Пример #1
0
def test_matrixelement():
    x = MatrixSymbol('x', 3, 3)
    i = Symbol('i', positive = True)
    j = Symbol('j', positive = True)
    assert refine(x[0, 1], Q.symmetric(x)) == x[0, 1]
    assert refine(x[1, 0], Q.symmetric(x)) == x[0, 1]
    assert refine(x[i, j], Q.symmetric(x)) == x[j, i]
    assert refine(x[j, i], Q.symmetric(x)) == x[j, i]
Пример #2
0
def test_MatrixSlice():
    X = MatrixSymbol('X', 4, 4)
    B = MatrixSlice(X, (1, 3), (1, 3))
    C = MatrixSlice(X, (0, 3), (1, 3))
    assert ask(Q.symmetric(B), Q.symmetric(X))
    assert ask(Q.invertible(B), Q.invertible(X))
    assert ask(Q.diagonal(B), Q.diagonal(X))
    assert ask(Q.orthogonal(B), Q.orthogonal(X))
    assert ask(Q.upper_triangular(B), Q.upper_triangular(X))

    assert not ask(Q.symmetric(C), Q.symmetric(X))
    assert not ask(Q.invertible(C), Q.invertible(X))
    assert not ask(Q.diagonal(C), Q.diagonal(X))
    assert not ask(Q.orthogonal(C), Q.orthogonal(X))
    assert not ask(Q.upper_triangular(C), Q.upper_triangular(X))
Пример #3
0
def refine_Transpose(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.T
    X.T
    >>> with assuming(Q.symmetric(X)):
    ...     print(refine(X.T))
    X
    """
    if ask(Q.symmetric(expr), assumptions):
        return expr.arg

    return expr
Пример #4
0
def refine_Transpose(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.T
    X.T
    >>> with assuming(Q.symmetric(X)):
    ...     print(refine(X.T))
    X
    """
    if ask(Q.symmetric(expr), assumptions):
        return expr.arg

    return expr
Пример #5
0
def test_diagonal():
    assert ask(Q.diagonal(X + Z.T + Identity(2)),
               Q.diagonal(X) & Q.diagonal(Z)) is True
    assert ask(Q.diagonal(ZeroMatrix(3, 3)))
    assert ask(Q.diagonal(OneMatrix(1, 1))) is True
    assert ask(Q.diagonal(OneMatrix(3, 3))) is False
    assert ask(Q.lower_triangular(X) & Q.upper_triangular(X), Q.diagonal(X))
    assert ask(Q.diagonal(X), Q.lower_triangular(X) & Q.upper_triangular(X))
    assert ask(Q.symmetric(X), Q.diagonal(X))
    assert ask(Q.triangular(X), Q.diagonal(X))
    assert ask(Q.diagonal(C0x0))
    assert ask(Q.diagonal(A1x1))
    assert ask(Q.diagonal(A1x1 + B1x1))
    assert ask(Q.diagonal(A1x1 * B1x1))
    assert ask(Q.diagonal(V1.T * V2))
    assert ask(Q.diagonal(V1.T * (X + Z) * V1))
    assert ask(Q.diagonal(MatrixSlice(Y, (0, 1), (1, 2)))) is True
    assert ask(Q.diagonal(V1.T * (V1 + V2))) is True
    assert ask(Q.diagonal(X**3), Q.diagonal(X))
    assert ask(Q.diagonal(Identity(3)))
    assert ask(Q.diagonal(DiagMatrix(V1)))
    assert ask(Q.diagonal(DiagonalMatrix(X)))
Пример #6
0
def test_refine():
    assert refine(C.T, Q.symmetric(C)) == C
Пример #7
0
def test_symmetric():
    assert ask(Q.symmetric(X), Q.symmetric(X))
    assert ask(Q.symmetric(X * Z), Q.symmetric(X)) is None
    assert ask(Q.symmetric(X * Z), Q.symmetric(X) & Q.symmetric(Z)) is True
    assert ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) is True
    assert ask(Q.symmetric(Y)) is False
    assert ask(Q.symmetric(Y * Y.T)) is True
    assert ask(Q.symmetric(Y.T * X * Y)) is None
    assert ask(Q.symmetric(Y.T * X * Y), Q.symmetric(X)) is True
    assert ask(Q.symmetric(X**10), Q.symmetric(X)) is True
    assert ask(Q.symmetric(A1x1)) is True
    assert ask(Q.symmetric(A1x1 + B1x1)) is True
    assert ask(Q.symmetric(A1x1 * B1x1)) is True
    assert ask(Q.symmetric(V1.T * V1)) is True
    assert ask(Q.symmetric(V1.T * (V1 + V2))) is True
    assert ask(Q.symmetric(V1.T * (V1 + V2) + A1x1)) is True
    assert ask(Q.symmetric(MatrixSlice(Y, (0, 1), (1, 2)))) is True
    assert ask(Q.symmetric(Identity(3))) is True
    assert ask(Q.symmetric(ZeroMatrix(3, 3))) is True
    assert ask(Q.symmetric(OneMatrix(3, 3))) is True
Пример #8
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact