def test_re(): assert refine(re(x), Q.real(x)) == x assert refine(re(x), Q.imaginary(x)) is S.Zero assert refine(re(x+y), Q.real(x) & Q.real(y)) == x + y assert refine(re(x+y), Q.real(x) & Q.imaginary(y)) == x assert refine(re(x*y), Q.real(x) & Q.real(y)) == x * y assert refine(re(x*y), Q.real(x) & Q.imaginary(y)) == 0 assert refine(re(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) == x * y * z
def test_imaginary(): assert satask(Q.imaginary(2*I)) is True assert satask(Q.imaginary(x*y), Q.imaginary(x)) is None assert satask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True assert satask(Q.imaginary(x), Q.real(x)) is False assert satask(Q.imaginary(1)) is False assert satask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False assert satask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False
def test_real(): assert satask(Q.real(x*y), Q.real(x) & Q.real(y)) is True assert satask(Q.real(x + y), Q.real(x) & Q.real(y)) is True assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) is True assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y)) is None assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y)) is None
def test_im(): assert refine(im(x), Q.imaginary(x)) == -I*x assert refine(im(x), Q.real(x)) is S.Zero assert refine(im(x+y), Q.imaginary(x) & Q.imaginary(y)) == -I*x - I*y assert refine(im(x+y), Q.real(x) & Q.imaginary(y)) == -I*y assert refine(im(x*y), Q.imaginary(x) & Q.real(y)) == -I*x*y assert refine(im(x*y), Q.imaginary(x) & Q.imaginary(y)) == 0 assert refine(im(1/x), Q.imaginary(x)) == -I/x assert refine(im(x*y*z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) == -I*x*y*z
def _(expr): # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented) allargs_imag_or_real = allargs(x, Q.imaginary(x) | Q.real(x), expr) onearg_imaginary = exactlyonearg(x, Q.imaginary(x), expr) return Implies(allargs_imag_or_real, Implies(onearg_imaginary, Q.imaginary(expr)))
def get_known_facts(x=None): """ Facts between unary predicates. Parameters ========== x : Symbol, optional Placeholder symbol for unary facts. Default is ``Symbol('x')``. Returns ======= fact : Known facts in conjugated normal form. """ if x is None: x = Symbol('x') fact = And( # primitive predicates for extended real exclude each other. Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x), Q.positive(x), Q.positive_infinite(x)), # build complex plane Exclusive(Q.real(x), Q.imaginary(x)), Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)), # other subsets of complex Exclusive(Q.transcendental(x), Q.algebraic(x)), Equivalent(Q.real(x), Q.rational(x) | Q.irrational(x)), Exclusive(Q.irrational(x), Q.rational(x)), Implies(Q.rational(x), Q.algebraic(x)), # integers Exclusive(Q.even(x), Q.odd(x)), Implies(Q.integer(x), Q.rational(x)), Implies(Q.zero(x), Q.even(x)), Exclusive(Q.composite(x), Q.prime(x)), Implies(Q.composite(x) | Q.prime(x), Q.integer(x) & Q.positive(x)), Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)), # hermitian and antihermitian Implies(Q.real(x), Q.hermitian(x)), Implies(Q.imaginary(x), Q.antihermitian(x)), Implies(Q.zero(x), Q.hermitian(x) | Q.antihermitian(x)), # define finity and infinity, and build extended real line Exclusive(Q.infinite(x), Q.finite(x)), Implies(Q.complex(x), Q.finite(x)), Implies( Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)), # commutativity Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)), # matrices Implies(Q.orthogonal(x), Q.positive_definite(x)), Implies(Q.orthogonal(x), Q.unitary(x)), Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)), Implies(Q.unitary(x), Q.normal(x)), Implies(Q.unitary(x), Q.invertible(x)), Implies(Q.normal(x), Q.square(x)), Implies(Q.diagonal(x), Q.normal(x)), Implies(Q.positive_definite(x), Q.invertible(x)), Implies(Q.diagonal(x), Q.upper_triangular(x)), Implies(Q.diagonal(x), Q.lower_triangular(x)), Implies(Q.lower_triangular(x), Q.triangular(x)), Implies(Q.upper_triangular(x), Q.triangular(x)), Implies(Q.triangular(x), Q.upper_triangular(x) | Q.lower_triangular(x)), Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)), Implies(Q.diagonal(x), Q.symmetric(x)), Implies(Q.unit_triangular(x), Q.triangular(x)), Implies(Q.invertible(x), Q.fullrank(x)), Implies(Q.invertible(x), Q.square(x)), Implies(Q.symmetric(x), Q.square(x)), Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)), Equivalent(Q.invertible(x), ~Q.singular(x)), Implies(Q.integer_elements(x), Q.real_elements(x)), Implies(Q.real_elements(x), Q.complex_elements(x)), ) return fact