def test_reflect_entity_overrides(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) l = Line(pent.vertices[1], slope=Rational(random() - .5, random() - .5)) rpent = pent.reflect(l) assert rpent.center == pent.center.reflect(l) rvert = [i.reflect(l) for i in pent.vertices] for v in rpent.vertices: for i in range(len(rvert)): ri = rvert[i] if ri.equals(v): rvert.remove(ri) break assert not rvert assert pent.area.equals(-rpent.area)
def test_reflect(): b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert test_numerically(dp, dr) t = Triangle((0, 0), (1, 0), (2, 3)) assert t.area == -t.reflect(l).area e = Ellipse((1, 0), 1, 2) assert e.area == -e.reflect(Line((1, 0), slope=0)).area assert e.area == -e.reflect(Line((1, 0), slope=oo)).area raises(NotImplementedError, lambda: e.reflect(Line((1,0), slope=m))) # test entity overrides c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) l = Line((0, pi), slope=sqrt(2)) rpent = pent.reflect(l) poly_pent = Polygon(*pent.vertices) assert rpent.center == pent.center.reflect(l) assert str([w.n(3) for w in rpent.vertices]) == ( '[Point(-0.586, 4.27), Point(-1.69, 4.66), ' 'Point(-2.41, 3.73), Point(-1.74, 2.76), ' 'Point(-0.616, 3.10)]') assert pent.area.equals(-rpent.area)
def main(): O = Point(0, 0) p0 = Point(0, 10.1) p1 = Point(1.4, -9.6) m = p0.midpoint(p1) X = Line(O, Point(10, 0)) Y = Line(O, Point(0, 10)) ellipse = Ellipse(Point(0, 0), 5 , 10) sortie = Segment(Point(-0.01, 10), Point(0.01, 10)) ray = Ray(m, p1) reflections = 0 while not sortie.intersection(ray) and reflections < 5: targets = ellipse.intersection(ray) print " Targets: ", targets origin = next_origin(ray.p1, targets) tangents = ellipse.tangent_lines(origin) if len(tangents) > 1: print("Error computing intersection") break tangent = tangents.pop() alpha = next_angle(ray, tangent, (X, Y)) reflections += 1 ray = Ray(origin, angle=alpha) print "Reflections :", reflections
def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi/2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6)
def test_is_similar(): p1 = Point(2000, 2000) p2 = p1.scale(2, 2) r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)) r2 = Ray(Point(0, 0), Point(0, 1)) s1 = Segment(Point(0, 0), p1) assert s1.is_similar(Segment(p1, p2)) assert s1.is_similar(r2) is False assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
def test_subs(): p = Point(x, 2) q = Point(1, 1) r = Point(3, 4) for o in [p, Segment(p, q), Ray(p, q), Line(p, q), Triangle(p, q, r), RegularPolygon(p, 3, 6), Polygon(p, q, r, Point(5,4)), Circle(p, 3), Ellipse(p, 3, 4)]: assert 'y' in str(o.subs(x, y)) assert p.subs({x: 1}) == Point(1, 2)
def test_subs(): p = Point(x, 2) q = Point(1, 1) r = Point(3, 4) for o in [p, Segment(p, q), Ray(p, q), Line(p, q), Triangle(p, q, r), RegularPolygon(p, 3, 6), Polygon(p, q, r, Point(5,4)), Circle(p, 3), Ellipse(p, 3, 4)]: assert 'y' in str(o.subs(x, y)) assert p.subs({x: 1}) == Point(1, 2) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs((1,2), Point(3,4)) == Point(3, 4) assert Point(1, 2).subs(Point(1,2), Point(3,4)) == Point(3, 4) assert Point(1, 2).subs(set([(1, 2)])) == Point(2, 2) raises(ValueError, lambda: Point(1, 2).subs(1)) raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1, 2)), 1, 2))
def test_reflect(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert verify_numerically(dp, dr) t = Triangle((0, 0), (1, 0), (2, 3)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
def test_reflect_entity_overrides(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) l = Line((0, pi), slope=sqrt(2)) rpent = pent.reflect(l) assert rpent.center == pent.center.reflect(l) assert str([w.n(3) for w in rpent.vertices]) == ( '[Point2D(-0.586, 4.27), Point2D(-1.69, 4.66), ' 'Point2D(-2.41, 3.73), Point2D(-1.74, 2.76), ' 'Point2D(-0.616, 3.10)]') assert pent.area.equals(-rpent.area)
def test__normalize_dimension(): assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [ Point(1, 2), Point(3, 4)] assert Point._normalize_dimension( Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [ Point(1, 2, 0), Point(3, 4, 0)]
def test_geometry_transforms(): from sympy import Tuple c = Curve((x, x**2), (x, 0, 1)) pts = [Point(0, 0), Point(S(1) / 2, S(1) / 4), Point(1, 1)] cout = Curve((2 * x - 4, 3 * x**2 - 10), (x, 0, 1)) pts_out = [Point(-4, -10), Point(-3, -S(37) / 4), Point(-2, -7)] assert c.scale(2, 3, (4, 5)) == cout assert [c.subs(x, xi / 2) for xi in Tuple(0, 1, 2)] == pts assert [cout.subs(x, xi / 2) for xi in Tuple(0, 1, 2)] == pts_out assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out) assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \ Ellipse(Point(-4, -10), 4, 9) assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \ Ellipse(Point(-4, -10), 4, 6) assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \ Ellipse(Point(-8, -10), 6, 9) assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \ Circle(Point(-8, -10), 6) assert Circle(Point(-8, -10), 6).scale(S(1)/3, S(1)/3, (4, 5)) == \ Circle((0, 0), 2) assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \ Curve((x + S(1)/2, 3*x), (x, 0, 1)) assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \ Curve((x + 4, 3*x + 5), (x, 0, 1)) assert Circle((0, 0), 2).translate(4, 5) == \ Circle((4, 5), 2) assert Circle((0, 0), 2).scale(3, 3) == \ Circle((0, 0), 6) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6) assert scale(1, 2, (3, 4)).tolist() == \ [[1, 0, 0], [0, 2, 0], [0, -4, 1]] assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
def test_line_geom(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) y1 = Symbol('y1', real=True) half = Rational(1, 2) p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(TypeError, lambda: Line((1, 1), 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != l2 assert l1 != l3 assert l1.slope == 1 assert l1.length == oo assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, p2).scale(2, 1) == Line(p1, p9) assert l2.arbitrary_point() in l2 for ind in range(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1)) ) assert l1.perpendicular_line(p1).equals( Line(Point(0, 0), Point(1, -1)) ) assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # Parallelity l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1).equals( Line(Point(-x1, x1), Point(-y1, 2*x1 - y1)) ) assert l2_1.parallel_line(p1.args).equals( Line(Point(0, 0), Point(0, -1)) ) assert l2_1.parallel_line(p1).equals( Line(Point(0, 0), Point(0, -1)) ) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) is False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.are_concurrent(l1) is False assert Line.are_concurrent(l1, l3) assert Line.are_concurrent(l1, l1, l1, l3) assert Line.are_concurrent(l1, l3, l3_1) assert Line.are_concurrent(l1, l1_1, l3) is False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)) .projection(Circle(Point(0, 0), 1))) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4) a = Point(1, 2, 3, 4) b = a.orthogonal_direction o = a.origin assert Line(a, o).angle_between(Line(b, o)) == pi/2 # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi/4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi/2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3*pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5*pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0*pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0*pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0*pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=4.05*pi) == Ray(Point(1, 1), Point(2, -sqrt(5)*sqrt(2*sqrt(5) + 10)/4 - sqrt(2*sqrt(5) + 10)/4 + 2 + sqrt(5))) assert Ray((1, 1), angle=4.02*pi) == Ray(Point(1, 1), Point(2, 1 + tan(4.02*pi))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5))) raises(TypeError, lambda: Ray((1, 1), 1)) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3*pi/4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5*pi/4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi/4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi/2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi/2) == Ray((0, 0), (0, -1)) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) r4 = Ray(p1, p2) r5 = Ray(p2, p1) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) assert l1.projection(r1) == Ray(Point(0, 0), Point(2, 2)) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol('t', real=True) assert Ray((1, 1), angle=pi/4).arbitrary_point() == \ Point(t + 1, t + 1) r8 = Ray(Point(0, 0), Point(0, 4)) r9 = Ray(Point(0, 1), Point(0, -1)) assert r8.intersection(r9) == [Segment(Point(0, 0), Point(0, 1))] s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt( 2*(x1**2) ) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2*t) aline = Line(Point(1/2, 1/2), Point(3/2, -1/2)) assert s1.perpendicular_bisector().equals(aline) on_line = Segment(Point(1/2, 1/2), Point(3/2, -1/2)).midpoint assert s1.perpendicular_bisector(on_line) == Segment(s1.midpoint, on_line) assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline) # intersections assert s1.intersection(Line(p6, p9)) == [] s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) assert s1.intersection(s3) == [s3] assert s3.intersection(s1) == [s3] assert r4.intersection(s3) == [s3] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] s3 = Segment(Point(1, 1), Point(2, 2)) assert s1.intersection(s3) == [Point(1, 1)] s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5)) assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(r5) == [s1] assert r5.intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] # Segment contains a, b = symbols('a,b', real=True) s = Segment((0, a), (0, b)) assert Point(0, (a + b)/2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b)/2, 0) in s raises(Undecidable, lambda: Point(2*a, 0) in s) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3)/2, Rational(3)/2) assert s1.distance(pt1) == 0 assert s1.distance((0, 0)) == 0 assert s2.distance(pt1) == 2**(half)/2 assert s2.distance(pt2) == 2**(half) # Line to point p1, p2 = Point(0, 0), Point(1, 1) s = Line(p1, p2) assert s.distance(Point(-1, 1)) == sqrt(2) assert s.distance(Point(1, -1)) == sqrt(2) assert s.distance(Point(2, 2)) == 0 assert s.distance((-1, 1)) == sqrt(2) assert Line((0, 0), (0, 1)).distance(p1) == 0 assert Line((0, 0), (0, 1)).distance(p2) == 1 assert Line((0, 0), (1, 0)).distance(p1) == 0 assert Line((0, 0), (1, 0)).distance(p2) == 1 m = symbols('m', real=True) l = Line((0, 5), slope=m) p = Point(2, 3) assert (l.distance(p) - 2*abs(m + 1)/sqrt(m**2 + 1)).equals(0) # Ray to point r = Ray(p1, p2) assert r.distance(Point(-1, -1)) == sqrt(2) assert r.distance(Point(1, 1)) == 0 assert r.distance(Point(-1, 1)) == sqrt(2) assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3*sqrt(2)/4 assert r.distance((1, 1)) == 0 #Line contains p1, p2 = Point(0, 1), Point(3, 4) l = Line(p1, p2) assert l.contains(p1) is True assert l.contains((0, 1)) is True assert l.contains((0, 0)) is False #Ray contains p1, p2 = Point(0, 0), Point(4, 4) r = Ray(p1, p2) assert r.contains(p1) is True assert r.contains((1, 1)) is True assert r.contains((1, 3)) is False s = Segment((1, 1), (2, 2)) assert r.contains(s) is True s = Segment((1, 2), (2, 5)) assert r.contains(s) is False r1 = Ray((2, 2), (3, 3)) assert r.contains(r1) is True r1 = Ray((2, 2), (3, 5)) assert r.contains(r1) is False # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) r5 = Ray(Point(2, 2), Point(3, 3)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == [] r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) r3 = Ray(p1, p2) r4 = Ray(p2, p1) s1 = Segment(p1, Point(0, 1)) assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope p_r3 = r3.random_point() p_r4 = r4.random_point() assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y p10 = Point(2000, 2000) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert p1.x <= p_s1.x and p_s1.x <= p10.x and \ p1.y <= p_s1.y and p_s1.y <= p10.y s2 = Segment(p10, p1) assert hash(s1) == hash(s2) p11 = p10.scale(2, 2) assert s1.is_similar(Segment(p10, p11)) assert s1.is_similar(r1) is False assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert s1.plot_interval() == [t, 0, 1] assert s1 in Line(p1, p10) assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi/4).plot_interval() == \ [t, 0, 10]
def test_equals(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line((0, 5), slope=m) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1))) assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1))) assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1))) assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1))) assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1))) assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals( Line3D(Point3D(0, 1, 0), Point3D(1 / 2, 1 / 2, 0))) assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (1 / 2, 1 / 2))) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_contains_nonreal_symbols(): u, v, w, z = symbols('u, v, w, z') l = Segment(Point(u, w), Point(v, z)) p = Point(2*u/3 + v/3, 2*w/3 + z/3) assert l.contains(p)
def test_concyclic_doctest_bug(): p1, p2 = Point(-1, 0), Point(1, 0) p3, p4 = Point(0, 1), Point(-1, 2) assert Point.is_concyclic(p1, p2, p3) assert not Point.is_concyclic(p1, p2, p3, p4)
def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi / 2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6)
def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = Rational(1, 2) p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4 * 5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half * x1, half + half * x2, half + half * x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warnings.catch_warnings(record=True) as w: raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar( *[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point( y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warnings.catch_warnings(record=True) as w: assert p - p_4d == Point(1, 1, 1, -1) assert len(w) == 1 p_4d3d = Point(0, 0, 1, 0) with warnings.catch_warnings(record=True) as w: assert p - p_4d3d == Point(1, 1, 0, 0) assert len(w) == 1
def test_issue_15259(): assert Circle((1, 2), 0) == Point(1, 2)
def test_ellipse_geom(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) y1 = Symbol('y1', real=True) half = S.Half p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) l1 = Line(p1, p2) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2)) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert e1 != l1 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * y1 * abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 assert Ellipse((1, 1), 0, 0) == Point(1, 1) assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1)) assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2)) # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [ Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half)) ] assert e2.tangent_lines(p1_3) == [ Line(Point(1, 2), Point(Rational(5, 4), 2)) ] assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is True assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))), Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] # for numerical calculations, we shouldn't demand exact equality, # so only test up to the desired precision def lines_close(l1, l2, prec): """ tests whether l1 and 12 are within 10**(-prec) of each other """ return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec) def line_list_close(ll1, ll2, prec): return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2)) e = Ellipse(Point(0, 0), 2, 1) assert e.normal_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] assert e.normal_lines(Point(1, 0)) == \ [Line(Point(0, 0), Point(1, 0))] assert e.normal_lines((0, 1)) == \ [Line(Point(0, 0), Point(0, 1))] assert line_list_close(e.normal_lines(Point(1, 1), 2), [ Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))), Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2))) ], 2) # test the failure of Poly.intervals and checks a point on the boundary p = Point(sqrt(3), S.Half) assert p in e assert line_list_close(e.normal_lines(p, 2), [ Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))), Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26))) ], 2) # be sure to use the slope that isn't undefined on boundary e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3) assert line_list_close(e.normal_lines((1, 1), 2), [ Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))), Line(Point(1, -1), Point(2, -4)) ], 2) # general ellipse fails except under certain conditions e = Ellipse((0, 0), x, 1) assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))] raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1))) # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) assert e4.semilatus_rectum == major * (1 - ecc**2) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == [] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == [] assert Circle( (0, 0), S.Half).intersection(Triangle( (-1, 0), (1, 0), (0, 1))) == [Point(Rational(-1, 2), 0), Point(S.Half, 0)] raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1)))) raises(TypeError, lambda: intersection(e2, Rational(12))) # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = Rational(53, 17) c = 2 * sqrt(3991) / 17 ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [ Point(-c / 68 + a, c * Rational(2, 17) + a / 2), Point(c / 68 + a, c * Rational(-2, 17) + a / 2) ] assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi) == e assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1) raises(NotImplementedError, lambda: e.rotate(pi / 3)) # Circle rotation tests (Issue #11743) # Link - https://github.com/sympy/sympy/issues/11743 cir = Circle(Point(1, 0), 1) assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1) assert cir.rotate(pi / 3) == Circle(Point(S.Half, sqrt(3) / 2), 1) assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1) assert cir.rotate(pi / 3, Point(0, 1)) == Circle( Point(S.Half + sqrt(3) / 2, S.Half + sqrt(3) / 2), 1)
def test_parameter_value(): t = Symbol('t') e = Ellipse(Point(0, 0), 3, 5) assert e.parameter_value((3, 0), t) == {t: 0} raises(ValueError, lambda: e.parameter_value((4, 0), t))
def test_Geometry(): assert sstr(Point(0, 0)) == 'Point2D(0, 0)' assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)' assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)' assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \ 'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))' assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \ 'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))' assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \ 'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))' assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \ 'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
def test_subs(): p = Point(x, 2) q = Point(1, 1) r = Point(3, 4) for o in [ p, Segment(p, q), Ray(p, q), Line(p, q), Triangle(p, q, r), RegularPolygon(p, 3, 6), Polygon(p, q, r, Point(5, 4)), Circle(p, 3), Ellipse(p, 3, 4) ]: assert 'y' in str(o.subs(x, y)) assert p.subs({x: 1}) == Point(1, 2) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs(set([(1, 2)])) == Point(2, 2) raises(ValueError, lambda: Point(1, 2).subs(1)) raises(ValueError, lambda: Point(1, 1).subs( (Point(1, 1), Point(1, 2)), 1, 2))
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(ValueError, lambda: Line((1, 1), 1)) assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l1.length == oo assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, p2).scale(2, 1) == Line(p1, p9) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) == False p = l1.random_point() assert l1.perpendicular_segment(p) == p # Parallelity p2_1 = Point(-2 * x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) == False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.is_concurrent(l1) == False assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) == False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1))) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4) # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) # XXX don't know why this fails without str assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi)))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5))) raises(ValueError, lambda: Ray((1, 1), 1)) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) r4 = Ray(p1, p2) r5 = Ray(p2, p1) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol("t", real=True) assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t)) s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt(2 * (x1 ** 2)) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) # intersections assert s1.intersection(Line(p6, p9)) == [] s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) assert s1.intersection(s3) == [s1] assert s3.intersection(s1) == [s3] assert r4.intersection(s3) == [s3] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] s3 = Segment(Point(1, 1), Point(2, 2)) assert s1.intersection(s3) == [Point(1, 1)] s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5)) assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(r5) == [s1] assert r5.intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] # Segment contains a, b = symbols("a,b") s = Segment((0, a), (0, b)) assert Point(0, (a + b) / 2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b) / 2, 0) in s raises(Undecidable, lambda: Point(2 * a, 0) in s) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3) / 2, Rational(3) / 2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == 2 ** (half) / 2 assert s2.distance(pt2) == 2 ** (half) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) r5 = Ray(Point(2, 2), Point(3, 3)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == [] r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) r3 = Ray(p1, p2) r4 = Ray(p2, p1) s1 = Segment(p1, Point(0, 1)) assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope p_r3 = r3.random_point() p_r4 = r4.random_point() assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y p10 = Point(2000, 2000) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y s2 = Segment(p10, p1) assert hash(s1) == hash(s2) p11 = p10.scale(2, 2) assert s1.is_similar(Segment(p10, p11)) assert s1.is_similar(r1) == False assert (r1 in s1) == False assert Segment(p1, p2) in s1 assert s1.plot_interval() == [t, 0, 1] assert s1 in Line(p1, p10) assert Line(p1, p10) == Line(p10, p1) assert Line(p1, p10) != p1 assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 5 * sqrt(2) / (1 + 5 * sqrt(2))]
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = Rational(1, 2) p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2 * I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warnings.catch_warnings(record=True) as w: assert Point.is_collinear(p3, Point(p3, dim=4)) assert len(w) == 1 assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False line = Line(Point(1, 0), slope=1) raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi / 2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3)
def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples and lists and automatically convert them to points.""" singles2d = ((1, 2), [1, 2], Point(1, 2)) singles2d2 = ((1, 3), [1, 3], Point(1, 3)) doubles2d = cartes(singles2d, singles2d2) p2d = Point2D(1, 2) singles3d = ((1, 2, 3), [1, 2, 3], Point(1, 2, 3)) doubles3d = subsets(singles3d, 2) p3d = Point3D(1, 2, 3) singles4d = ((1, 2, 3, 4), [1, 2, 3, 4], Point(1, 2, 3, 4)) doubles4d = subsets(singles4d, 2) p4d = Point(1, 2, 3, 4) # test 2D test_single = [ 'distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__' ] test_double = ['is_concyclic', 'is_collinear'] for p in singles2d: Point2D(p) for func in test_single: for p in singles2d: getattr(p2d, func)(p) for func in test_double: for p in doubles2d: getattr(p2d, func)(*p) # test 3D test_double = ['is_collinear'] for p in singles3d: Point3D(p) for func in test_single: for p in singles3d: getattr(p3d, func)(p) for func in test_double: for p in doubles2d: getattr(p3d, func)(*p) # test 4D test_double = ['is_collinear'] for p in singles4d: Point(p) for func in test_single: for p in singles4d: getattr(p4d, func)(p) for func in test_double: for p in doubles4d: getattr(p4d, func)(*p) # test evaluate=False for ops x = Symbol('x') a = Point(0, 1) assert a + (0.1, x) == Point(0.1, 1 + x) a = Point(0, 1) assert a / 10.0 == Point(0.0, 0.1) a = Point(0, 1) assert a * 10.0 == Point(0.0, 10.0) # test evaluate=False when changing dimensions u = Point(.1, .2, evaluate=False) u4 = Point(u, dim=4, on_morph='ignore') assert u4.args == (.1, .2, 0, 0) assert all(i.is_Float for i in u4.args[:2]) # and even when *not* changing dimensions assert all(i.is_Float for i in Point(u).args) # never raise error if creating an origin assert Point(dim=3, on_morph='error')
def test_distance_2d(): p1 = Point(0, 0) p2 = Point(1, 1) half = Rational(1, 2) s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) r = Ray(p1, p2) assert s1.distance(Point(0, 0)) == 0 assert s1.distance((0, 0)) == 0 assert s2.distance(Point(0, 0)) == 2 ** half / 2 assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2) assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2) assert Line(p1, p2).distance(Point(2, 2)) == 0 assert Line(p1, p2).distance((-1, 1)) == sqrt(2) assert Line((0, 0), (0, 1)).distance(p1) == 0 assert Line((0, 0), (0, 1)).distance(p2) == 1 assert Line((0, 0), (1, 0)).distance(p1) == 0 assert Line((0, 0), (1, 0)).distance(p2) == 1 assert r.distance(Point(-1, -1)) == sqrt(2) assert r.distance(Point(1, 1)) == 0 assert r.distance(Point(-1, 1)) == sqrt(2) assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4 assert r.distance((1, 1)) == 0
def test_unit(): assert Point(1, 1).unit == Point(sqrt(2) / 2, sqrt(2) / 2)
def test_ellipse(): p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises(GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2))) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * y1 * abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert Ellipse(None, 1, None, 1).circumference == 2 * pi assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False # with generic symbols, the hradius is assumed to contain the major radius M = Symbol('M') m = Symbol('m') c = Ellipse(p1, M, m).circumference _x = c.atoms(Dummy).pop() assert c == 4 * M * C.Integral( sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))] assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))] assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is False assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(S(77)/25, S(132)/25)), Line(Point(0, 0), Point(S(33)/5, S(22)/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse( Point(5, 0), 1, 1, )) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = S(53) / 17 c = 2 * sqrt(3991) / 17 ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [ Point(c / 68 + a, -2 * c / 17 + a / 2), Point(-c / 68 + a, 2 * c / 17 + a / 2) ] assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(S(14)/5, S(18)/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi / 3) == e assert e.rotate(pi/3, (1, 2)) == \ Ellipse(Point(S(1)/2 + sqrt(3), -sqrt(3)/2 + 1), 2, 1) # transformations c = Circle((1, 1), 2) assert c.scale(-1) == Circle((-1, 1), 2) assert c.scale(y=-1) == Circle((1, -1), 2) assert c.scale(2) == Ellipse((2, 1), 4, 2)
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = Rational(1, 2) p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) assert Point.taxicab_distance(p4, p3) == 2 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False line = Line(Point(1,0), slope = 1) raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] assert p1.dot(p4) == x1 + x2 assert p3.dot(p4) == 0 assert p4.dot(p5) == 1 x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(ValueError, lambda: Line((1, 1), 1)) assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l1.length == oo assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, p2).scale(2, 1) == Line(p1, p9) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # Parallelity p2_1 = Point(-2 * x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) is False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.is_concurrent(l1) is False assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) is False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) raises( GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection( Circle(Point(0, 0), 1))) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4) # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1), Point(2, 1 + C.tan(4.05 * pi))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5))) raises(ValueError, lambda: Ray((1, 1), 1)) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) r4 = Ray(p1, p2) r5 = Ray(p2, p1) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol('t', real=True) assert Ray((1, 1), angle=pi/4).arbitrary_point() == \ Point(t + 1, t + 1) s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt(2 * (x1**2)) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) # intersections assert s1.intersection(Line(p6, p9)) == [] s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) assert s1.intersection(s3) == [s1] assert s3.intersection(s1) == [s3] assert r4.intersection(s3) == [s3] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] s3 = Segment(Point(1, 1), Point(2, 2)) assert s1.intersection(s3) == [Point(1, 1)] s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5)) assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(r5) == [s1] assert r5.intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] # Segment contains a, b = symbols('a,b') s = Segment((0, a), (0, b)) assert Point(0, (a + b) / 2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b) / 2, 0) in s raises(Undecidable, lambda: Point(2 * a, 0) in s) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3) / 2, Rational(3) / 2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == 2**(half) / 2 assert s2.distance(pt2) == 2**(half) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) r5 = Ray(Point(2, 2), Point(3, 3)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == [] r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) r3 = Ray(p1, p2) r4 = Ray(p2, p1) s1 = Segment(p1, Point(0, 1)) assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope p_r3 = r3.random_point() p_r4 = r4.random_point() assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y p10 = Point(2000, 2000) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y s2 = Segment(p10, p1) assert hash(s1) == hash(s2) p11 = p10.scale(2, 2) assert s1.is_similar(Segment(p10, p11)) assert s1.is_similar(r1) is False assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert s1.plot_interval() == [t, 0, 1] assert s1 in Line(p1, p10) assert Line(p1, p10) == Line(p10, p1) assert Line(p1, p10) != p1 assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi/4).plot_interval() == \ [t, 0, 10]
def generate_map(): screen.fill((0, 0, 0)) points = generate_random_points(num_points, width, height, buf) #for x, y in points: # pygame.draw.circle(screen, WHITE, (x,y), 2, 1) voronoi_context = voronoi(points) voronoi_point_dict = {} point_to_segment_dict = {} segments = [] vertices = [] top_l = Point(0,0) top_r = Point(width,0) bottom_l = Point(0, height) bottom_r = Point(width, height) top = Line(top_l, top_r) left = Line(top_l, bottom_l) right = Line(top_r, bottom_r) bottom = Line(bottom_l, bottom_r) boundaries = [top, right, bottom, left] for edge in voronoi_context.edges: il, i1, i2 = edge # index of line, index of vertex 1, index of vertex 2 line_color = RED vert1 = None vert2 = None print_line = True if i1 is not -1 and i2 is not -1: vert1 = voronoi_context.vertices[i1] vert2 = voronoi_context.vertices[i2] else: line_point = None if i1 is -1: line_p = voronoi_context.vertices[i2] if i2 is -1: line_p = voronoi_context.vertices[i1] line_point = Point(line_p[0], line_p[1]) line = voronoi_context.lines[il] p1 = None p2 = None if line[1] == 0: p1 = line_point p2 = Point(line[0]/line[2], 1) else: p1 = Point(0, line[2]/line[1]) p2 = line_point l = Line(p1, p2) top_intersect = l.intersection(top) bottom_intersect = l.intersection(bottom) right_intersect = l.intersection(right) left_intersect = l.intersection(left) distances = [] top_dist = None bottom_dist = None right_dist = None left_dist = None if len(top_intersect) != 0: top_dist = abs(line_point.distance(top_intersect[0])) distances.append(top_dist) if len(bottom_intersect) != 0 : bottom_dist = abs(line_point.distance(bottom_intersect[0])) distances.append(bottom_dist) if len(right_intersect) != 0: right_dist = abs(line_point.distance(right_intersect[0])) distances.append(right_dist) if len(left_intersect) != 0: left_dist = abs(line_point.distance(left_intersect[0])) distances.append(left_dist) vert1 = line_p v2 = None if top_dist == min(distances): v2 = top_intersect[0] elif bottom_dist == min(distances): v2 = bottom_intersect[0] elif right_dist == min(distances): v2 = right_intersect[0] elif left_dist == min(distances): v2 = left_intersect[0] else: v2 = Point(0, 0) vert2 = (v2.x, v2.y) if vert1[0] < 0 or vert1[1] < 0 or vert2[0] < 0 or vert2[1] < 0 or vert1[0] > width or vert1[1] > height or vert2[0] > width or vert2[1] > height: print_line = False if print_line: vert1, vert2 = adjust_out_of_bounds_points(vert1, vert2, boundaries) seg = None if vert1 == None or vert2 == None: print_line = False if print_line: vert1_p = Point(vert1) vert2_p = Point(vert2) seg = Segment(vert1_p, vert2_p) segments.append(seg) if not vert1_p in voronoi_point_dict: voronoi_point_dict[vert1_p] = [] if not vert2_p in voronoi_point_dict: voronoi_point_dict[vert2_p] = [] voronoi_point_dict[vert1_p].append(vert2_p) voronoi_point_dict[vert2_p].append(vert1_p) if not vert1_p in point_to_segment_dict: point_to_segment_dict[vert1_p] = [] if not vert2_p in point_to_segment_dict: point_to_segment_dict[vert2_p] = [] point_to_segment_dict[vert1_p].append(seg) point_to_segment_dict[vert2_p].append(seg) pygame.draw.line(screen, line_color, vert1, vert2, 1) pygame.display.flip() top_intersects = [] bottom_intersects = [] right_intersects = [] left_intersects = [] for seg in segments: if seg.p1.y <= 1: top_intersects.append(seg.p1) if seg.p2.y <= 1: top_intersects.append(seg.p2) if seg.p1.x >= width -1: right_intersects.append(seg.p1) if seg.p2.x >= width-1: right_intersects.append(seg.p2) if seg.p1.x <= 1: left_intersects.append(seg.p1) if seg.p2.x <= 1: left_intersects.append(seg.p2) if seg.p1.y >= height-1: bottom_intersects.append(seg.p1) if seg.p2.y >= height-1: bottom_intersects.append(seg.p2) top_intersects = sorted(top_intersects, key=lambda point: point.x) bottom_intersects = sorted(bottom_intersects, key=lambda point: point.x) left_intersects = sorted(left_intersects, key=lambda point: point.y) right_intersects = sorted(right_intersects, key=lambda point: point.y) for i in range(0, 4): intersect = None prev_vertex = None final_vertex = None if i == 0: prev_vertex = top_l intersect = top_intersects intersect.append(top_r) if i == 1: prev_vertex = bottom_l intersect = bottom_intersects intersect.append(bottom_r) if i == 2: prev_vertex = top_l intersect = left_intersects intersect.append(bottom_l) if i == 3: prev_vertex = top_r intersect = right_intersects intersect.append(bottom_r) if not prev_vertex in voronoi_point_dict: voronoi_point_dict[prev_vertex] = [] if not final_vertex in voronoi_point_dict: voronoi_point_dict[final_vertex] = [] if not prev_vertex in point_to_segment_dict: point_to_segment_dict[prev_vertex] = [] if not final_vertex in point_to_segment_dict: point_to_segment_dict[final_vertex] = [] for vertex in intersect: if not vertex in voronoi_point_dict: voronoi_point_dict[vertex] = [] if not prev_vertex in voronoi_point_dict: voronoi_point_dict[prev_vertex] = [] s = Segment(prev_vertex, vertex) voronoi_point_dict[vertex].append(prev_vertex) voronoi_point_dict[prev_vertex].append(vertex) if not vertex in point_to_segment_dict: point_to_segment_dict[vertex] = [] if not prev_vertex in point_to_segment_dict: point_to_segment_dict[prev_vertex] = [] point_to_segment_dict[vertex].append(s) point_to_segment_dict[prev_vertex].append(s) prev_vertex = vertex try: polygons, segments_to_polygons = generate_polygons(voronoi_point_dict, segments, points, point_to_segment_dict) except Exception as e: print e print "crashed" while 1: """ helllo""" for seg, gons in segments_to_polygons.iteritems(): for gon in gons: gon.connect_adjacent_nodes(gons) for polygon in polygons: for node in polygon.adjacent_nodes: s = Segment(node.center, polygon.center) draw_segment(s, WHITE) highest_points_of_elevation = [] frontiers = [] for i in range(0, number_of_peaks): p = random.choice(polygons) p.elevation = max_elevation highest_points_of_elevation.append(p) frontiers.append(set(p.adjacent_nodes)) marked_polygons = set([]) elevation = max_elevation while len(marked_polygons) < num_points: elevation -= 1 for i in range(0, number_of_peaks): new_frontier = set([]) while len(frontiers[i]) > 0: node = frontiers[i].pop() node.elevation = elevation draw_point(node.center, ORANGE) for n in node.adjacent_nodes: if n not in marked_polygons: new_frontier.add(n) marked_polygons.add(node) frontiers[i] = new_frontier for polygon in polygons: if polygon.elevation <= 0: vertices = [] for edge in polygon.edge_list: p = (edge.x, edge.y) vertices.append(p) pygame.draw.polygon(screen, BLUE, vertices, 0) pygame.display.flip() pygame.display.flip()
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2)
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 raises( UserWarning, lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises( ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)). arbitrary_point('x')) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1.vertices[0] == Point(5, 5 * sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5)) assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6 assert t3.inradius == t3.incircle.radius == x1**2 / ( (2 + sqrt(2)) * Abs(x1)) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S( '''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2
def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = Rational(1, 2) p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4*5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warnings.catch_warnings(record=True) as w: raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warnings.catch_warnings(record=True) as w: assert p - p_4d == Point(1, 1, 1, -1) assert len(w) == 1 p_4d3d = Point(0, 0, 1, 0) with warnings.catch_warnings(record=True) as w: assert p - p_4d3d == Point(1, 1, 0, 0) assert len(w) == 1
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert p3.x == 0 assert p3.y == 0 assert p4.x == 1 assert p4.y == 1 assert len(p1) == 2 assert p2[1] == y2 assert (p3+p4) == p4 assert (p2-p1) == Point(y1-x1, y2-x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 #assert Point.distance(p3, p2) == abs(p2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) == False x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
def test_dot(): raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
def test_convex_hull(): p = [ Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), Point(4, -1), Point(6, 2) ] ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1]) #test handling of duplicate points p.append(p[3]) #more than 3 collinear points another_p = [ Point(-45, -85), Point(-45, 85), Point(-45, 26), Point(-45, -24) ] ch2 = Segment(another_p[0], another_p[1]) assert convex_hull(*another_p) == ch2 assert convex_hull(*p) == ch assert convex_hull(p[0]) == p[0] assert convex_hull(p[0], p[1]) == Segment(p[0], p[1]) # no unique points assert convex_hull(*[p[-1]] * 3) == p[-1] # collection of items assert convex_hull(*[Point(0, 0), Segment(Point(1, 0), Point(1, 1)), RegularPolygon(Point(2, 0), 2, 4)]) == \ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert len(p1) == 1 assert p1 in p1 assert p1 not in p2 assert p2[1] == y2 assert (p3+p4) == p4 assert (p2-p1) == Point(y1-x1, y2-x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) == False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, 'Point(0,0) + 10')
cl = mt.constraints.new('COPY_LOCATION') cl.target = _obj cl.subtarget = name cr = mt.constraints.new('COPY_ROTATION') cr.target = _obj cr.subtarget = name # print(mt.matrix_world) bpy.ops.object.mode_set(mode='OBJECT') l_eye = bpy.data.objects[emptyList[1]] r_eye = bpy.data.objects[emptyList[0]] l_eye_pos = Point(l_eye.matrix_world.translation) r_eye_pos = Point(r_eye.matrix_world.translation) global_location = map_tuple_gen(float, l_eye_pos.midpoint(r_eye_pos)) scn = bpy.context.scene # --- Set Scene camera ---- # camera = Camera() camera.set_perspective(focal_length=render_focal_length, sensor=render_sensor_size) bpy.data.scenes["Scene"].render.resolution_x = final_image_resolution_x bpy.data.scenes["Scene"].render.resolution_y = final_image_resolution_y bpy.data.scenes[
def test_ellipse(): p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) # Test creation with three points cen, rad = Point(3*half, 2), 5*half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises( GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2))) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi/2 assert e3.area == pi*y1*abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2*pi*y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert Ellipse(None, 1, None, 1).circumference == 2*pi assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False # with generic symbols, the hradius is assumed to contain the major radius M = Symbol('M') m = Symbol('m') c = Ellipse(p1, M, m).circumference _x = c.atoms(Dummy).pop() assert c == 4*M*C.Integral( sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))] assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))] assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is False assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent( Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent( Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(77/25, 132/25)), Line(Point(0, 0), Point(33/5, 22/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] e = Ellipse(Point(0, 0), 2, 1) assert e.normal_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] assert e.normal_lines(Point(1, 0)) == \ [Line(Point(0, 0), Point(1, 0))] assert e.normal_lines((0, 1)) == \ [Line(Point(0, 0), Point(0, 1))] assert e.normal_lines(Point(1, 1), 1) == \ [Line(Point(-2, -1/5), Point(-1, 1/5)), Line(Point(1, -9/10), Point(2, -43/11))] # test the failure of Poly.intervals and checks a point on the boundary p = Point(sqrt(3), S.Half) assert p in e assert e.normal_lines(p, 1) == \ [Line(Point(7/4, 1/2), Point(11/4, 3/2)), Line(Point(-2, -26/337), Point(-1, 1/8))] # be sure to use the slope that isn't undefined on boundary e = Ellipse((0, 0), 2, 2*sqrt(3)/3) assert e.normal_lines((1, 1), 1) == \ [Line(Point(-2, -1/3), Point(-1, 1/6)), Line(Point(1, -1), Point(2, -4))] # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major*(1 - ecc) assert e4.apoapsis == major*(1 + ecc) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major*(1 - ecc) assert e4.apoapsis == major*(1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse(Point(5, 0), 1, 1,)) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v/2, v/2) in points assert Point(v/2, -v/2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = 53/17 c = 2*sqrt(3991)/17 ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [Point(c/68 + a, -2*c/17 + a/2), Point(-c/68 + a, 2*c/17 + a/2)] assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(14/5, 18/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point( e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point( e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi/3) == e assert e.rotate(pi/3, (1, 2)) == \ Ellipse(Point(1/2 + sqrt(3), -sqrt(3)/2 + 1), 2, 1) # transformations c = Circle((1, 1), 2) assert c.scale(-1) == Circle((-1, 1), 2) assert c.scale(y=-1) == Circle((1, -1), 2) assert c.scale(2) == Ellipse((2, 1), 4, 2)
def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and isinstance(p, Point) L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and type(p) == Point L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and type(L) == Line
def test_plane(): x, y, z, u, v = symbols('x y z u v', real=True) p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(1, 2, 3) pl3 = Plane(p1, p2, p3) pl4 = Plane(p1, normal_vector=(1, 1, 1)) pl4b = Plane(p1, p2) pl5 = Plane(p3, normal_vector=(1, 2, 3)) pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2)) pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1)) pl8 = Plane(p1, normal_vector=(0, 0, 1)) pl9 = Plane(p1, normal_vector=(0, 12, 0)) pl10 = Plane(p1, normal_vector=(-2, 0, 0)) pl11 = Plane(p2, normal_vector=(0, 0, 1)) l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) assert Plane(p1, p2, p3) != Plane(p1, p3, p2) assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2)) assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1)) assert pl3 != pl4 assert pl4 == pl4b assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3)) assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14 assert pl3.equation(x, y, z) == x - 2 * y + z assert pl3.p1 == p1 assert pl4.p1 == p1 assert pl5.p1 == p3 assert pl4.normal_vector == (1, 1, 1) assert pl5.normal_vector == (1, 2, 3) assert p1 in pl3 assert p1 in pl4 assert p3 in pl5 assert pl3.projection(Point(0, 0)) == p1 p = pl3.projection(Point3D(1, 1, 0)) assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)) assert p in pl3 l = pl3.projection_line(Line(Point(0, 0), Point(1, 1))) assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))) assert l in pl3 # get a segment that does not intersect the plane which is also # parallel to pl3's normal veector t = Dummy() r = pl3.random_point() a = pl3.perpendicular_line(r).arbitrary_point(t) s = Segment3D(a.subs(t, 1), a.subs(t, 2)) assert s.p1 not in pl3 and s.p2 not in pl3 assert pl3.projection_line(s).equals(r) assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \ Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))) assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \ Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3))) assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r) assert pl3.is_parallel(pl6) is False assert pl4.is_parallel(pl6) assert pl6.is_parallel(l1) is False assert pl3.is_perpendicular(pl6) assert pl4.is_perpendicular(pl7) assert pl6.is_perpendicular(pl7) assert pl6.is_perpendicular(l1) is False assert pl6.distance(pl6.arbitrary_point(u, v)) == 0 assert pl7.distance(pl7.arbitrary_point(u, v)) == 0 assert pl6.distance(pl6.arbitrary_point(t)) == 0 assert pl7.distance(pl7.arbitrary_point(t)) == 0 assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1 assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1 assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \ 2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6) assert pl3.arbitrary_point(u, v) == Point3D(2 * u - v, u + 2 * v, 5 * v) assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6 assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3) assert pl6.distance(pl6.p1) == 0 assert pl7.distance(pl6) == 0 assert pl7.distance(l1) == 0 assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \ pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3 assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \ pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3 assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0 assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0 assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \ pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3 assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3) assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4 * sqrt(3) / 3 assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0 assert pl6.angle_between(pl3) == pi / 2 assert pl6.angle_between(pl6) == 0 assert pl6.angle_between(pl4) == 0 assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \ -asin(sqrt(3)/6) assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \ asin(sqrt(7)/3) assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \ asin(7*sqrt(246)/246) assert are_coplanar(l1, l2, l3) is False assert are_coplanar(l1) is False assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2), Point3D(1, 2, 2)) assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2)) assert Plane.are_concurrent(pl3, pl4, pl5) is False assert Plane.are_concurrent(pl6) is False raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0))) raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0))) assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \ normal_vector=(1, -2, 1)) # perpendicular_plane p = Plane((0, 0, 0), (1, 0, 0)) # default assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0)) # 1 pt assert p.perpendicular_plane(Point3D(1, 0, 1)) == \ Plane(Point3D(1, 0, 1), (0, 1, 0)) # pts as tuples assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \ Plane(Point3D(1, 0, 1), (0, 0, -1)) a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) Z = (0, 0, 1) p = Plane(a, normal_vector=Z) # case 4 assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0)) n = Point3D(*Z) # case 1 assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0)) # case 2 assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \ Plane(Point3D(0, 0, 0), (1, 0, 0)) # case 1&3 assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \ Plane(Point3D(0, 1, 0), (-1, 0, 0)) # case 2&3 assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \ Plane(Point3D(0, 0, 1), (1, 0, 0)) assert pl6.intersection(pl6) == [pl6] assert pl4.intersection(pl4.p1) == [pl4.p1] assert pl3.intersection(pl6) == [ Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)) ] assert pl3.intersection(Line3D(Point3D(1, 2, 4), Point3D( 4, 4, 2))) == [Point3D(2, Rational(8, 3), Rational(10, 3))] assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))) == [ Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1)) ] assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [Point3D(-1, 3, 10)] assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [] assert pl7.intersection(Line(Point(2, 3), Point( 4, 2))) == [Point3D(Rational(13, 2), Rational(3, 4), 0)] r = Ray(Point(2, 3), Point(4, 2)) assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [ Ray3D(Point(2, 3), Point(4, 2)) ] assert pl9.intersection(pl8) == [ Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0)) ] assert pl10.intersection(pl11) == [ Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1)) ] assert pl4.intersection(pl8) == [ Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0)) ] assert pl11.intersection(pl8) == [] assert pl9.intersection(pl11) == [ Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1)) ] assert pl9.intersection(pl4) == [ Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12)) ] assert pl3.random_point() in pl3 # test geometrical entity using equals assert pl4.intersection(pl4.p1)[0].equals(pl4.p1) assert pl3.intersection(pl6)[0].equals( Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))) pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1)) assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals( Line((0, 0, 0), (0.1, 1.2, 0))) assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals( Ray((0, 0, 0), (1, 12, 0))) assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals( Segment3D(p1, (21, 1, 0))) assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8) assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals( Line3D(p1, direction_ratio=(112 * pi, 0, 0))) assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals( Line3D(p1, direction_ratio=(0, -11, 0))) assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals( Line3D(p1, direction_ratio=(0, 11, 0))) assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals( Line3D(p1, direction_ratio=(1, -1, 0))) assert pl3.random_point() in pl3 assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0 # check if two plane are equals assert pl6.intersection(pl6)[0].equals(pl6) assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False assert pl8.equals(pl8) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12))) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12 * sqrt(3)))) # issue 8570 l2 = Line3D( Point3D(Rational(50000004459633, 5000000000000), Rational(-891926590718643, 1000000000000000), Rational(231800966893633, 100000000000000)), Point3D(Rational(50000004459633, 50000000000000), Rational(-222981647679771, 250000000000000), Rational(231800966893633, 100000000000000))) p2 = Plane( Point3D(Rational(402775636372767, 100000000000000), Rational(-97224357654973, 100000000000000), Rational(216793600814789, 100000000000000)), (-S('9.00000087501922'), -S('4.81170658872543e-13'), S('0.0'))) assert str([i.n(2) for i in p2.intersection(l2)]) == \ '[Point3D(4.0, -0.89, 2.3)]'
def centroid(*args): """Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). Overlapping regions will add to the weight of that region. If there are no objects (or a mixture of objects) then None is returned. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment, sympy.geometry.polygon.Polygon Examples ======== >>> from sympy import Point, Segment, Polygon >>> from sympy.geometry.util import centroid >>> p = Polygon((0, 0), (10, 0), (10, 10)) >>> q = p.translate(0, 20) >>> p.centroid, q.centroid (Point2D(20/3, 10/3), Point2D(20/3, 70/3)) >>> centroid(p, q) Point2D(20/3, 40/3) >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2)) >>> centroid(p, q) Point2D(1, 2 - sqrt(2)) >>> centroid(Point(0, 0), Point(2, 0)) Point2D(1, 0) Stacking 3 polygons on top of each other effectively triples the weight of that polygon: >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1)) >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1)) >>> centroid(p, q) Point2D(3/2, 1/2) >>> centroid(p, p, p, q) # centroid x-coord shifts left Point2D(11/10, 1/2) Stacking the squares vertically above and below p has the same effect: >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q) Point2D(11/10, 1/2) """ from sympy.geometry import Polygon, Segment, Point if args: if all(isinstance(g, Point) for g in args): c = Point(0, 0) for g in args: c += g den = len(args) elif all(isinstance(g, Segment) for g in args): c = Point(0, 0) L = 0 for g in args: l = g.length c += g.midpoint*l L += l den = L elif all(isinstance(g, Polygon) for g in args): c = Point(0, 0) A = 0 for g in args: a = g.area c += g.centroid*a A += a den = A c /= den return c.func(*[i.simplify() for i in c.args])
def test_Geometry(): sT(Point(0, 0), "Point2D(Integer(0), Integer(0))") sT(Ellipse(Point(0, 0), 5, 1), "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
def test_ellipse_geom(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) y1 = Symbol('y1', real=True) half = Rational(1, 2) p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) l1 = Line(p1, p2) # Test creation with three points cen, rad = Point(3*half, 2), 5*half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2)) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert e1 != l1 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi/2 assert e3.area == pi*y1*abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2*pi*y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 assert Ellipse((1, 1), 0, 0) == Point(1, 1) assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1)) assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2)) # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))] assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))] assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is True assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent( Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent( Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(S(77)/25, S(132)/25)), Line(Point(0, 0), Point(S(33)/5, S(22)/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] # for numerical calculations, we shouldn't demand exact equality, # so only test up to the desired precision def lines_close(l1, l2, prec): """ tests whether l1 and 12 are within 10**(-prec) of each other """ return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec) def line_list_close(ll1, ll2, prec): return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2)) e = Ellipse(Point(0, 0), 2, 1) assert e.normal_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] assert e.normal_lines(Point(1, 0)) == \ [Line(Point(0, 0), Point(1, 0))] assert e.normal_lines((0, 1)) == \ [Line(Point(0, 0), Point(0, 1))] assert line_list_close(e.normal_lines(Point(1, 1), 2), [ Line(Point(-S(51)/26, -S(1)/5), Point(-S(25)/26, S(17)/83)), Line(Point(S(28)/29, -S(7)/8), Point(S(57)/29, -S(9)/2))], 2) # test the failure of Poly.intervals and checks a point on the boundary p = Point(sqrt(3), S.Half) assert p in e assert line_list_close(e.normal_lines(p, 2), [ Line(Point(-S(341)/171, -S(1)/13), Point(-S(170)/171, S(5)/64)), Line(Point(S(26)/15, -S(1)/2), Point(S(41)/15, -S(43)/26))], 2) # be sure to use the slope that isn't undefined on boundary e = Ellipse((0, 0), 2, 2*sqrt(3)/3) assert line_list_close(e.normal_lines((1, 1), 2), [ Line(Point(-S(64)/33, -S(20)/71), Point(-S(31)/33, S(2)/13)), Line(Point(1, -1), Point(2, -4))], 2) # general ellipse fails except under certain conditions e = Ellipse((0, 0), x, 1) assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))] raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1))) # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major*(1 - ecc) assert e4.apoapsis == major*(1 + ecc) assert e4.semilatus_rectum == major*(1 - ecc ** 2) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major*(1 - ecc) assert e4.apoapsis == major*(1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == [] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == [] assert Circle((0, 0), S(1)/2).intersection( Triangle((-1, 0), (1, 0), (0, 1))) == [ Point(-S(1)/2, 0), Point(S(1)/2, 0)] raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1)))) raises(TypeError, lambda: intersection(e2, Rational(12))) # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v/2, v/2) in points assert Point(v/2, -v/2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = S(53)/17 c = 2*sqrt(3991)/17 ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)] assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(S(14)/5, S(18)/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point( e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point( e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi) == e assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1) raises(NotImplementedError, lambda: e.rotate(pi/3)) # Circle rotation tests (Issue #11743) # Link - https://github.com/sympy/sympy/issues/11743 cir = Circle(Point(1, 0), 1) assert cir.rotate(pi/2) == Circle(Point(0, 1), 1) assert cir.rotate(pi/3) == Circle(Point(S(1)/2, sqrt(3)/2), 1) assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1) assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S(1)/2 + sqrt(3)/2, S(1)/2 + sqrt(3)/2), 1)
def test_Geometry(): assert sstr(Point(0, 0)) == 'Point(0, 0)' assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point(0, 0), 3)'
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x ** 2 + p2.y ** 2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) == False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol("x", real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x ** 2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2)
def test_basic_properties_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p10 = Point(2000, 2000) p_r3 = Ray(p1, p2).random_point() p_r4 = Ray(p2, p1).random_point() l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) l4 = Line(p1, Point(1, 0)) r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != Line(Point(x1, x1), Point(y1, y1)) assert l1 != l3 assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert s1 in Line(p1, p10) assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2)) assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1)) assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5)) assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2)) assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2)) assert l1.slope == 1 assert l3.slope == oo assert l4.slope == 0 assert Line(p1, Point(0, 1)).slope == oo assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope assert l4.coefficients == (0, 1, 0) assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1)) for ind in range(0, 5): assert l3.random_point() in l3 assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y assert hash(s1) == hash(Segment(p10, p1)) assert s1.plot_interval() == [t, 0, 1] assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_util(): # coverage for some leftover functions in sympy.geometry.util assert intersection(Point(0, 0)) == [] raises(ValueError, lambda: intersection(Point(0, 0), 3)) raises(ValueError, lambda: convex_hull(Point(0, 0), 3))