Пример #1
0
def test_range_interval_intersection():
    p = symbols('p', positive=True)
    assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection)
    assert Range(4).intersect(Interval(0, 3)) == Range(4)
    assert Range(4).intersect(Interval(-oo, oo)) == Range(4)
    assert Range(4).intersect(Interval(1, oo)) == Range(1, 4)
    assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4)
    assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4)
    assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4)
    assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3)
    assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet
Пример #2
0
def test_continuous_domain():
    x = Symbol('x')
    assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
    assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
        Union(Interval(0, pi/2, False, True), Interval(pi/2, 3*pi/2, True, True),
              Interval(3*pi/2, 2*pi, True, False))
    assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
        Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
    assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
        Interval(1/4, oo, True, True)
    assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
    assert continuous_domain(1/x - 2, x, S.Reals) == \
        Union(Interval.open(-oo, 0), Interval.open(0, oo))
    assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
        Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
Пример #3
0
def test_continuous_domain():
    x = Symbol('x')
    assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
    assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
        Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True),
              Interval(pi*Rational(3, 2), 2*pi, True, False))
    assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
        Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
    assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
        Interval(Rational(1, 4), oo, True, True)
    assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
    assert continuous_domain(1/x - 2, x, S.Reals) == \
        Union(Interval.open(-oo, 0), Interval.open(0, oo))
    assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
        Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
Пример #4
0
def test_range_interval_intersection():
    p = symbols('p', positive=True)
    assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection)
    assert Range(4).intersect(Interval(0, 3)) == Range(4)
    assert Range(4).intersect(Interval(-oo, oo)) == Range(4)
    assert Range(4).intersect(Interval(1, oo)) == Range(1, 4)
    assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4)
    assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4)
    assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4)
    assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3)
    assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet

    # Null Range intersections
    assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet
    assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet
Пример #5
0
def test_is_convex():
    assert is_convex(1/x, x, domain=Interval.open(0, oo)) == True
    assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False
    assert is_convex(x**2, x, domain=Interval(0, oo)) == True
    assert is_convex(1/x**3, x, domain=Interval.Lopen(0, oo)) == True
    assert is_convex(-1/x**3, x, domain=Interval.Ropen(-oo, 0)) == True
    assert is_convex(log(x), x) == False
    raises(NotImplementedError, lambda: is_convex(log(x), x, a))
Пример #6
0
def test_trig_inequalities():
    # all the inequalities are solved in a periodic interval.
    assert isolve(sin(x) < S.Half, x, relational=False) == \
        Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
    assert isolve(sin(x) > S.Half, x, relational=False) == \
        Interval(pi/6, pi*Rational(5, 6), True, True)
    assert isolve(cos(x) < S.Zero, x, relational=False) == \
        Interval(pi/2, pi*Rational(3, 2), True, True)
    assert isolve(cos(x) >= S.Zero, x, relational=False) == \
        Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))

    assert isolve(tan(x) < S.One, x, relational=False) == \
        Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))

    assert isolve(sin(x) <= S.Zero, x, relational=False) == \
        Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))

    assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
    assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
    assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
    assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
Пример #7
0
def test_bool_as_set():
    assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo)
    assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2)
    assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo)
    assert Not(x > 2).as_set() == Interval(-oo, 2)
    # issue 10240
    assert Not(And(x > 2, x < 3)).as_set() == \
        Union(Interval(-oo, 2), Interval(3, oo))
    assert true.as_set() == S.UniversalSet
    assert false.as_set() == EmptySet()
    assert x.as_set() == S.UniversalSet
    assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1)
    assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set()
    raises(NotImplementedError, lambda: (sin(x) < 1).as_set())
Пример #8
0
def test_bool_as_set():
    assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo)
    assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2)
    assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo)
    assert Not(x > 2).as_set() == Interval(-oo, 2)
    # issue 10240
    assert Not(And(x > 2, x < 3)).as_set() == \
        Union(Interval(-oo, 2), Interval(3, oo))
    assert true.as_set() == S.UniversalSet
    assert false.as_set() == EmptySet()
    assert x.as_set() == S.UniversalSet
    assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1)
    assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set()
    raises(NotImplementedError, lambda: (sin(x) < 1).as_set())
Пример #9
0
def test_function_range():
    x, y, a, b = symbols('x y a b')
    assert function_range(sin(x), x, Interval(-pi/2, pi/2)
        ) == Interval(-1, 1)
    assert function_range(sin(x), x, Interval(0, pi)
        ) == Interval(0, 1)
    assert function_range(tan(x), x, Interval(0, pi)
        ) == Interval(-oo, oo)
    assert function_range(tan(x), x, Interval(pi/2, pi)
        ) == Interval(-oo, 0)
    assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
        ) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo))
    assert function_range(1/(x**2), x, Interval(-1, 1)
        ) == Interval(1, oo)
    assert function_range(exp(x), x, Interval(-1, 1)
        ) == Interval(exp(-1), exp(1))
    assert function_range(log(x) - x, x, S.Reals
        ) == Interval(-oo, -1)
    assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
        ) == Interval(0, sqrt(5))
    assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
        ) == FiniteSet(0)
    assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
        ) == FiniteSet(y)
    assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
        ) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
    assert function_range(cos(x), x, Interval(-oo, -4)
        ) == Interval(-1, 1)
    assert function_range(cos(x), x, S.EmptySet) == S.EmptySet
    assert function_range(x/sqrt(x**2+1), x, S.Reals) == Interval.open(-1,1)
    raises(NotImplementedError, lambda : function_range(
        exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
    raises(NotImplementedError, lambda : function_range(
        sin(x) + x, x, S.Reals)) # issue 13273
    raises(NotImplementedError, lambda : function_range(
        log(x), x, S.Integers))
    raises(NotImplementedError, lambda : function_range(
        sin(x)/2, x, S.Naturals))
Пример #10
0
def test_normalize_theta_set():

    # Interval
    assert normalize_theta_set(Interval(pi, 2*pi)) == \
        Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
    assert normalize_theta_set(Interval(9 * pi / 2,
                                        5 * pi)) == Interval(pi / 2, pi)
    assert normalize_theta_set(Interval(-3 * pi / 2,
                                        pi / 2)) == Interval.Ropen(0, 2 * pi)
    assert normalize_theta_set(Interval.open(-3*pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(-7*pi/2, -3*pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
    assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval(-4 * pi,
                                        3 * pi)) == Interval.Ropen(0, 2 * pi)
    assert normalize_theta_set(Interval(-3 * pi / 2, -pi / 2)) == Interval(
        pi / 2, 3 * pi / 2)
    assert normalize_theta_set(Interval.open(0, 2 * pi)) == Interval.open(
        0, 2 * pi)
    assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.open(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(4 * pi,
                                             9 * pi / 2)) == Interval.open(
                                                 0, pi / 2)
    assert normalize_theta_set(Interval.Lopen(4 * pi,
                                              9 * pi / 2)) == Interval.Lopen(
                                                  0, pi / 2)
    assert normalize_theta_set(Interval.Ropen(4 * pi,
                                              9 * pi / 2)) == Interval.Ropen(
                                                  0, pi / 2)
    assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
        Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))

    # FiniteSet
    assert normalize_theta_set(FiniteSet(0, pi, 3 * pi)) == FiniteSet(0, pi)
    assert normalize_theta_set(FiniteSet(0, pi / 2, pi,
                                         2 * pi)) == FiniteSet(0, pi / 2, pi)
    assert normalize_theta_set(FiniteSet(0, -pi / 2, -pi,
                                         -2 * pi)) == FiniteSet(
                                             0, pi, 3 * pi / 2)
    assert normalize_theta_set(FiniteSet(-3*pi/2, pi/2)) == \
        FiniteSet(pi/2)
    assert normalize_theta_set(FiniteSet(2 * pi)) == FiniteSet(0)

    # Unions
    assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
        Union(Interval(0, pi/3), Interval(pi/2, pi))
    assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, 7*pi/3))) == \
        Interval(0, pi)

    # ValueError for non-real sets
    raises(ValueError, lambda: normalize_theta_set(S.Complexes))
Пример #11
0
def test_normalize_theta_set():

    # Interval
    assert normalize_theta_set(Interval(pi, 2*pi)) == \
        Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
    assert normalize_theta_set(Interval(9*pi/2, 5*pi)) == Interval(pi/2, pi)
    assert normalize_theta_set(Interval(-3*pi/2, pi/2)) == Interval.Ropen(0, 2*pi)
    assert normalize_theta_set(Interval.open(-3*pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(-7*pi/2, -3*pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
    assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi)
    assert normalize_theta_set(Interval(-3*pi/2, -pi/2)) == Interval(pi/2, 3*pi/2)
    assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi)
    assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.open(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(4*pi, 9*pi/2)) == Interval.open(0, pi/2)
    assert normalize_theta_set(Interval.Lopen(4*pi, 9*pi/2)) == Interval.Lopen(0, pi/2)
    assert normalize_theta_set(Interval.Ropen(4*pi, 9*pi/2)) == Interval.Ropen(0, pi/2)
    assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
        Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))

    # FiniteSet
    assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi)
    assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi)
    assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, 3*pi/2)
    assert normalize_theta_set(FiniteSet(-3*pi/2, pi/2)) == \
        FiniteSet(pi/2)
    assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0)

    # Unions
    assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
        Union(Interval(0, pi/3), Interval(pi/2, pi))
    assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, 7*pi/3))) == \
        Interval(0, pi)

    # ValueError for non-real sets
    raises(ValueError, lambda: normalize_theta_set(S.Complexes))
Пример #12
0
def test_normalize_theta_set():
    # Interval
    assert normalize_theta_set(Interval(pi, 2*pi)) == \
        Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
    assert normalize_theta_set(Interval(pi * Rational(9, 2),
                                        5 * pi)) == Interval(pi / 2, pi)
    assert normalize_theta_set(Interval(pi * Rational(-3, 2),
                                        pi / 2)) == Interval.Ropen(0, 2 * pi)
    assert normalize_theta_set(Interval.open(pi*Rational(-3, 2), pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
    assert normalize_theta_set(Interval.open(pi*Rational(-7, 2), pi*Rational(-3, 2))) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
    assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
    assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
    assert normalize_theta_set(Interval(-4 * pi,
                                        3 * pi)) == Interval.Ropen(0, 2 * pi)
    assert normalize_theta_set(Interval(pi * Rational(-3, 2),
                                        -pi / 2)) == Interval(
                                            pi / 2, pi * Rational(3, 2))
    assert normalize_theta_set(Interval.open(0, 2 * pi)) == Interval.open(
        0, 2 * pi)
    assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
        Union(Interval.Ropen(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
    assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
    assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
        Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
    assert normalize_theta_set(Interval.open(
        4 * pi, pi * Rational(9, 2))) == Interval.open(0, pi / 2)
    assert normalize_theta_set(Interval.Lopen(
        4 * pi, pi * Rational(9, 2))) == Interval.Lopen(0, pi / 2)
    assert normalize_theta_set(Interval.Ropen(
        4 * pi, pi * Rational(9, 2))) == Interval.Ropen(0, pi / 2)
    assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
        Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))

    # FiniteSet
    assert normalize_theta_set(FiniteSet(0, pi, 3 * pi)) == FiniteSet(0, pi)
    assert normalize_theta_set(FiniteSet(0, pi / 2, pi,
                                         2 * pi)) == FiniteSet(0, pi / 2, pi)
    assert normalize_theta_set(FiniteSet(0, -pi / 2, -pi,
                                         -2 * pi)) == FiniteSet(
                                             0, pi, pi * Rational(3, 2))
    assert normalize_theta_set(FiniteSet(pi*Rational(-3, 2), pi/2)) == \
        FiniteSet(pi/2)
    assert normalize_theta_set(FiniteSet(2 * pi)) == FiniteSet(0)

    # Unions
    assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
        Union(Interval(0, pi/3), Interval(pi/2, pi))
    assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, pi*Rational(7, 3)))) == \
        Interval(0, pi)

    # ValueError for non-real sets
    raises(ValueError, lambda: normalize_theta_set(S.Complexes))

    # NotImplementedError for subset of reals
    raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1)))

    # NotImplementedError without pi as coefficient
    raises(NotImplementedError,
           lambda: normalize_theta_set(Interval(1, 2 * pi)))
    raises(NotImplementedError,
           lambda: normalize_theta_set(Interval(2 * pi, 10)))
    raises(NotImplementedError,
           lambda: normalize_theta_set(FiniteSet(0, 3, 3 * pi)))
Пример #13
0
def solve_univariate_inequality(expr,
                                gen,
                                relational=True,
                                domain=S.Reals,
                                continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in :func:`sympy.solvers.solveset.solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy.solvers.solvers import denoms

    if domain.is_subset(S.Reals) is False:
        raise NotImplementedError(
            filldedent('''
        Inequalities in the complex domain are
        not supported. Try the real domain by
        setting domain=S.Reals'''))
    elif domain is not S.Reals:
        rv = solve_univariate_inequality(
            expr, gen, relational=False,
            continuous=continuous).intersection(domain)
        if relational:
            rv = rv.as_relational(gen)
        return rv
    else:
        pass  # continue with attempt to solve in Real domain

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    _gen = gen
    _domain = domain
    if gen.is_extended_real is False:
        rv = S.EmptySet
        return rv if not relational else rv.as_relational(_gen)
    elif gen.is_extended_real is None:
        gen = Dummy('gen', extended_real=True)
        try:
            expr = expr.xreplace({_gen: gen})
        except TypeError:
            raise TypeError(
                filldedent('''
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                '''))

    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period == S.Zero:
            e = expand_mul(e)
            const = expr.func(e, 0)
            if const is S.true:
                rv = domain
            elif const is S.false:
                rv = S.EmptySet
        elif period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel in ('<', '<='):
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel in ('>', '>='):
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True).intersect(_domain)
                _domain = domain

        if rv is None:
            n, d = e.as_numer_denom()
            try:
                if gen not in n.free_symbols and len(e.free_symbols) > 1:
                    raise ValueError
                # this might raise ValueError on its own
                # or it might give None...
                solns = solvify(e, gen, domain)
                if solns is None:
                    # in which case we raise ValueError
                    raise ValueError
            except (ValueError, NotImplementedError):
                # replace gen with generic x since it's
                # univariate anyway
                raise NotImplementedError(
                    filldedent('''
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    ''' % expr.subs(gen, Symbol('x'))))

            expanded_e = expand_mul(e)

            def valid(x):
                # this is used to see if gen=x satisfies the
                # relational by substituting it into the
                # expanded form and testing against 0, e.g.
                # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
                # and expanded_e = x**2 + x - 2; the test is
                # whether a given value of x satisfies
                # x**2 + x - 2 < 0
                #
                # expanded_e, expr and gen used from enclosing scope
                v = expanded_e.subs(gen, expand_mul(x))
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_extended_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    # not comparable or couldn't be evaluated
                    raise NotImplementedError(
                        'relationship did not evaluate: %s' % r)

            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(expanded_e, gen, domain)

            include_x = '=' in expr.rel_op and expr.rel_op != '!='

            try:
                discontinuities = set(domain.boundary -
                                      FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(
                    *(solns + singularities +
                      list(discontinuities))).intersection(
                          Interval(domain.inf, domain.sup, domain.inf
                                   not in domain, domain.sup not in domain))
                if all(r.is_number for r in critical_points):
                    reals = _nsort(critical_points, separated=True)[0]
                else:
                    sifted = sift(critical_points,
                                  lambda x: x.is_extended_real)
                    if sifted[None]:
                        # there were some roots that weren't known
                        # to be real
                        raise NotImplementedError
                    try:
                        reals = sifted[True]
                        if len(reals) > 1:
                            reals = list(sorted(reals))
                    except TypeError:
                        raise NotImplementedError
            except NotImplementedError:
                raise NotImplementedError(
                    'sorting of these roots is not supported')

            # If expr contains imaginary coefficients, only take real
            # values of x for which the imaginary part is 0
            make_real = S.Reals
            if im(expanded_e) != S.Zero:
                check = True
                im_sol = FiniteSet()
                try:
                    a = solveset(im(expanded_e), gen, domain)
                    if not isinstance(a, Interval):
                        for z in a:
                            if z not in singularities and valid(
                                    z) and z.is_extended_real:
                                im_sol += FiniteSet(z)
                    else:
                        start, end = a.inf, a.sup
                        for z in _nsort(critical_points + FiniteSet(end)):
                            valid_start = valid(start)
                            if start != end:
                                valid_z = valid(z)
                                pt = _pt(start, z)
                                if pt not in singularities and pt.is_extended_real and valid(
                                        pt):
                                    if valid_start and valid_z:
                                        im_sol += Interval(start, z)
                                    elif valid_start:
                                        im_sol += Interval.Ropen(start, z)
                                    elif valid_z:
                                        im_sol += Interval.Lopen(start, z)
                                    else:
                                        im_sol += Interval.open(start, z)
                            start = z
                        for s in singularities:
                            im_sol -= FiniteSet(s)
                except (TypeError):
                    im_sol = S.Reals
                    check = False

                if im_sol is S.EmptySet:
                    raise ValueError(
                        filldedent('''
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        ''' % (expr.subs(gen, _gen), _gen)))

                make_real = make_real.intersect(im_sol)

            sol_sets = [S.EmptySet]

            start = domain.inf
            if start in domain and valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if end in domain and valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            if im(expanded_e) != S.Zero and check:
                rv = (make_real).intersect(_domain)
            else:
                rv = Intersection((Union(*sol_sets)), make_real,
                                  _domain).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)