def __init__(self): """F(x,y)=x^2 + y^2 - z = 0""" Page.__init__( self, u"Paraboloide Elíptico<br><br>F(x,y)=(x, y, x<sup>2</sup>/a<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup>)" ) z = 0.5 par = RevolutionPlot3D(lambda r, t: r**2 + z, (0, 1), (0, 2 * pi)) x, y, z2, u, v, cose, sen, t = createVars( ['x', 'y', 'z', 'u', 'v', 'cos', 'sen', 't']) mesh1 = Plot3D(lambda x, y, h: h * (x**2 + y**2 + z - .01), (-1, 1), (-1, 1)) mesh1.addEqn(x**2 + y**2 - z2**2 == 1) mesh1.addFunction(lambda x, y, h: h * (x**2 + y**2 + z + .01)) mesh1.setLinesVisible(True) mesh1.setMeshVisible(False) mesh1.setBoundingBox(zrange=(-1, 1.5)) par.setAmbientColor(_1(145, 61, 74)) par.setDiffuseColor(_1(145, 61, 74)) par.setSpecularColor(_1(145, 61, 74)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(par) self.addChild(mesh1) self.addChild(baseplane)
def __init__(self): """F(x,y)=x^2 + y^2 - z = 0""" Page.__init__(self, u"Paraboloide Elíptico<br><br>F(x,y)=(x, y, x<sup>2</sup>/a<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup>)") z = 0.5 par = RevolutionPlot3D(lambda r, t: r ** 2 + z, (0, 1.42), (0, 2 * pi)) x, y, z2, u, v, cose, sen, t = createVars(['x', 'y', 'z', 'u', 'v', 'cos', 'sen', 't']) mesh1 = Plot3D(lambda x, y, h: h * (x ** 2 + y ** 2 + z - .01), (-1, 1), (-1, 1)) #mesh1.addEqn(x**2+y**2 - z2**2 == 1) mesh1.addFunction(lambda x, y, h: h * (x ** 2 + y ** 2 + z + .01)) mesh1.setLinesVisible(True) mesh1.setMeshVisible(False) mesh1.setBoundingBox(zrange=(-1, 3.0)) par.setAmbientColor(_1(145, 61, 74)) par.setDiffuseColor(_1(145, 61, 74)) par.setSpecularColor(_1(145, 61, 74)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(par) self.addChild(mesh1) self.addChild(baseplane)
def __init__(self): "x^4 + 2x^2y^2 + y^4 -z = 0" Page.__init__( self, u"Superficie cuártica<br><br>F(x,y)=(x,y,x<sup>4</sup>+2x<sup>2</sup>y<sup>2</sup>+y<sup>4</sup>)" ) # cuart = Plot3D(lambda x,y: x**4 + 2*x**2*y**2 + y**4 + 1, (-1,1),(-1,1)) cuart = RevolutionPlot3D(lambda r, t: r**4 + 1, (0, 1), (0, 2 * pi)) # cuart.setScaleFactor((1,1,.6)) mesh1 = Plot3D(lambda x, y, h: h * (x**4 + 2 * x**2 * y**2 + y**4 + 1), (-1, 1), (-1, 1)) mesh1.setLinesVisible(True) mesh1.setMeshVisible(False) mesh1.setBoundingBox(zrange=(-1, 2)) # cuart.setAmbientColor(_1(168,211,8)) cuart.setDiffuseColor(_1(168, 211, 8)) cuart.setSpecularColor(_1(168, 211, 8)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(cuart) self.addChild(mesh1) self.addChild(baseplane)
def __init__(self): Page.__init__(self, u"Hélice circular, curvatura y torsión<br><br>(cos s/√2, sen s/√2, s/√2)") self.camera_position = (10, -10, 10) self.showAxis(False) tmin = -2 * pi tmax = 2 * pi npuntos = 300 self.addChild(Cylinder(_1(185, 46, 61), tmax - tmin, 2)) ## ============================================ # 1 implica primer derivada, 2 implica segunda derivada def param1hc(t): return 2*Vec3(cos(t), sin(t), t/3.0) def param2hc(t): return 2*Vec3(-sin(t), cos(t), 1/3.0) def param3hc(t): return 2*Vec3(-cos(t), -sin(t), 0) def param4hc(t): return 2*Vec3(sin(t)/3.0, -cos(t)/3.0, 1.0) espiral = Curve3D(param1hc, (tmin*1.5, tmax*1.5, npuntos), color=_1(255, 255, 255)) tangente = espiral.attachField("tangente", param2hc).setLengthFactor(1).setWidthFactor(.6) tangente.setRadius( 0.06 ) tangente.setDiffuseColor( _1(20,240,20) ) normal = espiral.attachField("normal", param3hc).setLengthFactor(1).setWidthFactor(.6) normal.setRadius( 0.06 ) normal.setDiffuseColor( _1(240,120,20) ) binormal = espiral.attachField("binormal", param4hc).setLengthFactor(1).setWidthFactor(.6) binormal.setRadius( 0.06 ) binormal.setDiffuseColor( _1(20,120,240) ) self.addChild(espiral) self.setupAnimations([ AnimationGroup([tangente, normal, binormal], (10000,0,len(espiral)-1)) ])
def __init__(self): Page.__init__(self, u"Otro campo en la esfera con dos singularidades") par_esfera = lambda u, v: Vec3(sin(u) * cos(v), sin(u) * sin(v), cos(u)) def esfera_u(u,v): return Vec3(-cos(u)*cos(v)*sin(u), -cos(u)*sin(u)*sin(v), 1-cos(u)**2) parab = ParametricPlot3D(par_esfera, (0,pi,150),(0,2*pi,100)) parab.setTransparency(0.4) parab.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return lambda t: par_esfera(t,c) def make_tang(c): return lambda t: esfera_u(t,c) tangentes = [] curves = [] ncurves = 70 for c in range(0,ncurves+1): ## -1 < ct < 1 ct = c/float(ncurves) * 2*pi curve = Curve3D(make_curva(ct),(-(pi-.02),-.02,100), width=1) tangent = curve.attachField("tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1).show() tangentes.append(tangent) curves.append(curve) self.addChildren(curves) self.setupAnimations([AnimationGroup(tangentes, (6000, 0, 99))])
def __init__(self): "F(x,y) = (x, y, x + y - 6)" #u"""l plano x + y + z - 2.5 = 0""" Page.__init__(self, u"Plano<br><br>F(x,y) = (x, y, x + y - 6)") plane = lambda x, y: -x - y p1 = lambda x, y, t1: (x, y, (1 - t1) * (-x - y) - 2 * t1) p2 = lambda x, y, t2: (x, (1 - t2) * y - 2 * t2, -x - y) p3 = lambda x, y, t3: ((1 - t3) * x - 2 * t3, y, -x - y) r = (-1, 1, 15) plano = Plot3D(plane, (-1, 1), (-1, 1)) plano.setTransparencyType(8) plano1 = ParametricPlot3D(p1, r, r) plano2 = ParametricPlot3D(p2, r, r) plano3 = ParametricPlot3D(p3, r, r) planos = [plano1, plano2, plano3] for p in planos: p.linesVisible = True p.meshVisible = False plano1.setMeshDiffuseColor((1, 0, 0)) plano2.setMeshDiffuseColor((0, 1, 0)) plano3.setMeshDiffuseColor((0, 1, 1)) plano.diffuseColor = _1(29, 214, 216) plano.transparency = 0.5 plano.setAmbientColor(_1(29, 214 , 216)) self.setupPlanes((-2, 2, 7)) self.addChildren([plano, plano1, plano2, plano3]) ## no controls for i, plano in enumerate(planos): plano.parameters['t%d' % (i + 1)].hide() self.setupAnimations([plano.parameters['t%d' % (i + 1)].asAnimation() for i, plano in enumerate(planos)])
def __init__(self): Page.__init__(self, u"Planos osculador, normal y rectificante") tmin = -2 * pi tmax = 2 * pi ## ============================================ sq2 = 2 ** 0.5 inv_sq2 = (1. / sq2) def helix(s): s_times_sq2 = inv_sq2 * s return Vec3(cos(s_times_sq2), sin(s_times_sq2), s_times_sq2) def tangent(s): s_div_sq2 = s / sq2 return Vec3(-inv_sq2 * sin(s_div_sq2), inv_sq2 * cos(s_div_sq2), inv_sq2) def normal(s): s_div_sq2 = s / sq2 return Vec3(-cos(s_div_sq2), -sin(s_div_sq2), 0) def bi_normal(s): s_div_sq2 = s / sq2 return Vec3(inv_sq2 * sin(s_div_sq2), -inv_sq2 * cos(s_div_sq2), inv_sq2) curve = Curve3D(helix, (tmin, tmax, 100), _1(206, 75, 150), 2) self.addChild(curve) #======================================================================= # Vectors #======================================================================= field_tangent = curve.attachField("tangent", tangent).show() field_normal = curve.attachField("normal", normal).show() field_binormal = curve.attachField("binormal", bi_normal).show() field_tangent.setDiffuseColor( _1(255, 0, 0) ) field_normal.setDiffuseColor( _1(255, 255, 0) ) field_binormal.setDiffuseColor( _1(0, 0, 255) ) #======================================================================= # Planes #======================================================================= def get_points(v1, v2): return v2.p1, v1.p2, v2.p2 color = (.5, .5, .5) plane_osculating = Plane(color, *get_points(field_tangent, field_normal)) plane_normal = Plane(color, *get_points(field_normal, field_binormal)) plane_rectifying = Plane(color, *get_points(field_binormal, field_tangent)) self.addChildren([plane_osculating, plane_normal, plane_rectifying]) def update_planes(n): plane_osculating.setPoints(*get_points(field_tangent, field_normal)) plane_normal.setPoints(*get_points(field_normal, field_binormal)) plane_rectifying.setPoints(*get_points(field_binormal, field_tangent)) r = (5000, 0, len(curve) - 1) animation = Animatable(update_planes, r) self.setupAnimations([ AnimationGroup([field_tangent, field_normal, field_binormal, animation], r) ])
def __init__(self): u"""^2 + y^2 = z^2""" Page.__init__(self, u"Esfera, parametrización por proyecciones estereográficas") r = .998 esf = ParametricPlot3D(lambda t, f: (r * sin(t) * cos(f), r * sin(t) * sin(f), r * cos(t)), (0, pi, 70), (0, 2 * pi, 70)) # esf.setAmbientColor(_1(99,136,63)) esf.setDiffuseColor(_1(99, 136, 63)) esf.setSpecularColor(_1(99, 136, 63)) def proyZm1(u, v, t1): """proy desde el polo norte al plano z=-1""" den = u ** 2 + v ** 2 + 4 x = u - t1 * (u - 4 * u / den) y = v - t1 * (v - 4 * v / den) z = -1 - t1 * (-2 + 8 / den) return (x, y, z) def proyZ1(u, v, t2): """proy desde el polo sur al plano z=1""" den = u ** 2 + v ** 2 + 4 x = u - t2 * (u - 4 * u / den) y = v - t2 * (v - 4 * v / den) z = 1 - t2 * (2 - 8 / den) return (x, y, z) stereo = ParametricPlot3D(proyZm1, (-3, 3, 70), (-3, 3, 70)) stereo.setLinesVisible(True) stereo.setMeshVisible(False) stereo.setMeshDiffuseColor(_1(117, 55, 79)) stereo2 = ParametricPlot3D(proyZ1, (-3, 3, 70), (-3, 3, 70)) stereo2.setLinesVisible(True) stereo2.setMeshVisible(False) stereo2.setMeshDiffuseColor(_1(80, 87, 193)) stereo2.setTransparency(0.5) stereo2.setTransparencyType(8) baseplane = BasePlane() baseplane.setHeight(-1.005) baseplane.setRange((-4, 4, 7)) self.addChild(esf) self.addChild(stereo2) self.addChild(stereo) self.addChild(baseplane) params = [stereo,stereo2] ## no queremos los controles for i,p in enumerate(params): p.parameters['t%d' % (i+1)].hide() anims = [p.parameters['t%d' % (i+1)].asAnimation() for i,p in enumerate(params)] self.setupAnimations(anims)
def __init__(self): Page.__init__(self, u"Exponencial") self.showAxis(True) self.axis_z.setVisible(False) def curve(t): return Vec3(exp(t) * cos(t), exp(t) * sin(t), exp(t)) def derivada(t): return Vec3(exp(t) * cos(t) - exp(t) * sin(t), exp(t) * cos(t) + exp(t) * sin(t), exp(t)) curva1 = Curve3D(curve, (-pi, 1 * pi, 200), width=2) self.addChild(curva1) curva1.derivative = derivada curva1.tangent_vector.show() self.setupAnimations([curva1.tangent_vector])
def __init__(self): Page.__init__(self, u"Campo con un ciclo límite en el plano") par_plano = lambda u, v: Vec3(u,v,0) def plano_u(u,v): return Vec3(1,0,0) def plano_v(u,v): return Vec3(0,1,0) parab = ParametricPlot3D(par_plano, (-3,3,20),(-3,3,20)) parab.setTransparency(0.4) parab.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) # Esta familia de curvas NO es solucion de un sistema de ecuaciones # diferenciales de orden 1 (se intersectan)... # pero se parece a la solucion del sistema presentado def make_curva(c): return lambda t: Vec3( e**(-(c*t+c))*cos(t), e**(-(c*t+c))*sin(t), 0.02 ) def make_tang(c): return lambda t: Vec3( -c*e**(-(c*t+c))*cos(t) - e**(-(c*t+c))*sin(t), -c*e**(-(c*t+c))*sin(t) + e**(-(c*t+c))*cos(t), 0.02 ) tangentes = [] ncurves = 7 steps = 80 for c in range(0,ncurves): ## -1 < ct < 1 ct = c/20.0 - float(ncurves-1)/40.0 curva = Curve3D(make_curva(ct),(0,2*pi,steps), width=1) if ct == 0: curva = Curve3D(make_curva(ct),(0,2*pi,steps), width=1, color=_1(20, 240, 40)) curva.attachField("tangente", make_tang(ct)).setLengthFactor(.5).setWidthFactor(.25).add_tail(0.025) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, steps-1)) self.setupAnimations([a1]) critic = Sphere( center=Vec3(0,0,0), radius=0.025, color=_1(240,10,20) ) self.addChild(critic)
def __init__(self): Page.__init__(self, u"Campo en la esfera con sólo una singularidad") def make_circulo(t): return partial(par_esfera, t) par_esfera = lambda t, f: 0.99 * Vec3( sin(t) * cos(f), sin(t) * sin(f), cos(t)) esf = ParametricPlot3D(par_esfera, (0, pi, 100), (0, 2 * pi, 120)) esf.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) esf.setTransparency(0.4) esf.setDiffuseColor(_1(68, 28, 119)) VisibleCheckBox("esfera", esf, True, parent=self) self.addChild(esf) def par_curva(c, t): t = tan(t / (4 * pi)) den = c**2 + t**2 + 1 return Vec3(2 * c / den, 2 * t / den, (c**2 + t**2 - 1) / den) def par_tang(c, t): t = tan(t / (4 * pi)) den = (c**2 + t**2 + 1)**2 return Vec3(-2 * c * (2 * t) / den, (2 * (c**2 + t**2 + 1) - 4 * t**2) / den, 4 * t / den) def make_curva(c): return partial(par_curva, c) def make_tang(c): return partial(par_tang, c) tangentes = [] for c in range(-10, 11): ct = tan(c / (2 * pi)) curva = Curve3D(make_curva(ct), (-20, 20, 80), width=1) curva.attachField( "tangente", make_tang(ct)).setLengthFactor(1).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (10000, 0, 79)) self.setupAnimations([a1])
def __init__(self): Page.__init__(self, u"Elipsoide<br><br>x<sup>2</sup>/a<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup> + z<sup>2</sup>/c<sup>2</sup> = 1") param = lambda u,v: (cos(u)*cos(v), 1.5*cos(v)*sin(u), 2*sin(v)) elipsoide = ParametricPlot3D(param, (-pi, pi), (-pi/2,pi/2)) col = _1(84,129,121) elipsoide.setAmbientColor(col).setDiffuseColor(col).setSpecularColor(col) par1 = lambda u,v: Vec3(-sin(u)*cos(v), 1.5*cos(u)*cos(v), 0) par2 = lambda u,v: Vec3(-cos(u)*sin(v), -1.5*sin(u)*sin(v), 2*cos(v)) tp = TangentPlane2(param,par1,par2,(0,0),_1(252,250,225)) self.addChild(elipsoide) self.addChild(tp) Slider(rangep=('u', -pi,pi,0,20),func=tp.setU, duration=8000, parent=self) Slider(rangep=('v', -pi/2,pi/2,0,20),func=tp.setV, duration=8000, parent=self)
def __init__(self): Page.__init__(self, u"Elipsoide") param = lambda u,v: (cos(u)*cos(v), 1.5*cos(v)*sin(u), 2*sin(v)) elipsoide = ParametricPlot3D(param, (-pi, pi), (-pi/2,pi/2)) col = _1(84,129,121) elipsoide.setAmbientColor(col).setDiffuseColor(col).setSpecularColor(col) par1 = lambda u,v: Vec3(-sin(u)*cos(v), 1.5*cos(u)*cos(v), 0) par2 = lambda u,v: Vec3(-cos(u)*sin(v), -1.5*sin(u)*sin(v), 2*cos(v)) tp = TangentPlane2(param,par1,par2,(0,0),_1(252,250,225)) self.addChild(elipsoide) self.addChild(tp) Slider(rangep=('u', -pi,pi,0,20),func=tp.setU, parent=self) Slider(rangep=('v', -pi/2,pi/2,0,20),func=tp.setV,parent=self)
def __init__(self): Page.__init__( self, u"Hélice circular reflejada<br><br>(cos s/√2, sen s/√2, -s/√2)" ) self.camera_position = (10, -10, 10) self.showAxis(False) tmin, tmax, npuntos = (-2 * pi, 2 * pi, 200) self.addChild(Cylinder(_1(7, 83, 150), tmax - tmin, 2)) def param1hr(t): return 2 * Vec3(cos(t), sin(t), -t / 3.0) def param2hr(t): return 2 * Vec3(-sin(t), cos(t), -1 / 3.0) def param3hr(t): return 2 * Vec3(-cos(t), -sin(t), 0) espiral = Curve3D(param1hr, (tmin * 1.5, tmax * 1.5, npuntos), color=_1(240, 10, 120)) def param1hc_der(t): return 2 * Vec3(cos(t), sin(t), t / 3.0) espiral_der = Curve3D(param1hc_der, (tmin * 1.5, tmax * 1.5, npuntos), color=_1(20, 240, 240)) tangente = espiral.attachField( "tangente", param2hr).setLengthFactor(1).setWidthFactor(.6) tangente.setRadius(0.06) tangente.setDiffuseColor(_1(20, 240, 20)) normal = espiral.attachField( "normal", param3hr).setLengthFactor(1).setWidthFactor(.6) normal.setRadius(0.06) normal.setDiffuseColor(_1(240, 120, 20)) self.addChild(espiral) self.addChild(espiral_der) plano_xy_par = lambda u, v: Vec3(u, v, 0) plano_xy = ParametricPlot3D(plano_xy_par, (-4, 4, 20), (-4, 4, 20)) plano_xy.setDiffuseColor(_1(200, 200, 200)) plano_xy.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) plano_xy.setTransparency(0.85) self.addChild(plano_xy) self.addChild(Line([(-4, 0, 0), (4, 0, 0)], color=(0.8, 0.8, 0.5))) self.addChild(Line([(0, -4, 0), (0, 4, 0)], color=(0.8, 0.8, 0.5))) self.setupAnimations( [AnimationGroup([tangente, normal], (10000, 0, len(espiral) - 1))])
def __init__(self): Page.__init__(self, u"Otro campo en el toro sin singularidades") a = 1 b = 0.5 def toroParam1(u, v): return ((a + b * cos(v)) * cos(u), (a + b * cos(v)) * sin(u), b * sin(v)) def toro_u(u, v): return Vec3(-(a + b * cos(v)) * sin(u), (a + b * cos(v)) * cos(u), 0) def toro_v(u, v): return Vec3(-b * sin(v) * cos(u), -b * sin(v) * sin(u), b * cos(v)) parab = ParametricPlot3D(toroParam1, (0, 2 * pi, 150), (0, 2 * pi, 100)) parab.setTransparency(0.4) parab.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return lambda t: toroParam1(t, c) def make_tang(c): return lambda t: toro_u(t, c) tangentes = [] ncurves = 50 for c in range(0, ncurves + 1): ## -1 < ct < 1 ct = c / float(ncurves) * 2 * pi curva = Curve3D(make_curva(ct), (0, 2 * pi, 100), width=1) curva.attachField( "tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, 99)) self.setupAnimations([a1])
def __init__(self): Page.__init__(self, u"Curva cúbica alabeada<br><br>α(t)=(t,t<sup>2</sup>,t<sup>3</sup>)") self.camera_position = (5, 5, 5) self.camera_viewAll = True self.setupPlanes() c = lambda t: Vec3(t, t ** 2, t ** 3) altura = -1 curva = Curve3D(c, (-1, 1, 100), width=5, nvertices=1) lyz = curva.project(x=altura, color=(0, 1, 1), width=3, nvertices=1) lxz = curva.project(y=altura, color=(1, 0, 1), width=3, nvertices=1) lxy = curva.project(z=altura, color=(1, 1, 0), width=3, nvertices=1) curvas = [curva, lxy, lxz, lyz] self.showAxis(False) self.addChildren(curvas) self.setupAnimations([ AnimationGroup(curvas, (5000,0,len(curva)-1)) ])
def __init__(self): Page.__init__(self, u"Campo en la esfera con sólo una singularidad") def make_circulo(t): return partial(par_esfera, t) par_esfera = lambda t, f: 0.99*Vec3(sin(t) * cos(f), sin(t) * sin(f), cos(t)) esf = ParametricPlot3D(par_esfera, (0, pi, 100), (0, 2 * pi, 120)) esf.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) esf.setTransparency(0.4) esf.setDiffuseColor(_1(68, 28, 119)) VisibleCheckBox("esfera", esf, True, parent=self) self.addChild(esf) def par_curva(c,t): t = tan(t/(4*pi)) den = c**2+t**2+1 return Vec3(2*c / den, 2*t / den, (c**2+t**2-1) / den) def par_tang(c,t): t = tan(t/(4*pi)) den = (c**2+t**2+1)**2 return Vec3(-2*c*(2*t) / den, (2*(c**2+t**2+1)-4*t**2) / den, 4*t / den) def make_curva(c): return partial(par_curva,c) def make_tang(c): return partial(par_tang,c) tangentes = [] for c in range(-10,11): ct = tan(c/(2*pi)) curva = Curve3D(make_curva(ct),(-20,20,80), width=1) curva.attachField("tangente", make_tang(ct)).setLengthFactor(1).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (10000, 0, 79)) self.setupAnimations([a1])
def __init__(self): Page.__init__(self, u"Cilindro<br><br>x<sup>2</sup>/a<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup> = 1") param = lambda u,t: Vec3(cos(u),sin(u),t) cilindro = ParametricPlot3D(param, (0, 2*pi), (-1,1)) col = _1(177,89,77) cilindro.setAmbientColor(col).setDiffuseColor(col).setSpecularColor(col) def par1(u,t): return Vec3(-sin(u),cos(u),0) def par2(u,t): return Vec3(0,0,1) tp = TangentPlane2(param,par1,par2,(0,0),_1(252,250,225)) tp.localOriginSphere.hide() tp.localYAxis.setColor(col).setWidth(2).show() Slider(rangep=('u', 0,2*pi,0,20),func=tp.setU, duration=8000, parent=self) Slider(rangep=('t', -1,1,0,20),func=tp.setV, duration=4000, parent=self) self.addChild(cilindro) self.addChild(tp)
def __init__(self): Page.__init__(self, u"Cilindro") param = lambda u,t: Vec3(cos(u),sin(u),t) cilindro = ParametricPlot3D(param, (0, 2*pi), (-1,1)) col = _1(177,89,77) cilindro.setAmbientColor(col).setDiffuseColor(col).setSpecularColor(col) def par1(u,t): return Vec3(-sin(u),cos(u),0) def par2(u,t): return Vec3(0,0,1) tp = TangentPlane2(param,par1,par2,(0,0),_1(252,250,225)) tp.localOriginSphere.hide() tp.localYAxis.setColor(col).setWidth(2).show() Slider(rangep=('u', 0,2*pi,0,20),func=tp.setU, parent=self) Slider(rangep=('t', -1,1,0,20),func=tp.setV,parent=self) self.addChild(cilindro) self.addChild(tp)
def __init__(self): Page.__init__( self, u"Campo sin singularidades en el plano<br><br>(x,y) → (1,0)") par_plano = lambda u, v: Vec3(u, v, 0) def plano_u(u, v): return Vec3(1, 0, 0) def plano_v(u, v): return Vec3(0, 1, 0) parab = ParametricPlot3D(par_plano, (-1, 1, 20), (-1, 1, 20)) parab.setTransparency(0.4) parab.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return lambda t: par_plano(t, c) def make_tang(c): return lambda t: plano_u(t, c) tangentes = [] ncurves = 30 steps = 70 for c in range(0, ncurves + 1): ## -1 < ct < 1 ct = c / float(ncurves) * 2 - 1 curva = Curve3D(make_curva(ct), (-1, 1, steps), width=1) curva.attachField( "tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, steps - 1)) self.setupAnimations([a1])
def __init__(self): Page.__init__(self, u"Otro campo en el toro sin singularidades") a = 1 b = 0.5 def toroParam1(u,v): return ((a+b*cos(v))*cos(u),(a+b*cos(v))*sin(u),b*sin(v)) def toro_u(u,v): return Vec3(-(a+b*cos(v))*sin(u), (a+b*cos(v))*cos(u), 0) def toro_v(u,v): return Vec3(-b*sin(v)*cos(u), -b*sin(v)*sin(u), b*cos(v)) parab = ParametricPlot3D(toroParam1, (0,2*pi,150),(0,2*pi,100)) parab.setTransparency(0.4) parab.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return lambda t: toroParam1(t,c) def make_tang(c): return lambda t: toro_u(t,c) tangentes = [] ncurves = 50 for c in range(0,ncurves+1): ## -1 < ct < 1 ct = c/float(ncurves) * 2*pi curva = Curve3D(make_curva(ct),(0,2*pi,100), width=1) curva.attachField("tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, 99)) self.setupAnimations([a1])
def __init__(self): Page.__init__( self, u"Hélice circular, curvatura y torsión<br><br>(cos s/√2, sen s/√2, s/√2)" ) self.camera_position = (10, -10, 10) self.showAxis(False) tmin = -2 * pi tmax = 2 * pi npuntos = 300 self.addChild(Cylinder(_1(185, 46, 61), tmax - tmin, 2)) ## ============================================ # 1 implica primer derivada, 2 implica segunda derivada def param1hc(t): return 2 * Vec3(cos(t), sin(t), t / 3.0) def param2hc(t): return 2 * Vec3(-sin(t), cos(t), 1 / 3.0) def param3hc(t): return 2 * Vec3(-cos(t), -sin(t), 0) def param4hc(t): return 2 * Vec3(sin(t) / 3.0, -cos(t) / 3.0, 1.0) espiral = Curve3D(param1hc, (tmin * 1.5, tmax * 1.5, npuntos), color=_1(255, 255, 255)) tangente = espiral.attachField( "tangente", param2hc).setLengthFactor(1).setWidthFactor(.6) tangente.setRadius(0.06) tangente.setDiffuseColor(_1(20, 240, 20)) normal = espiral.attachField( "normal", param3hc).setLengthFactor(1).setWidthFactor(.6) normal.setRadius(0.06) normal.setDiffuseColor(_1(240, 120, 20)) binormal = espiral.attachField( "binormal", param4hc).setLengthFactor(1).setWidthFactor(.6) binormal.setRadius(0.06) binormal.setDiffuseColor(_1(20, 120, 240)) self.addChild(espiral) self.setupAnimations([ AnimationGroup([tangente, normal, binormal], (10000, 0, len(espiral) - 1)) ])
def __init__(self): "x^2 + y^2 = z^2" Page.__init__(self, u"Semicono de revolución<br><br>F(θ,ρ)=(θ,ρ,π/4)") cono = RevolutionPlot3D(lambda r, t: r + 1, (0, 1), (0, 2 * pi)) cono1 = RevolutionPlot3D(lambda r, t, h: h * (r + 1), (0.05, 1), (0, 2 * pi)) #@UndefinedVariable cono1.setLinesVisible(True) cono1.setMeshVisible(False) cono.setDiffuseColor(_1(149, 24, 82)) cono.setSpecularColor(_1(149, 24, 82)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(cono) self.addChild(cono1) self.addChild(baseplane)
def __init__(self): Page.__init__(self, u"Exponencial") self.showAxis(True) self.axis_z.setVisible(False) def curve(t): return Vec3(exp(t) * cos(t), exp(t) * sin(t), exp(t)) def derivada(t): return Vec3( exp(t) * cos(t) - exp(t) * sin(t), exp(t) * cos(t) + exp(t) * sin(t), exp(t)) curva1 = Curve3D(curve, (-pi, 1 * pi, 200), width=2) self.addChild(curva1) curva1.derivative = derivada curva1.tangent_vector.show() self.setupAnimations([curva1.tangent_vector])
def __init__(self): "x^3 - 3xy^2 - z = 0" Page.__init__( self, u"Silla del mono<br><br>F(x,y)=(x, y, x<sup>3</sup> - 3xy<sup>2</sup>)" ) silla = Plot3D(lambda x, y: x**3 - 3 * x * y**2 + 2.5, (-1, 1), (-1, 1)) silla.setAmbientColor(_1(151, 139, 125)) silla.setDiffuseColor(_1(151, 139, 125)) silla.setSpecularColor(_1(151, 139, 125)) # silla.setShininess(1) # plano.setScaleFactor((1,1,.6)) def cVec(pto): "pto: Vec3" return pto * 1.1 silla.addVectorField(cVec) # def setXscale(t): # scale.scaleFactor = (1,1,t) # Slider( # rangep=('z', .2, 1, 1, 20), # func=setXscale, # parent=self # ) # silla1 = Plot3D(lambda x, y, h: h * (x**3 - 3 * x * y**2 + 2.5), (-1, 1), (-1, 1)) #@UndefinedVariable # silla1.setScaleFactor((1,1,.6)) silla1.setLinesVisible(True) silla1.setMeshVisible(False) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(silla) self.addChild(silla1) self.addChild(baseplane)
def __init__(self): Page.__init__(self, u"Campo sin singularidades en el plano<br><br>(x,y) → (1,0)") par_plano = lambda u, v: Vec3(u,v,0) def plano_u(u,v): return Vec3(1,0,0) def plano_v(u,v): return Vec3(0,1,0) parab = ParametricPlot3D(par_plano, (-1,1,20),(-1,1,20)) parab.setTransparency(0.4) parab.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return lambda t: par_plano(t,c) def make_tang(c): return lambda t: plano_u(t,c) tangentes = [] ncurves = 30 steps = 70 for c in range(0,ncurves+1): ## -1 < ct < 1 ct = c/float(ncurves) * 2 - 1 curva = Curve3D(make_curva(ct),(-1,1,steps), width=1) curva.attachField("tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, steps-1)) self.setupAnimations([a1])
def __init__(self): Page.__init__( self, u"Curva cúbica alabeada<br><br>α(t)=(t,t<sup>2</sup>,t<sup>3</sup>)" ) self.camera_position = (5, 5, 5) self.camera_viewAll = True self.setupPlanes() c = lambda t: Vec3(t, t**2, t**3) altura = -1 curva = Curve3D(c, (-1, 1, 100), width=5, nvertices=1) lyz = curva.project(x=altura, color=(0, 1, 1), width=3, nvertices=1) lxz = curva.project(y=altura, color=(1, 0, 1), width=3, nvertices=1) lxy = curva.project(z=altura, color=(1, 1, 0), width=3, nvertices=1) curvas = [curva, lxy, lxz, lyz] self.showAxis(False) self.addChildren(curvas) self.setupAnimations( [AnimationGroup(curvas, (5000, 0, len(curva) - 1))])
def __init__(self): "x^2 - y^2 - z = 0" Page.__init__(self, u"Paraboloide Hiperbólico<br><br>F(x,y)=(x, y, x<sup>2</sup>-y<sup>2</sup>)") z = 1.5 parab = Plot3D(lambda x, y: x ** 2 - y ** 2 + z, (-1, 1), (-1, 1)) parab1 = Plot3D(lambda x, y, h: h * (x ** 2 - y ** 2 + z), (-1, 1), (-1, 1)) #@UndefinedVariable parab1.setLinesVisible(True) parab1.setMeshVisible(False) parab.setAmbientColor(_1(145, 61 , 74)) parab.setDiffuseColor(_1(127, 119, 20)) parab.setSpecularColor(_1(145, 61 , 74)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(parab) self.addChild(parab1) self.addChild(baseplane)
def __init__(self): Page.__init__( self, u"Otro campo en el paraboloide hiperbólico sin singularidades<br><br>(x,y) → (0, 1, x)" ) par_parab = lambda x, y: Vec3(x, y, x * y) par_tang = lambda x, y: Vec3(0, 1, x) parab = ParametricPlot3D(par_parab, (-1, 1), (-1, 1)) parab.setTransparency(0.4) parab.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return partial(par_parab, c) def make_tang(c): return partial(par_tang, c) tangentes = [] for c in range(0, 21): ## -1 < ct < 1 ct = 2 * c / 20.0 - 1 curva = Curve3D(make_curva(ct), (-1, 1, 50), width=1) curva.attachField( "tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, 49)) self.setupAnimations([a1])
def __init__(self): "x^2 + y^2 = z^2" Page.__init__( self, u"Semicono de revolución<br><br>F(θ,ρ)=(θ,ρ,π/4)" ) cono = RevolutionPlot3D(lambda r, t: r + 1, (0, 1), (0, 2 * pi)) cono1 = RevolutionPlot3D(lambda r, t, h: h * (r + 1), (0.05, 1), (0, 2 * pi)) #@UndefinedVariable cono1.setLinesVisible(True) cono1.setMeshVisible(False) cono.setDiffuseColor(_1(149, 24, 82)) cono.setSpecularColor(_1(149, 24, 82)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(cono) self.addChild(cono1) self.addChild(baseplane)
def __init__(self): Page.__init__(self, u"Hélice circular reflejada<br><br>(cos s/√2, sen s/√2, -s/√2)") self.camera_position = (10, -10, 10) self.showAxis(False) tmin, tmax, npuntos = (-2 * pi, 2 * pi, 200) self.addChild(Cylinder(_1(7, 83, 150), tmax - tmin, 2)) def param1hr(t): return 2*Vec3(cos(t), sin(t), -t/3.0) def param2hr(t): return 2*Vec3(-sin(t), cos(t), -1/3.0) def param3hr(t): return 2*Vec3(-cos(t), -sin(t), 0) espiral = Curve3D(param1hr, (tmin*1.5, tmax*1.5, npuntos), color=_1(240, 10, 120)) def param1hc_der(t): return 2*Vec3(cos(t), sin(t), t/3.0) espiral_der = Curve3D(param1hc_der, (tmin*1.5, tmax*1.5, npuntos), color=_1(20, 240, 240)) tangente = espiral.attachField("tangente", param2hr).setLengthFactor(1).setWidthFactor(.6) tangente.setRadius( 0.06 ) tangente.setDiffuseColor( _1(20,240,20) ) normal = espiral.attachField("normal", param3hr).setLengthFactor(1).setWidthFactor(.6) normal.setRadius( 0.06 ) normal.setDiffuseColor( _1(240,120,20) ) self.addChild(espiral) self.addChild(espiral_der) plano_xy_par = lambda u, v: Vec3(u,v,0) plano_xy = ParametricPlot3D(plano_xy_par, (-4,4,20),(-4,4,20)) plano_xy.setDiffuseColor( _1(200,200,200) ) plano_xy.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) plano_xy.setTransparency( 0.85 ) self.addChild( plano_xy ) self.addChild(Line([(-4, 0, 0), (4, 0, 0)], color=(0.8, 0.8, 0.5))) self.addChild(Line([(0, -4, 0), (0, 4, 0)], color=(0.8, 0.8, 0.5))) self.setupAnimations([ AnimationGroup([tangente, normal], (10000,0,len(espiral)-1)) ])
def __init__(self): Page.__init__(self, u"Campo en la esfera con dos singularidades") par_esfera = lambda u, v: Vec3( sin(u) * cos(v), sin(u) * sin(v), cos(u)) def esfera_u(u, v): return Vec3(cos(u) * cos(v), cos(u) * sin(v), -sin(u)) def esfera_v(u, v): return Vec3(-sin(u) * sin(v), cos(v) * sin(u), 0) parab = ParametricPlot3D(par_esfera, (0, 2, 150), (0, 2 * pi, 100)) parab.setTransparency(0.4) parab.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return partial(par_esfera, c) def make_tang(c): return partial(esfera_v, c) tangentes = [] curves = [] ncurves = 70 for c in range(0, ncurves + 1): ## -1 < ct < 1 ct = c / float(ncurves) * pi curve = Curve3D(make_curva(ct), (0, 2 * pi, 100), width=1) tangent = curve.attachField( "tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1).show() tangentes.append(tangent) curves.append(curve) self.addChildren(curves) self.setupAnimations([AnimationGroup(tangentes, (6000, 0, 99))])
def __init__(self): "F(x,y) = (x, y, x + y - 6)" #u"""l plano x + y + z - 2.5 = 0""" Page.__init__(self, u"Plano<br><br>F(x,y) = (x, y, x + y - 6)") plane = lambda x, y: -x - y p1 = lambda x, y, t1: (x, y, (1 - t1) * (-x - y) - 2 * t1) p2 = lambda x, y, t2: (x, (1 - t2) * y - 2 * t2, -x - y) p3 = lambda x, y, t3: ((1 - t3) * x - 2 * t3, y, -x - y) r = (-1, 1, 15) plano = Plot3D(plane, (-1, 1), (-1, 1)) plano.setTransparencyType(8) plano1 = ParametricPlot3D(p1, r, r) plano2 = ParametricPlot3D(p2, r, r) plano3 = ParametricPlot3D(p3, r, r) planos = [plano1, plano2, plano3] for p in planos: p.linesVisible = True p.meshVisible = False plano1.setMeshDiffuseColor((1, 0, 0)) plano2.setMeshDiffuseColor((0, 1, 0)) plano3.setMeshDiffuseColor((0, 1, 1)) plano.diffuseColor = _1(29, 214, 216) plano.transparency = 0.5 plano.setAmbientColor(_1(29, 214, 216)) self.setupPlanes((-2, 2, 7)) self.addChildren([plano, plano1, plano2, plano3]) ## no controls for i, plano in enumerate(planos): plano.parameters['t%d' % (i + 1)].hide() self.setupAnimations([ plano.parameters['t%d' % (i + 1)].asAnimation() for i, plano in enumerate(planos) ])
def __init__(self): "x^3 - 3xy^2 - z = 0" Page.__init__(self, u"Silla del mono<br><br>F(x,y)=(x, y, x<sup>3</sup> - 3xy<sup>2</sup>)") silla = Plot3D(lambda x, y: x ** 3 - 3 * x * y ** 2 + 2.5, (-1, 1), (-1, 1)) silla.setAmbientColor(_1(151, 139, 125)) silla.setDiffuseColor(_1(151, 139, 125)) silla.setSpecularColor(_1(151, 139, 125)) # silla.setShininess(1) # plano.setScaleFactor((1,1,.6)) def cVec(pto): "pto: Vec3" return pto * 1.1 silla.addVectorField(cVec) # def setXscale(t): # scale.scaleFactor = (1,1,t) # Slider( # rangep=('z', .2, 1, 1, 20), # func=setXscale, # parent=self # ) # silla1 = Plot3D(lambda x, y, h: h * (x ** 3 - 3 * x * y ** 2 + 2.5), (-1, 1), (-1, 1)) #@UndefinedVariable # silla1.setScaleFactor((1,1,.6)) silla1.setLinesVisible(True) silla1.setMeshVisible(False) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(silla) self.addChild(silla1) self.addChild(baseplane)
def __init__(self): Page.__init__(self, u"Otro campo en el paraboloide hiperbólico sin singularidades<br><br>(x,y) → (0, 1, x)") par_parab = lambda x, y: Vec3(x,y,x*y) par_tang = lambda x,y: Vec3(0,1,x) parab = ParametricPlot3D(par_parab, (-1, 1), (-1, 1)) parab.setTransparency(0.4) parab.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): return partial(par_parab,c) def make_tang(c): return partial(par_tang,c) tangentes = [] for c in range(0,21): ## -1 < ct < 1 ct = 2*c/20.0-1 curva = Curve3D(make_curva(ct),(-1,1,50), width=1) curva.attachField("tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (6000, 0, 49)) self.setupAnimations([a1])
def __init__(self): "x^4 + 2x^2y^2 + y^4 -z = 0" Page.__init__(self, u"Superficie cuártica<br><br>F(x,y)=(x,y,x<sup>4</sup>+2x<sup>2</sup>y<sup>2</sup>+y<sup>4</sup>)") # cuart = Plot3D(lambda x,y: x**4 + 2*x**2*y**2 + y**4 + 1, (-1,1),(-1,1)) cuart = RevolutionPlot3D(lambda r, t: r ** 4 + 1, (0, 1.4), (0, 2 * pi)) # cuart.setScaleFactor((1,1,.6)) mesh1 = Plot3D(lambda x, y, h: h * (x ** 4 + 2 * x ** 2 * y ** 2 + y ** 4 + 0.9), (-1, 1), (-1, 1)) mesh1.setLinesVisible(True) mesh1.setMeshVisible(False) mesh1.setBoundingBox(zrange=(-1, 6)) # cuart.setAmbientColor(_1(168,211,8)) cuart.setDiffuseColor(_1(168, 211, 8)) cuart.setSpecularColor(_1(168, 211, 8)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(cuart) self.addChild(mesh1) self.addChild(baseplane)
def __init__(self): "x^2 - y^2 - z = 0" Page.__init__( self, u"Paraboloide Hiperbólico<br><br>F(x,y)=(x, y, x<sup>2</sup>-y<sup>2</sup>)" ) z = 1.5 parab = Plot3D(lambda x, y: x**2 - y**2 + z, (-1, 1), (-1, 1)) parab1 = Plot3D(lambda x, y, h: h * (x**2 - y**2 + z), (-1, 1), (-1, 1)) #@UndefinedVariable parab1.setLinesVisible(True) parab1.setMeshVisible(False) parab.setAmbientColor(_1(145, 61, 74)) parab.setDiffuseColor(_1(127, 119, 20)) parab.setSpecularColor(_1(145, 61, 74)) baseplane = BasePlane() baseplane.setHeight(0) baseplane.setRange((-2, 2, 7)) self.addChild(parab) self.addChild(parab1) self.addChild(baseplane)
def __init__(self): Page.__init__(self, u"Campo de Morse sobre el toro") a = 2.0 b = 1.0 g = -1.25 # T(u,v) def toroParam1(u, v): return (b * sin(u), (a + b * cos(u)) * cos(v), (a + b * cos(u)) * sin(v)) def toroNormal(u, v): coef = b * (a + b * cos(u)) return Vec3(coef * sin(u), coef * cos(u) * cos(v), coef * cos(u) * sin(v)) def toroMorse(u, v): #coef = -b * ( a + b * cos(u) ) coef2 = -g * cos(u) * sin(v) return Vec3(coef2 * sin(u), coef2 * cos(u) * cos(v), g + coef2 * cos(u) * sin(v)) paratoro = ParametricPlot3D(toroParam1, (0, 2 * pi, 150), (0, 2 * pi, 100)) paratoro.setTransparency(0.25) paratoro.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) paratoro.setDiffuseColor(_1(68, 28, 119)) self.addChild(paratoro) def make_curva(c): return lambda t: toroParam1(c, t) def make_curva2(c): return lambda t: toroParam1(c, -t) def make_tang(c): return lambda t: toroMorse(c, t) def make_tang2(c): return lambda t: toroMorse(c, -t) tangentes = [] tangentes2 = [] ncurves = 12 for c in range(0, ncurves + 1): ## -1 < ct < 1 ct = c / float(ncurves) * 2 * pi #curva = Curve3D(make_curva(ct),(-pi/2,pi/2,100), width=0.5) curva = Curve3D(make_curva(ct), (pi / 2, 3 * pi / 2, 100), width=0.5) curva.attachField( "tangente", make_tang(ct)).setLengthFactor(1).setWidthFactor(.5) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) ### ct2 = c / float(ncurves) * 2 * pi #curva2 = Curve3D(make_curva2(ct2),(pi/2,3*pi/2,100), width=0.5) curva2 = Curve3D(make_curva2(ct2), (-pi / 2, pi / 2, 100), width=0.5) curva2.attachField( "tangente", make_tang2(ct2)).setLengthFactor(1).setWidthFactor(.5) curva2.fields['tangente'].show() tangentes2.append(curva2.fields['tangente']) self.addChild(curva) self.addChild(curva2) def animaTangentes(n): for tang in tangentes + tangentes2: tang.animateArrow(int(n)) a1 = Animation(animaTangentes, (6000, 0, 99), times=1) self.setupAnimations([a1]) Slider(rangep=('u', 0, 99, 0, 100), func=animaTangentes, parent=self)
def __init__(self): Page.__init__(self, u"Planos osculador, normal y rectificante") tmin = -2 * pi tmax = 2 * pi ## ============================================ sq2 = 2**0.5 inv_sq2 = (1. / sq2) def helix(s): s_times_sq2 = inv_sq2 * s return Vec3(cos(s_times_sq2), sin(s_times_sq2), s_times_sq2) def tangent(s): s_div_sq2 = s / sq2 return Vec3(-inv_sq2 * sin(s_div_sq2), inv_sq2 * cos(s_div_sq2), inv_sq2) def normal(s): s_div_sq2 = s / sq2 return Vec3(-cos(s_div_sq2), -sin(s_div_sq2), 0) def bi_normal(s): s_div_sq2 = s / sq2 return Vec3(inv_sq2 * sin(s_div_sq2), -inv_sq2 * cos(s_div_sq2), inv_sq2) curve = Curve3D(helix, (tmin, tmax, 100), _1(206, 75, 150), 2) self.addChild(curve) #======================================================================= # Vectors #======================================================================= field_tangent = curve.attachField("tangent", tangent).show() field_normal = curve.attachField("normal", normal).show() field_binormal = curve.attachField("binormal", bi_normal).show() #======================================================================= # Planes #======================================================================= def get_points(v1, v2): return v2.p1, v1.p2, v2.p2 color = (.5, .5, .5) plane_osculating = Plane(color, *get_points(field_tangent, field_normal)) plane_normal = Plane(color, *get_points(field_normal, field_binormal)) plane_rectifying = Plane(color, *get_points(field_binormal, field_tangent)) self.addChildren([plane_osculating, plane_normal, plane_rectifying]) def update_planes(n): plane_osculating.setPoints( *get_points(field_tangent, field_normal)) plane_normal.setPoints(*get_points(field_normal, field_binormal)) plane_rectifying.setPoints( *get_points(field_binormal, field_tangent)) r = (5000, 0, len(curve) - 1) animation = Animatable(update_planes, r) self.setupAnimations([ AnimationGroup( [field_tangent, field_normal, field_binormal, animation], r) ])
def __init__(self): Page.__init__(self, u"Campo de Morse sobre el toro") def coreTorusAt(p): dyz = sqrt( p[1]**2 + p[2]**2 ) return Vec3( 0.0, a*p[1]/dyz, a*p[2]/dyz ) def unitNormalToTorusAt(p): core = coreTorusAt(p) p_core = p - core dp_core = p_core.length() return p_core / dp_core def projAtTorus(p): core = coreTorusAt(p) p_core = p - core factor = 1.01*b / p_core.length() #un poco más de 1 para que se vea mejor... return core + factor * p_core def valMorseFieldAt(p): n = unitNormalToTorusAt(p) gdotn = -g*n[2] return Vec3( gdotn*n[0], gdotn*n[1], g + gdotn*n[2] ) def nextPoint(p,dt): return projAtTorus( p + dt*valMorseFieldAt(p) ) class CurveVectorField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + valMorseFieldAt( self.curve[int(t)] ) curves = [] vectorial_fields_curves = [] vectorial_fields_curves_bk = [] dtheta = 2.0*pi/20.0 for nrot in range(0,20): points_down_curve = [] points_up_curve = [] q = Vec3( b*cos(nrot*dtheta), a+b*sin(nrot*dtheta), 0.0 ) # calculo empezando enmedio del toro for n in range(0,100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_down_curve.append(p) points_up_curve.append( Vec3( p[0], p[1], -p[2] ) ) q = nextPoint(p, 0.05) points_down_curve.reverse() # recorrer de arriba a enmedio points_down_curve.pop() # quitar los puntos de enmedio, repetidos en las listas points_down_curve.extend( points_up_curve ) # unir listas points_down_curve.reverse() curve = Line(points_down_curve, width=2.5) curves.append( curve ) cvf = CurveVectorField(curve) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow( cvf.basePoint, cvf.endPoint ) arrow.setDiffuseColor(_1(220,40,20)) arrow.setWidthFactor( 0.25 ) arrow.add_tail( 0.025 ) vectorial_fields_curves.append( arrow ) # la otra mitad del toro... reflejando por el eje Z points_reflected_curve = [] for p in points_down_curve: points_reflected_curve.append( Vec3( -p[0], -p[1], p[2] ) ) curveR = Line(points_reflected_curve, width=2.5) curves.append( curveR ) cvf = CurveVectorField(curveR) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow( cvf.basePoint, cvf.endPoint ) arrow.setDiffuseColor(_1(220,40,20)) arrow.setWidthFactor( 0.25 ) arrow.add_tail( 0.025 ) vectorial_fields_curves.append( arrow ) # paralelos hasta arriba points_curve1 = [] q = Vec3( 0.25, 0.0, a+b ) for n in range(0,100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_curve1.append(p) q = nextPoint(p, 0.05) curve1 = Line(points_curve1, width=2.5) curves.append( curve1 ) cvf = CurveVectorField(curve1) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow( cvf.basePoint, cvf.endPoint ) arrow.setDiffuseColor(_1(220,40,20)) arrow.setWidthFactor( 0.25 ) arrow.add_tail( 0.025 ) vectorial_fields_curves.append( arrow ) points_curve2 = [] q = Vec3( -0.25, 0.0, a+b ) for n in range(0,100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_curve2.append(p) q = nextPoint(p, 0.05) curve2 = Line(points_curve2, width=2.5) curves.append( curve2 ) cvf = CurveVectorField(curve2) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow( cvf.basePoint, cvf.endPoint ) arrow.setDiffuseColor(_1(220,40,20)) arrow.setWidthFactor( 0.25 ) arrow.add_tail( 0.025 ) vectorial_fields_curves.append( arrow ) self.addChildren( curves ) self.addChildren( vectorial_fields_curves ) def setSyncParam(t): for i in range(0, len(vectorial_fields_curves)): curve = curves[i] if t < len( curve.getPoints() ): vec_field = vectorial_fields_curves[i] #vec_field.animateArrow(int(t)) vec_field.animateArrow(t) Slider(rangep=('t', 0,198,1,199), func=setSyncParam, duration=16000, parent=self) # T(u,v) def toroParam1(u,v): return (b*sin(u),(a+b*cos(u))*cos(v),(a+b*cos(u))*sin(v)) def toroParam(u,v): return Vec3(b*sin(u),(a+b*cos(u))*cos(v),(a+b*cos(u))*sin(v)) paratoro = ParametricPlot3D(toroParam1, (0,2*pi,150),(0,2*pi,100)) paratoro.setTransparency(0.25) paratoro.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) paratoro.setDiffuseColor(_1(68, 28, 119)) self.addChild(paratoro) critic1 = Sphere( center=Vec3(0,0,a+b), radius=0.075, color=_1(240,10,20) ) critic2 = Sphere( center=Vec3(0,0,a-b), radius=0.075, color=_1(240,10,20) ) critic3 = Sphere( center=Vec3(0,0,-a+b), radius=0.075, color=_1(240,10,20) ) critic4 = Sphere( center=Vec3(0,0,-a-b), radius=0.075, color=_1(240,10,20) ) self.addChild(critic1) self.addChild(critic2) self.addChild(critic3) self.addChild(critic4)
def __init__(self): Page.__init__(self, u"Construcción de un vector del campo de Morse sobre el toro") def coreTorusAt(p): dyz = sqrt( p[1]**2 + p[2]**2 ) return Vec3( 0.0, a*p[1]/dyz, a*p[2]/dyz ) def unitNormalToTorusAt(p): core = coreTorusAt(p) p_core = p - core dp_core = p_core.length() return p_core / dp_core def projAtTorus(p): core = coreTorusAt(p) p_core = p - core factor = 1.005*b / p_core.length() #un poco más de 1 para que se vea mejor... return core + factor * p_core def valMorseFieldAt(p): n = unitNormalToTorusAt(p) gdotn = -g*n[2] return Vec3( gdotn*n[0], gdotn*n[1], g + gdotn*n[2] ) def nextPoint(p,dt): return projAtTorus( p + dt*valMorseFieldAt(p) ) class CurveVectorField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + valMorseFieldAt( self.curve[int(t)] ) class CurveNormalField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + unitNormalToTorusAt( self.curve[int(t)] ) class CurveGravityField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + Vec3( 0, 0, g ) curves = [] vectorial_fields_curves = [] vectorial_fields_curves_bk = [] dtheta = pi/10.0 nrot = -4 points_down_curve = [] points_up_curve = [] q = Vec3( b*cos(nrot*dtheta), a+b*sin(nrot*dtheta), 0.0 ) # calculo empezando enmedio del toro for n in range(0,100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_down_curve.append(p) points_up_curve.append( Vec3( p[0], p[1], -p[2] ) ) q = nextPoint(p, 0.05) #Tangent Plane p = projAtTorus(q) p[2] = -p[2] v = valMorseFieldAt(p) u = v.cross( unitNormalToTorusAt(p) ) tangent_plane = Plane( _1(200,200,200), p, v+p, u+p ) points_down_curve.reverse() # recorrer de arriba a enmedio points_down_curve.pop() # quitar los puntos de enmedio, repetidos en las listas points_down_curve.extend( points_up_curve ) # unir listas points_down_curve.reverse() curve = Line(points_down_curve, width=2.5) curves.append( curve ) cvf = CurveVectorField(curve) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow( cvf.basePoint, cvf.endPoint ) arrow.setDiffuseColor(_1(220,40,200)) arrow.setWidthFactor( 0.48 ) arrow.add_tail( 0.025 ) vectorial_fields_curves.append( arrow ) cnf = CurveNormalField(curve) vectorial_fields_curves_bk.append(cnf) arrown = AnimatedArrow( cnf.basePoint, cnf.endPoint ) arrown.setDiffuseColor(_1(220,240,20)) arrown.setWidthFactor( 0.4 ) #arrown.add_tail( 0.025 ) vectorial_fields_curves.append( arrown ) cgf = CurveGravityField(curve) vectorial_fields_curves_bk.append(cgf) arrowg = AnimatedArrow( cgf.basePoint, cgf.endPoint ) arrowg.setDiffuseColor(_1(10,240,20)) arrowg.setWidthFactor( 0.4 ) #arrowg.add_tail( 0.025 ) vectorial_fields_curves.append( arrowg ) self.addChildren( curves ) self.addChildren( vectorial_fields_curves ) self.addChild( tangent_plane ) def setSyncParam(t): for i in range(0, len(vectorial_fields_curves)): #curve = curves[i] if t < len( curves[0].getPoints() ): vec_field = vectorial_fields_curves[i] vec_field.animateArrow(t) q = (curves[0])[int(t)] p = projAtTorus(q) v = valMorseFieldAt(p) u = v.cross( unitNormalToTorusAt(p) ) tangent_plane.setPoints( p, v+p, u+p ) Slider(rangep=('t', 0,198,1,199), func=setSyncParam, duration=8000, parent=self) # T(u,v) def toroParam1(u,v): return (b*sin(u),(a+b*cos(u))*cos(v),(a+b*cos(u))*sin(v)) def toroParam(u,v): return Vec3(b*sin(u),(a+b*cos(u))*cos(v),(a+b*cos(u))*sin(v)) paratoro = ParametricPlot3D(toroParam1, (0,2*pi,150),(0,2*pi,100)) paratoro.setTransparency(0.25) paratoro.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) paratoro.setTransparencyType(SoTransparencyType.SCREEN_DOOR) paratoro.setDiffuseColor(_1(68, 28, 119)) self.addChild(paratoro)
def __init__(self): Page.__init__(self, u"Campo de Morse sobre el toro") a = 2.0 b = 1.0 g = -1.25 # T(u,v) def toroParam1(u,v): return (b*sin(u),(a+b*cos(u))*cos(v),(a+b*cos(u))*sin(v)) def toroNormal(u,v): coef = b * ( a + b * cos(u) ) return Vec3( coef * sin(u), coef * cos(u) * cos(v), coef * cos(u) * sin(v) ) def toroMorse(u,v): #coef = -b * ( a + b * cos(u) ) coef2 = -g * cos(u) * sin(v) return Vec3( coef2 * sin(u), coef2 * cos(u) * cos(v), g + coef2 * cos(u) * sin(v) ) paratoro = ParametricPlot3D(toroParam1, (0,2*pi,150),(0,2*pi,100)) paratoro.setTransparency(0.25) paratoro.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) paratoro.setDiffuseColor(_1(68, 28, 119)) self.addChild(paratoro) def make_curva(c): return lambda t: toroParam1(c,t) def make_curva2(c): return lambda t: toroParam1(c,-t) def make_tang(c): return lambda t: toroMorse(c,t) def make_tang2(c): return lambda t: toroMorse(c,-t) tangentes = [] tangentes2 = [] ncurves = 12 for c in range(0,ncurves+1): ## -1 < ct < 1 ct = c/float(ncurves) * 2*pi #curva = Curve3D(make_curva(ct),(-pi/2,pi/2,100), width=0.5) curva = Curve3D(make_curva(ct),(pi/2,3*pi/2,100), width=0.5) curva.attachField("tangente", make_tang(ct)).setLengthFactor(1).setWidthFactor(.5) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) ### ct2 = c/float(ncurves) * 2*pi #curva2 = Curve3D(make_curva2(ct2),(pi/2,3*pi/2,100), width=0.5) curva2 = Curve3D(make_curva2(ct2),(-pi/2,pi/2,100), width=0.5) curva2.attachField("tangente", make_tang2(ct2)).setLengthFactor(1).setWidthFactor(.5) curva2.fields['tangente'].show() tangentes2.append(curva2.fields['tangente']) self.addChild(curva) self.addChild(curva2) def animaTangentes(n): for tang in tangentes+tangentes2: tang.animateArrow(int(n)) a1 = Animation(animaTangentes, (6000, 0, 99), times=1) self.setupAnimations([a1]) Slider(rangep=('u', 0,99,0,100),func=animaTangentes, parent=self)
def __init__(self, parent=None): Page.__init__(self, u"Paralelos y círculos máximos de la esfera") self.showAxis(False) pmin = 0 pmax = 2 * pi r2 = 3. l = -1 def puntos2(t): return Vec3(-cos(t), -sin(t), 0) def make_circulo(t): return partial(par_esfera, t) par_esfera = lambda t, f: Vec3(sin(t) * cos(f), sin(t) * sin(f), cos(t)) par_circulo = lambda f: Vec3(sin(t) * cos(f), sin(t) * sin(f), cos(t)) par_circulo_der = lambda f: Vec3(-cos(f) * sin(t), -sin(t) * sin(f), 0) par_circulo_maximo = make_circulo(pi / 2) esf = ParametricPlot3D(par_esfera, (0, pi, 100), (0, 2 * pi, 120)) esf.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) esf.setTransparency(0.3).setDiffuseColor(_1(68, 28, 119)).setSpecularColor(_1(99, 136, 63)) VisibleCheckBox("esfera", esf, True, parent=self) self.addChild(esf) cm = Curve3D(par_circulo_maximo, (pmin, pmax, 200), color=_1(255, 255, 255)) self.addChild(cm) aceleracion_cm = cm.attachField("aceleracion", puntos2).show().setLengthFactor(.98).setWidthFactor(.3) tini=1.0472 par_circulo.func_globals['t'] = tini par = Curve3D(par_circulo, (pmin, pmax, 200), color=_1(255, 221, 0)) self.addChild(par) aceleracion_par = par.attachField("aceleracion", par_circulo_der).show().setLengthFactor(1).setWidthFactor(.3) circle_2 = SimpleSphere(Vec3(0, 0, cos(tini)), radius=.02) circle_2_tr = circle_2.getByName("Translation") self.addChild(circle_2) self.addChild(SimpleSphere(Vec3(0, 0, 0), radius=.02)) ## los meridianos sep = SoSeparator() mer = Curve3D(lambda t: (0, .99 * cos(t), .99 * sin(t)), (pmin, pmax, 100), color=_1(18, 78, 169)) for i in range(24): sep.addChild(rot(2 * pi / 24)) sep.addChild(mer.root) self.addChild(sep) # the sphere rotation axis self.addChild(Line([(0, 0, -1.2), (0, 0, 1.2)], width=2)) def test(t): par_circulo.func_globals['t'] = t par.updatePoints() circle_2_tr.translation = (0, 0, cos(t)) Slider(('t', 0.1, pi-.1, tini, 100), test, duration=4000, parent=self) self.setupAnimations([aceleracion_cm, aceleracion_par])
def __init__(self): Page.__init__( self, u"Campo en el paraboloide hiperbólico con una singularidad<br><br>(x,y) → (0, 1, -k/x<sup>2</sup>)" ) par_parab = lambda x, y: Vec3(x, y, x * y) par_tang = lambda x, y: Vec3(0, 1, x) parab = ParametricPlot3D(par_parab, (-1, 1), (-1, 1)) parab.setTransparency(0.4) parab.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): #return partial(par_parab,c) return lambda x: Vec3(x, c / x, c * 1.01) def make_curva_negy(c): #return partial(par_parab,c) return lambda x: Vec3(x, -c / x, -c * 0.99) def make_tang(c): #return partial(par_tang,c) return lambda x: Vec3(x, -c / (x**2), 0.0) / (sqrt(x**2 + c**2 / (x**4))) def make_tang_negy(c): #return partial(par_tang,c) return lambda x: Vec3(x, c / (x**2), 0.0) / (sqrt(x**2 + c**2 / (x**4))) tangentes = [] for c in range(1, 10): ## 0 < ct < 1 ct = c / 10.0 curva = Curve3D(make_curva(ct), (ct, 1.0, 50), width=1.5) curva.attachField( "tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) curva = Curve3D(make_curva_negy(ct), (ct, 1.0, 50), width=1.5) curva.attachField( "tangente_negy", make_tang_negy(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente_negy'].show() tangentes.append(curva.fields['tangente_negy']) self.addChild(curva) #ct = -1.0 + c/10.0 curva = Curve3D(make_curva(ct), (-ct, -1.0, 50), width=1.5) curva.attachField( "tangente2", make_tang(-ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente2'].show() tangentes.append(curva.fields['tangente2']) self.addChild(curva) curva = Curve3D(make_curva_negy(ct), (-ct, -1.0, 50), width=1.5) curva.attachField( "tangente_negy2", make_tang_negy(-ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente_negy2'].show() tangentes.append(curva.fields['tangente_negy2']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (5000, 0, 49)) self.setupAnimations([a1]) self.addChild( Line([(-1, 0, 0.01), (1, 0, 0.01)], color=(1, 1, 1)).setWidth(1.5)) self.addChild( Line([(0, -1, 0.01), (0, 1, 0.01)], color=(1, 1, 1)).setWidth(1.5))
def __init__(self): """x^2 - y^2 - z = 0""" Page.__init__(self, u"Paraboloide hiperbólico<br><br>x<sup>2</sup>/a<sup>2</sup> - y<sup>2</sup>/b<sup>2</sup> = z") z = 1.5 def fn(x, y): return x ** 2 - y ** 2 + z def polar(function): def polar_fn(r, t): x = r * cos(t) y = r * sin(t) return x, y, function(x, y) return polar_fn paraboloid = ParametricPlot3D(polar(fn), (.001, 1, 20), (0, 2 * pi, 60)) paraboloid. \ setAmbientColor(_1(145, 61, 74)). \ setDiffuseColor(_1(127, 119, 20)). \ setSpecularColor(_1(145, 61, 74)) base_plane = BasePlane() base_plane.setHeight(0) base_plane.setRange((-2, 2, 7)) ## the hiperbolic paraboloid in parametric form def fn_par(x,y): return Vec3(x, y, x ** 2 - y ** 2 + z) ## its derivatives def fn_x(x,y): return Vec3(1, 0, 2 * x) def fn_y(x,y): return Vec3(0, 1, -2 * y) tangent_plane = TangentPlane2(fn_par, fn_x, fn_y, (0, 0), _1(252, 250, 225)) tangent_plane.setRange((-1.2, 1.2, 7)) self.addChild(paraboloid) self.addChild(base_plane) self.addChild(tangent_plane) def spiral(t): c = t / (2 * pi) t2 = t * 2 return c * cos(t2), c * sin(t2) animate_points = 200 def animate_plane(n): tangent_plane.setLocalOrigin(spiral(2 * pi * n / float(animate_points))) def animate_plane_2(t): tangent_plane.setLocalOrigin(spiral(t)) a1 = Animation(animate_plane, (10000, 0, animate_points)) Slider(('t', 0, 2 * pi, 0, animate_points), animate_plane_2, duration=10000, parent=self) self.setupAnimations([a1])
def __init__(self): Page.__init__(self, u"Campo de Morse sobre el toro") def coreTorusAt(p): dyz = sqrt(p[1]**2 + p[2]**2) return Vec3(0.0, a * p[1] / dyz, a * p[2] / dyz) def unitNormalToTorusAt(p): core = coreTorusAt(p) p_core = p - core dp_core = p_core.length() return p_core / dp_core def projAtTorus(p): core = coreTorusAt(p) p_core = p - core factor = 1.01 * b / p_core.length( ) #un poco más de 1 para que se vea mejor... return core + factor * p_core def valMorseFieldAt(p): n = unitNormalToTorusAt(p) gdotn = -g * n[2] return Vec3(gdotn * n[0], gdotn * n[1], g + gdotn * n[2]) def nextPoint(p, dt): return projAtTorus(p + dt * valMorseFieldAt(p)) class CurveVectorField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + valMorseFieldAt(self.curve[int(t)]) curves = [] vectorial_fields_curves = [] vectorial_fields_curves_bk = [] dtheta = 2.0 * pi / 20.0 for nrot in range(0, 20): points_down_curve = [] points_up_curve = [] q = Vec3(b * cos(nrot * dtheta), a + b * sin(nrot * dtheta), 0.0) # calculo empezando enmedio del toro for n in range(0, 100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_down_curve.append(p) points_up_curve.append(Vec3(p[0], p[1], -p[2])) q = nextPoint(p, 0.05) points_down_curve.reverse() # recorrer de arriba a enmedio points_down_curve.pop( ) # quitar los puntos de enmedio, repetidos en las listas points_down_curve.extend(points_up_curve) # unir listas points_down_curve.reverse() curve = Line(points_down_curve, width=2.5) curves.append(curve) cvf = CurveVectorField(curve) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow(cvf.basePoint, cvf.endPoint) arrow.setDiffuseColor(_1(220, 40, 20)) arrow.setWidthFactor(0.25) arrow.add_tail(0.025) vectorial_fields_curves.append(arrow) # la otra mitad del toro... reflejando por el eje Z points_reflected_curve = [] for p in points_down_curve: points_reflected_curve.append(Vec3(-p[0], -p[1], p[2])) curveR = Line(points_reflected_curve, width=2.5) curves.append(curveR) cvf = CurveVectorField(curveR) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow(cvf.basePoint, cvf.endPoint) arrow.setDiffuseColor(_1(220, 40, 20)) arrow.setWidthFactor(0.25) arrow.add_tail(0.025) vectorial_fields_curves.append(arrow) # paralelos hasta arriba points_curve1 = [] q = Vec3(0.25, 0.0, a + b) for n in range(0, 100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_curve1.append(p) q = nextPoint(p, 0.05) curve1 = Line(points_curve1, width=2.5) curves.append(curve1) cvf = CurveVectorField(curve1) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow(cvf.basePoint, cvf.endPoint) arrow.setDiffuseColor(_1(220, 40, 20)) arrow.setWidthFactor(0.25) arrow.add_tail(0.025) vectorial_fields_curves.append(arrow) points_curve2 = [] q = Vec3(-0.25, 0.0, a + b) for n in range(0, 100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_curve2.append(p) q = nextPoint(p, 0.05) curve2 = Line(points_curve2, width=2.5) curves.append(curve2) cvf = CurveVectorField(curve2) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow(cvf.basePoint, cvf.endPoint) arrow.setDiffuseColor(_1(220, 40, 20)) arrow.setWidthFactor(0.25) arrow.add_tail(0.025) vectorial_fields_curves.append(arrow) self.addChildren(curves) self.addChildren(vectorial_fields_curves) def setSyncParam(t): for i in range(0, len(vectorial_fields_curves)): curve = curves[i] if t < len(curve.getPoints()): vec_field = vectorial_fields_curves[i] #vec_field.animateArrow(int(t)) vec_field.animateArrow(t) Slider(rangep=('t', 0, 198, 1, 199), func=setSyncParam, duration=16000, parent=self) # T(u,v) def toroParam1(u, v): return (b * sin(u), (a + b * cos(u)) * cos(v), (a + b * cos(u)) * sin(v)) def toroParam(u, v): return Vec3(b * sin(u), (a + b * cos(u)) * cos(v), (a + b * cos(u)) * sin(v)) paratoro = ParametricPlot3D(toroParam1, (0, 2 * pi, 150), (0, 2 * pi, 100)) paratoro.setTransparency(0.25) paratoro.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) paratoro.setDiffuseColor(_1(68, 28, 119)) self.addChild(paratoro) critic1 = Sphere(center=Vec3(0, 0, a + b), radius=0.075, color=_1(240, 10, 20)) critic2 = Sphere(center=Vec3(0, 0, a - b), radius=0.075, color=_1(240, 10, 20)) critic3 = Sphere(center=Vec3(0, 0, -a + b), radius=0.075, color=_1(240, 10, 20)) critic4 = Sphere(center=Vec3(0, 0, -a - b), radius=0.075, color=_1(240, 10, 20)) self.addChild(critic1) self.addChild(critic2) self.addChild(critic3) self.addChild(critic4)
def __init__(self, parent=None): Page.__init__(self, u"Paralelos y círculos máximos de la esfera") self.showAxis(False) pmin = 0 pmax = 2 * pi r2 = 3. l = -1 def puntos2(t): return Vec3(-cos(t), -sin(t), 0) def make_circulo(t): return partial(par_esfera, t) par_esfera = lambda t, f: Vec3( sin(t) * cos(f), sin(t) * sin(f), cos(t)) par_circulo = lambda f: Vec3(sin(t) * cos(f), sin(t) * sin(f), cos(t)) par_circulo_der = lambda f: Vec3(-cos(f) * sin(t), -sin(t) * sin(f), 0) par_circulo_maximo = make_circulo(pi / 2) esf = ParametricPlot3D(par_esfera, (0, pi, 100), (0, 2 * pi, 120)) esf.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) esf.setTransparency(0.3).setDiffuseColor(_1(68, 28, 119)).setSpecularColor( _1(99, 136, 63)) VisibleCheckBox("esfera", esf, True, parent=self) self.addChild(esf) cm = Curve3D(par_circulo_maximo, (pmin, pmax, 200), color=_1(255, 255, 255)) self.addChild(cm) aceleracion_cm = cm.attachField( "aceleracion", puntos2).show().setLengthFactor(.98).setWidthFactor(.3) tini = 1.0472 par_circulo.func_globals['t'] = tini par = Curve3D(par_circulo, (pmin, pmax, 200), color=_1(255, 221, 0)) self.addChild(par) aceleracion_par = par.attachField( "aceleracion", par_circulo_der).show().setLengthFactor(1).setWidthFactor(.3) circle_2 = SimpleSphere(Vec3(0, 0, cos(tini)), radius=.02) circle_2_tr = circle_2.getByName("Translation") self.addChild(circle_2) self.addChild(SimpleSphere(Vec3(0, 0, 0), radius=.02)) ## los meridianos sep = SoSeparator() mer = Curve3D(lambda t: (0, .99 * cos(t), .99 * sin(t)), (pmin, pmax, 100), color=_1(18, 78, 169)) for i in range(24): sep.addChild(rot(2 * pi / 24)) sep.addChild(mer.root) self.addChild(sep) # the sphere rotation axis self.addChild(Line([(0, 0, -1.2), (0, 0, 1.2)], width=2)) def test(t): par_circulo.func_globals['t'] = t par.updatePoints() circle_2_tr.translation = (0, 0, cos(t)) Slider(('t', 0.1, pi - .1, tini, 100), test, duration=4000, parent=self) self.setupAnimations([aceleracion_cm, aceleracion_par])
def __init__(self): Page.__init__(self, u"Toro<br><br>x<sup>4</sup> + y<sup>4</sup> + z<sup>4</sup><br> + 2x<sup>2</sup>y<sup>2</sup> + 2y<sup>2</sup>z<sup>2</sup> + 2z<sup>2</sup>x<sup>2</sup><br> - 10x<sup>2</sup> - 10y<sup>2</sup> + 6z<sup>2</sup> + 9 = 0") a = 1 b = 0.5 def toroParam1(u, v): return (a + b * cos(v)) * cos(u), (a + b * cos(v)) * sin(u), b * sin(v) toro = ParametricPlot3D(toroParam1, (0, 2 * pi, 150), (0, 2 * pi, 100)) toro.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) toro.setTransparency(.4) # delta = 0 # p_eli = Sphere((.9571067805, .9571067805, .35+delta),0.02,visible=True) # p_eli.setColor( _1(194,38,69)) # p_eli.setShininess(1) # # p_par = Sphere ((-0.7071067810, 0.7071067810, 0.5+delta),0.02,visible=True) # p_par.setColor( _1(240,108,21)) # p_par.setShininess(1) # # p_hyp = Sphere ((0, -0.6464466095, .3535+delta),0.02,visible=True) # p_hyp.setColor( _1(78,186,69)) # p_hyp.setShininess(1) def toro_u(u, v): return Vec3(-(a + b * cos(v)) * sin(u), (a + b * cos(v)) * cos(u), 0) def toro_v(u, v): return Vec3(-b * sin(v) * cos(u), -b * sin(v) * sin(u), b * cos(v)) ## plano parabólico ptopar = (0, pi / 2) b2 = b - .00025 ## trick: the tangent plane is located in a torus of diameter slightly smaller than the torus; so the ## intersection is visible to the naked eye def toroParam_delta(u, v): return (a + b2 * cos(v)) * cos(u), (a + b2 * cos(v)) * sin(u), b2 * sin(v) plane_par = TangentPlane2(toroParam_delta, toro_u, toro_v, ptopar, _1(252, 250, 225)) plane_par.baseplane.setTransparency(0) plane_par.setRange((-.5, .5, 7)) self.addChild(toro) self.addChild(plane_par) def animaCurva1(n): def curva(t): return (t * 2 * pi, pi / 2) plane_par.setLocalOrigin(curva(n / 100.)) def animaCurva2(n): def curva(t): return (0, pi / 2 - t * (2 * pi + pi / 2)) plane_par.setLocalOrigin(curva(n / 100.)) def animaCurva3(n): def curva(t): return (t * 2 * pi, 0) plane_par.setLocalOrigin(curva(n / 100.)) a1 = Animation(animaCurva1, (6000, 0, 100)) a2 = Animation(animaCurva2, (6000, 0, 100)) a3 = Animation(animaCurva3, (6000, 0, 100)) self.setupAnimations([a1, a2, a3])
def __init__(self, name): Page.__init__(self, name) self.camera_position = (0, 0, 13) self.camera_point_at = [Vec3(0, 0, 0), Vec3(0, 1, 0)] self.showAxis(True) self.axis_z.setVisible(False)
def __init__(self): Page.__init__(self, u"Campo en el paraboloide hiperbólico con una singularidad<br><br>(x,y) → (0, 1, -k/x<sup>2</sup>)") par_parab = lambda x, y: Vec3(x,y,x*y) par_tang = lambda x,y: Vec3(0,1,x) parab = ParametricPlot3D(par_parab, (-1, 1), (-1, 1)) parab.setTransparency(0.4) parab.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) parab.setDiffuseColor(_1(68, 28, 119)) self.addChild(parab) def make_curva(c): #return partial(par_parab,c) return lambda x : Vec3( x, c/x, c*1.01 ) def make_curva_negy(c): #return partial(par_parab,c) return lambda x : Vec3( x, -c/x, -c*0.99 ) def make_tang(c): #return partial(par_tang,c) return lambda x : Vec3( x, -c/(x**2), 0.0 ) / ( sqrt( x**2 + c**2/(x**4) ) ) def make_tang_negy(c): #return partial(par_tang,c) return lambda x : Vec3( x, c/(x**2), 0.0 ) / ( sqrt( x**2 + c**2/(x**4) ) ) tangentes = [] for c in range(1,10): ## 0 < ct < 1 ct = c/10.0 curva = Curve3D(make_curva(ct),(ct,1.0,50), width=1.5) curva.attachField("tangente", make_tang(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente'].show() tangentes.append(curva.fields['tangente']) self.addChild(curva) curva = Curve3D(make_curva_negy(ct),(ct,1.0,50), width=1.5) curva.attachField("tangente_negy", make_tang_negy(ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente_negy'].show() tangentes.append(curva.fields['tangente_negy']) self.addChild(curva) #ct = -1.0 + c/10.0 curva = Curve3D(make_curva(ct),(-ct, -1.0, 50), width=1.5) curva.attachField("tangente2", make_tang(-ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente2'].show() tangentes.append(curva.fields['tangente2']) self.addChild(curva) curva = Curve3D(make_curva_negy(ct),(-ct, -1.0, 50), width=1.5) curva.attachField("tangente_negy2", make_tang_negy(-ct)).setLengthFactor(.4).setWidthFactor(.1) curva.fields['tangente_negy2'].show() tangentes.append(curva.fields['tangente_negy2']) self.addChild(curva) def animaTangentes(n): for tang in tangentes: tang.animateArrow(n) a1 = Animation(animaTangentes, (5000, 0, 49)) self.setupAnimations([a1]) self.addChild(Line([(-1, 0, 0.01), (1, 0, 0.01)], color=(1, 1, 1)).setWidth(1.5)) self.addChild(Line([(0, -1, 0.01), (0, 1, 0.01)], color=(1, 1, 1)).setWidth(1.5))
def __init__(self): u"""^2 + y^2 = z^2""" Page.__init__( self, u"Esfera, parametrización por proyecciones estereográficas") r = .998 esf = ParametricPlot3D( lambda t, f: (r * sin(t) * cos(f), r * sin(t) * sin(f), r * cos(t)), (0, pi, 70), (0, 2 * pi, 70)) # esf.setAmbientColor(_1(99,136,63)) esf.setDiffuseColor(_1(99, 136, 63)) esf.setSpecularColor(_1(99, 136, 63)) def proyZm1(u, v, t1): """proy desde el polo norte al plano z=-1""" den = u**2 + v**2 + 4 x = u - t1 * (u - 4 * u / den) y = v - t1 * (v - 4 * v / den) z = -1 - t1 * (-2 + 8 / den) return (x, y, z) def proyZ1(u, v, t2): """proy desde el polo sur al plano z=1""" den = u**2 + v**2 + 4 x = u - t2 * (u - 4 * u / den) y = v - t2 * (v - 4 * v / den) z = 1 - t2 * (2 - 8 / den) return (x, y, z) stereo = ParametricPlot3D(proyZm1, (-3, 3, 70), (-3, 3, 70)) stereo.setLinesVisible(True) stereo.setMeshVisible(False) stereo.setMeshDiffuseColor(_1(117, 55, 79)) stereo2 = ParametricPlot3D(proyZ1, (-3, 3, 70), (-3, 3, 70)) stereo2.setLinesVisible(True) stereo2.setMeshVisible(False) stereo2.setMeshDiffuseColor(_1(80, 87, 193)) stereo2.setTransparency(0.5) stereo2.setTransparencyType(8) baseplane = BasePlane() baseplane.setHeight(-1.005) baseplane.setRange((-4, 4, 7)) self.addChild(esf) self.addChild(stereo2) self.addChild(stereo) self.addChild(baseplane) params = [stereo, stereo2] ## no queremos los controles for i, p in enumerate(params): p.parameters['t%d' % (i + 1)].hide() anims = [ p.parameters['t%d' % (i + 1)].asAnimation() for i, p in enumerate(params) ] self.setupAnimations(anims)
def __init__(self): Page.__init__(self, u"Toro") a = 1 b = 0.5 def toroParam1(u, v): return ((a + b * cos(v)) * cos(u), (a + b * cos(v)) * sin(u), b * sin(v)) toro = ParametricPlot3D(toroParam1, (0, 2 * pi, 150), (0, 2 * pi, 100)) toro.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) toro.setTransparency(.4) # delta = 0 # p_eli = Sphere((.9571067805, .9571067805, .35+delta),0.02,visible=True) # p_eli.setColor( _1(194,38,69)) # p_eli.setShininess(1) # # p_par = Sphere ((-0.7071067810, 0.7071067810, 0.5+delta),0.02,visible=True) # p_par.setColor( _1(240,108,21)) # p_par.setShininess(1) # # p_hyp = Sphere ((0, -0.6464466095, .3535+delta),0.02,visible=True) # p_hyp.setColor( _1(78,186,69)) # p_hyp.setShininess(1) def toro_u(u, v): return Vec3(-(a + b * cos(v)) * sin(u), (a + b * cos(v)) * cos(u), 0) def toro_v(u, v): return Vec3(-b * sin(v) * cos(u), -b * sin(v) * sin(u), b * cos(v)) ## plano parabólico ptopar = (0, pi / 2) plane_par = TangentPlane2(toroParam1, toro_u, toro_v, ptopar, _1(252, 250, 225)) plane_par.baseplane.setTransparency(0) def curvaPlana(t): return plane_par.planeParam(cos(t), sin(t) + 1) curva = Curve3D(curvaPlana, (-pi, 0, 30), color=(1, 0, 0), width=2) self.addChild(toro) self.addChild(plane_par) self.addChild(curva) def animaCurva1(n): def curva(t): return (t * 2 * pi, pi / 2) plane_par.setLocalOrigin(curva(n / 100.)) def animaCurva2(n): def curva(t): return (0, pi / 2 - t * (2 * pi + pi / 2)) plane_par.setLocalOrigin(curva(n / 100.)) def animaCurva3(n): def curva(t): return (t * 2 * pi, 0) plane_par.setLocalOrigin(curva(n / 100.)) a1 = Animation(animaCurva1, (6000, 0, 100)) a2 = Animation(animaCurva2, (6000, 0, 100)) a3 = Animation(animaCurva3, (6000, 0, 100)) self.setupAnimations([a1, a2, a3])
def __init__(self, name): Page.__init__(self, name) self.camera_position = (0, 0, 13) self.camera_point_at = [SbVec3f(0, 0, 0), SbVec3f(0, 1, 0)] self.showAxis(True) self.axis_z.setVisible(False)
def __init__(self, parent=None): Page.__init__(self, "Loxodroma") self.creaLoxodroma()
def __init__(self): Page.__init__( self, u"Construcción de un vector del campo de Morse sobre el toro") def coreTorusAt(p): dyz = sqrt(p[1]**2 + p[2]**2) return Vec3(0.0, a * p[1] / dyz, a * p[2] / dyz) def unitNormalToTorusAt(p): core = coreTorusAt(p) p_core = p - core dp_core = p_core.length() return p_core / dp_core def projAtTorus(p): core = coreTorusAt(p) p_core = p - core factor = 1.005 * b / p_core.length( ) #un poco más de 1 para que se vea mejor... return core + factor * p_core def valMorseFieldAt(p): n = unitNormalToTorusAt(p) gdotn = -g * n[2] return Vec3(gdotn * n[0], gdotn * n[1], g + gdotn * n[2]) def nextPoint(p, dt): return projAtTorus(p + dt * valMorseFieldAt(p)) class CurveVectorField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + valMorseFieldAt(self.curve[int(t)]) class CurveNormalField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + unitNormalToTorusAt( self.curve[int(t)]) class CurveGravityField: def __init__(self, c): self.curve = c def basePoint(self, t): return self.curve[int(t)] def endPoint(self, t): return self.curve[int(t)] + Vec3(0, 0, g) curves = [] vectorial_fields_curves = [] vectorial_fields_curves_bk = [] dtheta = pi / 10.0 nrot = -4 points_down_curve = [] points_up_curve = [] q = Vec3(b * cos(nrot * dtheta), a + b * sin(nrot * dtheta), 0.0) # calculo empezando enmedio del toro for n in range(0, 100): p = projAtTorus(q) v = valMorseFieldAt(p) if v.length() < 0.01: break points_down_curve.append(p) points_up_curve.append(Vec3(p[0], p[1], -p[2])) q = nextPoint(p, 0.05) #Tangent Plane p = projAtTorus(q) p[2] = -p[2] v = valMorseFieldAt(p) u = v.cross(unitNormalToTorusAt(p)) tangent_plane = Plane(_1(200, 200, 200), p, v + p, u + p) points_down_curve.reverse() # recorrer de arriba a enmedio points_down_curve.pop( ) # quitar los puntos de enmedio, repetidos en las listas points_down_curve.extend(points_up_curve) # unir listas points_down_curve.reverse() curve = Line(points_down_curve, width=2.5) curves.append(curve) cvf = CurveVectorField(curve) vectorial_fields_curves_bk.append(cvf) arrow = AnimatedArrow(cvf.basePoint, cvf.endPoint) arrow.setDiffuseColor(_1(220, 40, 200)) arrow.setWidthFactor(0.48) arrow.add_tail(0.025) vectorial_fields_curves.append(arrow) cnf = CurveNormalField(curve) vectorial_fields_curves_bk.append(cnf) arrown = AnimatedArrow(cnf.basePoint, cnf.endPoint) arrown.setDiffuseColor(_1(220, 240, 20)) arrown.setWidthFactor(0.4) #arrown.add_tail( 0.025 ) vectorial_fields_curves.append(arrown) cgf = CurveGravityField(curve) vectorial_fields_curves_bk.append(cgf) arrowg = AnimatedArrow(cgf.basePoint, cgf.endPoint) arrowg.setDiffuseColor(_1(10, 240, 20)) arrowg.setWidthFactor(0.4) #arrowg.add_tail( 0.025 ) vectorial_fields_curves.append(arrowg) self.addChildren(curves) self.addChildren(vectorial_fields_curves) self.addChild(tangent_plane) def setSyncParam(t): for i in range(0, len(vectorial_fields_curves)): #curve = curves[i] if t < len(curves[0].getPoints()): vec_field = vectorial_fields_curves[i] vec_field.animateArrow(t) q = (curves[0])[int(t)] p = projAtTorus(q) v = valMorseFieldAt(p) u = v.cross(unitNormalToTorusAt(p)) tangent_plane.setPoints(p, v + p, u + p) Slider(rangep=('t', 0, 198, 1, 199), func=setSyncParam, duration=8000, parent=self) # T(u,v) def toroParam1(u, v): return (b * sin(u), (a + b * cos(u)) * cos(v), (a + b * cos(u)) * sin(v)) def toroParam(u, v): return Vec3(b * sin(u), (a + b * cos(u)) * cos(v), (a + b * cos(u)) * sin(v)) paratoro = ParametricPlot3D(toroParam1, (0, 2 * pi, 150), (0, 2 * pi, 100)) paratoro.setTransparency(0.25) paratoro.setTransparencyType( SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) paratoro.setTransparencyType(SoTransparencyType.SCREEN_DOOR) paratoro.setDiffuseColor(_1(68, 28, 119)) self.addChild(paratoro)
def __init__(self): Page.__init__(self, u"Toro") a = 1 b = 0.5 def toroParam1(u,v): return ((a+b*cos(v))*cos(u),(a+b*cos(v))*sin(u),b*sin(v)) toro = ParametricPlot3D(toroParam1,(0,2*pi,150),(0,2*pi,100)) toro.setTransparencyType(SoTransparencyType.SORTED_OBJECT_SORTED_TRIANGLE_BLEND) toro.setTransparency(.4) # delta = 0 # p_eli = Sphere((.9571067805, .9571067805, .35+delta),0.02,visible=True) # p_eli.setColor( _1(194,38,69)) # p_eli.setShininess(1) # # p_par = Sphere ((-0.7071067810, 0.7071067810, 0.5+delta),0.02,visible=True) # p_par.setColor( _1(240,108,21)) # p_par.setShininess(1) # # p_hyp = Sphere ((0, -0.6464466095, .3535+delta),0.02,visible=True) # p_hyp.setColor( _1(78,186,69)) # p_hyp.setShininess(1) def toro_u(u,v): return Vec3(-(a+b*cos(v))*sin(u), (a+b*cos(v))*cos(u), 0) def toro_v(u,v): return Vec3(-b*sin(v)*cos(u), -b*sin(v)*sin(u), b*cos(v)) ## plano parabólico ptopar = (0,pi/2) plane_par = TangentPlane2(toroParam1,toro_u,toro_v,ptopar,_1(252,250,225)) plane_par.baseplane.setTransparency(0) def curvaPlana(t): return plane_par.planeParam(cos(t),sin(t)+1) curva = Curve3D(curvaPlana, (-pi,0,30), color=(1,0,0), width=2) self.addChild(toro) self.addChild(plane_par) self.addChild(curva) def animaCurva1(n): def curva(t): return (t*2*pi,pi/2) plane_par.setLocalOrigin(curva(n / 100.)) def animaCurva2(n): def curva(t): return (0,pi/2 - t * (2*pi + pi/2)) plane_par.setLocalOrigin(curva(n / 100.)) def animaCurva3(n): def curva(t): return (t*2*pi,0) plane_par.setLocalOrigin(curva(n / 100.)) a1 = Animation(animaCurva1, (6000, 0, 100)) a2 = Animation(animaCurva2, (6000, 0, 100)) a3 = Animation(animaCurva3, (6000, 0, 100)) self.setupAnimations([a1,a2,a3])