Пример #1
0
    def add_output_entry(output):
        """ Registers the given output in the scene's custom properties

        :param output: A dict containing key and path of the new output type.
        """
        if GlobalStorage.is_in_storage("output"):
            if not Utility.output_already_registered(output, GlobalStorage.get("output")): # E.g. multiple camera samplers
                GlobalStorage.get("output").append(output)
        else:
            GlobalStorage.set("output", [output])
Пример #2
0
    def run(self):
        """ Writes coco annotations in the following steps:
        1. Locat the seg images
        2. Locat the rgb maps
        3. Locat the seg maps
        4. Read color mappings
        5. For each frame write the coco annotation
        """
        if self._avoid_output:
            print("Avoid output is on, no output produced!")
            return

        # Check if a label mapping is registered which could be used for naming the categories.
        if GlobalStorage.is_in_storage("label_mapping"):
            label_mapping = GlobalStorage.get("label_mapping")
        else:
            label_mapping = None

        CocoWriterUtility.write(self._determine_output_dir(False),
                                mask_encoding_format=self.mask_encoding_format,
                                supercategory=self._supercategory,
                                append_to_existing_output=self._append_to_existing_output,
                                segmap_output_key=self.segmap_output_key,
                                segcolormap_output_key=self.segcolormap_output_key,
                                rgb_output_key=self.rgb_output_key,
                                label_mapping=label_mapping)
Пример #3
0
    def get_registered_outputs() -> List[Dict[str, Any]]:
        """ Returns a list of outputs which were registered.

        :return: A list of dicts containing all information registered for the outputs. 
        """
        outputs = []
        if GlobalStorage.is_in_storage("output"):
            outputs = GlobalStorage.get("output")
        
        return outputs
Пример #4
0
    def find_registered_output_by_key(key):
        """ Returns the output which was registered with the given key.

        :param key: The output key to look for.
        :return: The dict containing all information registered for that output. If no output with the given key exists, None is returned.
        """
        if GlobalStorage.is_in_storage("output"):
            for output in GlobalStorage.get("output"):
                if output["key"] == key:
                    return output

        return None
Пример #5
0
    def run(self):
        """
        :return: Sampled value. Type: Mathutils Vector
        """

        # Radius of the sphere.
        radius = self.config.get_float(
            "radius", GlobalStorage.get("obj_diamater")) * 1.25

        position = mathutils.Vector()
        current = self._count // self._repeat
        # print("UniformSphere current:", current)
        for i in range(3):
            position[i] = self._total_points[current,
                                             i] * radius + self._center[i]
        self._count += 1

        return position
Пример #6
0
    def run(self):
        if self._avoid_rendering:
            print("Avoid rendering is on, no output produced!")
            return

        if self.config.get_bool("append_to_existing_output", False):
            frame_offset = 0
            # Look for hdf5 file with highest index
            for path in os.listdir(self._determine_output_dir(False)):
                if path.endswith(".hdf5"):
                    index = path[:-len(".hdf5")]
                    if index.isdigit():
                        frame_offset = max(frame_offset, int(index) + 1)
        else:
            frame_offset = 0

        # Go through all frames
        for frame in range(bpy.context.scene.frame_start,
                           bpy.context.scene.frame_end):

            # Create output hdf5 file
            hdf5_path = os.path.join(self._determine_output_dir(False),
                                     str(frame + frame_offset) + ".hdf5")
            with h5py.File(hdf5_path, "w") as f:

                if not GlobalStorage.is_in_storage("output"):
                    print("No output was designed in prior models!")
                    return
                # Go through all the output types
                print("Merging data for frame " + str(frame) + " into " +
                      hdf5_path)

                for output_type in GlobalStorage.get("output"):
                    # Build path (path attribute is format string)
                    file_path = output_type["path"]
                    if '%' in file_path:
                        file_path = file_path % frame

                    # Check if file exists
                    if not os.path.exists(file_path):
                        # If not try stereo suffixes
                        path_l, path_r = self._get_stereo_path_pair(file_path)
                        if not os.path.exists(path_l) or not os.path.exists(
                                path_r):
                            raise Exception("File not found: " + file_path)
                        else:
                            use_stereo = True
                    else:
                        use_stereo = False

                    if use_stereo:
                        path_l, path_r = self._get_stereo_path_pair(file_path)

                        img_l, new_key, new_version = self._load_and_postprocess(
                            path_l, output_type["key"], output_type["version"])
                        img_r, new_key, new_version = self._load_and_postprocess(
                            path_r, output_type["key"], output_type["version"])

                        if self.config.get_bool("stereo_separate_keys", False):
                            self._write_to_hdf_file(f, new_key + "_0", img_l)
                            self._write_to_hdf_file(f, new_key + "_1", img_r)
                        else:
                            data = np.array([img_l, img_r])
                            self._write_to_hdf_file(f, new_key, data)

                    else:
                        data, new_key, new_version = self._load_and_postprocess(
                            file_path, output_type["key"],
                            output_type["version"])

                        self._write_to_hdf_file(f, new_key, data)

                    self._write_to_hdf_file(f, new_key + "_version",
                                            np.string_([new_version]))
Пример #7
0
    def run(self):
        """ Does the stereo global matching in the following steps:
        1. Collect camera object and its state,
        2. For each frame, load left and right images and call the `sgm()` methode.
        3. Write the results to a numpy file.
        """
        if self._avoid_output:
            print("Avoid output is on, no output produced!")
            return

        if GlobalStorage.is_in_storage("renderer_distance_end"):
            self.depth_max = GlobalStorage.get("renderer_distance_end")
        else:
            raise RuntimeError(
                "A distance rendering has to be executed before this module is executed, "
                "else the `renderer_distance_end` is not set!")

        self.rgb_output_path = Utility.find_registered_output_by_key(
            self.rgb_output_key)["path"]

        # Collect camera and camera object
        cam_ob = bpy.context.scene.camera
        cam = cam_ob.data

        self.width = bpy.context.scene.render.resolution_x
        self.height = bpy.context.scene.render.resolution_y
        print('Resolution: {}, {}'.format(self.width, self.height))

        self.baseline = cam.stereo.interocular_distance
        if not self.baseline:
            raise Exception(
                "Stereo parameters are not set. Make sure to enable RGB stereo rendering before this module."
            )

        if self.config.get_bool("infer_focal_length_from_fov", False):
            fov = cam.angle_x if cam.angle_x else cam.angle
            if not fov:
                raise Exception("Could not obtain field of view angle")
            self.focal_length = float(
                (1.0 / tan(fov / 2.0)) * (float(self.width) / 2.0))
        else:
            self.focal_length = self.config.get_float("focal_length", 0.0)
            if self.focal_length == 0.0:
                raise Exception(
                    "Focal length set to 0. This is either intentional or because no value was set by the user. Either way, this needs to be corrected by setting a value > 0 or enabling 'infer_focal_length_from_fov'."
                )

        for frame in range(bpy.context.scene.frame_start,
                           bpy.context.scene.frame_end):
            path_split = self.rgb_output_path.split(".")
            path_l = "{}_L.{}".format(path_split[0], path_split[1])
            path_r = "{}_R.{}".format(path_split[0], path_split[1])

            imgL = load_image(path_l % frame)
            imgR = load_image(path_r % frame)

            depth, disparity = self.sgm(imgL, imgR)

            np.save(
                os.path.join(self.output_dir, "stereo-depth_%04d") % frame,
                depth)

            if self.config.get_bool("output_disparity", False):
                np.save(
                    os.path.join(self.output_dir, "disparity_%04d") % frame,
                    disparity)
        Utility.register_output(self._determine_output_dir(), "stereo-depth_",
                                "stereo-depth", ".npy", "1.0.0")
        if self.config.get_bool("output_disparity", False):
            Utility.register_output(self._determine_output_dir(), "disparity_",
                                    "disparity", ".npy", "1.0.0")