(target, predictions, model.name, data_desc,
                                 model.error_func)
def _run_models(models, dataset):
    data_desc = dataset.desc
    for model in models:
        if not is_mpi_slave(options):
            print "Optimizing parameters for model", model.name, "."
        run_GA(model, options)
        if is_mpi_slave(options):
            continue
        raw_genes = pu.raw_genes(model.genome, strip=True)
        print "Best genes found during evolution: ", raw_genes
        target, predictions = test_genome(raw_genes, model)
        _save_test_prediction(target, predictions, data_desc)
        error = concat_and_calc_error(predictions, target, model.error_func)
        print "Error on test phase for best genome found, " \
          "%s, %i days: %5.4f" % (data_desc, len(predictions), error)
        if not options.no_plot:
            plot_test_prediction(target, predictions, 
                                 model.name, data_desc, model.error_func)
Пример #9
0
def print_population(ga_engine):
    for indiv in ga_engine.getPopulation():
        print "%9e, %9e" % (indiv.score, indiv.fitness), pu.raw_genes(
            indiv, True)
Пример #10
0
def print_population(ga_engine):
    for indiv in ga_engine.getPopulation():
        print "%9e, %9e" % (indiv.score, indiv.fitness), pu.raw_genes(indiv, True)