def eval(self, environment, gene, date1, date2): timeperiod = (gene.next_value(environment, date1, date2)) date1 = environment.shift_date(date1, -(timeperiod - 1), -1) df = gene.next_value(environment, date1, date2) res = df.apply(lambda x: pd.Series( talib.TSF(x.values, timeperiod=timeperiod), index=df.index)) return res.iloc[timeperiod - 1:]
def test_TSF(self): self.env.add_operator('linearreg', { 'operator': OperatorTSF, }) string = 'linearreg(14, open)' gene = self.env.parse_string(string) self.assertRaises(IndexError, gene.eval, self.env, self.dates[12], self.dates[-1]) df = gene.eval(self.env, self.dates[13], self.dates[14]) ser0, ser1 = df.iloc[0], df.iloc[1] o = self.env.get_data_value('open').values res0, res1, res = [], [], [] for i in df.columns: res0.append(talib.TSF(o[:14, i], timeperiod=14)[-1] == ser0[i]) res1.append(talib.TSF(o[1:14+1, i], timeperiod=14)[-1] == ser1[i]) res.append(talib.TSF(o[:14+1, i], timeperiod=14)[-1] == ser1[i]) self.assertTrue(all(res0) and all(res1) and all(res))
def TSF(close_ts, timeperiod=14): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) TSF = close_df.apply(lambda x: talib.TSF(x, timeperiod=14)) TSF_ts = torch.tensor(tsf.values, dtype=close_ts.dtype, device=close_ts.device) return TSF_ts
def extract_features(data): high = data['High'] low = data['Low'] close = data['Close'] volume = data['Volume'] open_ = data['Open'] data['ADX'] = ta.ADX(high, low, close, timeperiod=19) data['CCI'] = ta.CCI(high, low, close, timeperiod=19) data['CMO'] = ta.CMO(close, timeperiod=14) data['MACD'], X, Y = ta.MACD(close, fastperiod=10, slowperiod=30, signalperiod=9) data['MFI'] = ta.MFI(high, low, close, volume, timeperiod=19) data['MOM'] = ta.MOM(close, timeperiod=9) data['ROCR'] = ta.ROCR(close, timeperiod=12) data['RSI'] = ta.RSI(close, timeperiod=19) data['STOCHSLOWK'], data['STOCHSLOWD'] = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) data['TRIX'] = ta.TRIX(close, timeperiod=30) data['WILLR'] = ta.WILLR(high, low, close, timeperiod=14) data['OBV'] = ta.OBV(close, volume) data['TSF'] = ta.TSF(close, timeperiod=14) data['NATR'] = ta.NATR(high, low, close)#, timeperiod=14) data['ULTOSC'] = ta.ULTOSC(high, low, close) data['AROONOSC'] = ta.AROONOSC(high, low, timeperiod=14) data['BOP'] = ta.BOP(open_, high, low, close) data['LINEARREG'] = ta.LINEARREG(close) data['AP0'] = ta.APO(close, fastperiod=9, slowperiod=23, matype=1) data['TEMA'] = ta.TRIMA(close, 29) return data
def compTSF(self): tsf = talib.TSF(self.close,timeperiod=self.lookback) self.removeNullID(tsf) self.rawFeatures['TSF'] = tsf FEATURE_SIZE_DICT['TSF'] = 1 return
def update(self, data, N): close = data[4] self.clear() self.series.attachAxis(self.chart.ax) self.series.attachAxis(self.chart.ay) tsf = talib.TSF(close, timeperiod=14) firstNotNan = np.where(np.isnan(tsf))[0][-1] + 1 tsf[:firstNotNan] = tsf[firstNotNan] for i, val in enumerate(tsf[-N:]): self.series.append(i + 0.5, val)
def TSF(close, timeperiod=14): ''' Time Series Forecast 时间序列预测 分组: Statistic Functions 统计函数 简介: 一种历史资料延伸预测,也称历史引伸预测法。 是以时间数列所能反映的社会经济现象的发展过程和规律性, 进行引伸外推,预测其发展趋势的方法 real = TSF(close, timeperiod=14) ''' return talib.TSF(close, timeperiod)
def __get_predictors(data): open_list = np.asarray(data["open"].tolist()) close_list = np.asarray(data["close"].tolist()) high_list = np.asarray(data["high"].tolist()) low_list = np.asarray(data["low"].tolist()) volume_list = np.asarray(data["volume"].tolist()) adj_close = close_list obv = talib.OBV(close_list, volume_list) rsi6 = talib.RSI(close_list, timeperiod=6) rsi12 = talib.RSI(close_list, timeperiod=12) sma3 = talib.SMA(close_list, timeperiod=3) ema6 = talib.EMA(close_list, timeperiod=6) ema12 = talib.EMA(close_list, timeperiod=12) atr14 = talib.ATR(high_list, low_list, close_list, timeperiod=14) mfi14 = talib.MFI(high_list, low_list, close_list, volume_list, timeperiod=14) adx14 = talib.ADX(high_list, low_list, close_list, timeperiod=14) adx20 = talib.ADX(high_list, low_list, close_list, timeperiod=20) mom1 = talib.MOM(close_list, timeperiod=1) mom3 = talib.MOM(close_list, timeperiod=3) cci12 = talib.CCI(high_list, low_list, close_list, timeperiod=14) cci20 = talib.CCI(high_list, low_list, close_list, timeperiod=20) rocr3 = talib.ROCR(close_list, timeperiod=3) rocr12 = talib.ROCR(close_list, timeperiod=12) macd, macd_sig, macd_hist = talib.MACD(close_list) willr = talib.WILLR(high_list, low_list, close_list) tsf10 = talib.TSF(close_list, timeperiod=10) tsf20 = talib.TSF(close_list, timeperiod=20) trix = talib.TRIX(close_list) bbandupper, bbandmiddle, bbandlower = talib.BBANDS(close_list) return [adj_close[-1], obv[-1], rsi6[-1], rsi12[-1], sma3[-1], ema6[-1], ema12[-1], atr14[-1], mfi14[-1], adx14[-1], adx20[-1], mom1[-1], mom3[-1], cci12[-1], cci20[-1], \ rocr3[-1], rocr12[-1], macd[-1], macd_sig[-1], macd_hist[-1], willr[-1], tsf10[-1], tsf20[-1], trix[-1], bbandupper[-1], bbandmiddle[-1], bbandlower[-1]]
def getStatFunctions(df): high = df['High'] low = df['Low'] close = df['Close'] open = df['Open'] volume = df['Volume'] df['BETA'] = ta.BETA(high, low, timeperiod=5) df['CORREL'] = ta.CORREL(high, low, timeperiod=30) df['LINREG'] = ta.LINEARREG(close, timeperiod=14) df['LINREGANGLE'] = ta.LINEARREG_ANGLE(close, timeperiod=14) df['LINREGINTERCEPT'] = ta.LINEARREG_INTERCEPT(close, timeperiod=14) df['LINREGSLOPE'] = ta.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = ta.STDDEV(close, timeperiod=5, nbdev=1) df['TSF'] = ta.TSF(close, timeperiod=14) df['VAR'] = ta.VAR(close, timeperiod=5, nbdev=1)
def tsf(client, symbol, range="6m", closecol="close", period=14, nbdev=1): """This will return a dataframe of standard deviation for the given symbol across the given range Args: client (pyEX.Client): Client symbol (string): Ticker range (string): range to use, for pyEX.chart closecol (string): column to use to calculate period (int): period to calculate adx across Returns: DataFrame: result """ df = client.chartDF(symbol, range) tsf = t.TSF(df[closecol].values.astype(float), period) return pd.DataFrame({closecol: df[closecol].values, "tsf": tsf})
def tsf(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> Union[ float, np.ndarray]: """ TSF - Time Series Forecast :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default: False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) res = talib.TSF(source, timeperiod=period) return res if sequential else res[-1]
def statistic_process(event): print(event.widget.get()) statistic = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(statistic, fontproperties='SimHei') if statistic == '线性回归': real = ta.LINEARREG(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归角度': real = ta.LINEARREG_ANGLE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归截距': real = ta.LINEARREG_INTERCEPT(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归斜率': real = ta.LINEARREG_SLOPE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '标准差': real = ta.STDDEV(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') elif statistic == '时间序列预测': real = ta.TSF(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '方差': real = ta.VAR(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') plt.show()
def tsf(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ TSF - Time Series Forecast :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] source = get_candle_source(candles, source_type=source_type) res = talib.TSF(source, timeperiod=period) return res if sequential else res[-1]
def Stat_Function(dataframe): #Statistic Functions #BETA - Beta df[f'{ratio}_BETA'] = talib.BETA(High, Low, timeperiod=5) #CORREL - Pearson's Correlation Coefficient (r) df[f'{ratio}_CORREL'] = talib.CORREL(High, Low, timeperiod=30) #LINEARREG - Linear Regression df[f'{ratio}_LINEARREG'] = talib.LINEARREG(Close, timeperiod=14) #LINEARREG_ANGLE - Linear Regression Angle df[f'{ratio}_LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(Close, timeperiod=14) #LINEARREG_INTERCEPT - Linear Regression Intercept df[f'{ratio}_LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT(Close, timeperiod=14) #LINEARREG_SLOPE - Linear Regression Slope df[f'{ratio}_LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(Close, timeperiod=14) #STDDEV - Standard Deviation df[f'{ratio}_STDDEV'] = talib.STDDEV(Close, timeperiod=5, nbdev=1) #TSF - Time Series Forecast df[f'{ratio}_TSF'] = talib.TSF(Close, timeperiod=14) #VAR - Variance df[f'{ratio}_VAR'] = talib.VAR(Close, timeperiod=5, nbdev=1) return
def addFeatures(stock): """ Input pandas data frame, generate features for sock. """ df = stock df['TSF'] = talib.TSF(np.asarray(df.AdjClose)) df['STDDEV'] = talib.STDDEV(np.asarray(df.AdjClose)) real = talib.ADOSC(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose), np.asarray(df.Volume.astype('double'))) df['ADOSC'] = real > 0 df['ADOSC'] = df['ADOSC'].astype(int) df['ADX'] = talib.ADX(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose)) macd, macdsignal, macdhist = talib.MACD(np.asarray(df.AdjClose)) df['MACD'] = macd df['MOM'] = talib.MOM(np.asarray(df.AdjClose)) df['MFI'] = talib.MFI(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose), np.asarray(df.Volume.astype('double'))) df['RSI'] = talib.RSI(np.asarray(df.AdjClose)) df['TRIX'] = talib.TRIX(np.asarray(df.AdjClose)) df['ATR'] = talib.ATR(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose)) #Add 9 lagged return for i in range(1,10): name = 'laggedReturn_' + str(i) df[name] = df.AdjClose.pct_change(periods=i) return df
def plot_timeseries(ax, data): """This function plots ######################## TIME SERIES FORCAST ################################### The Time Series Forecast indicator displays the statistical trend of a security's price over a specified time period. The trend is based on linear regression analysis. Rather than plotting a straight linear regression trendline, the Time Series Forecast plots the last point of multiple linear regression trendlines. The resulting Time Series Forecast indicator is sometimes referred to as the "moving linear regression" indicator or the "regression oscillator." The interpretation of a Time Series Forecast is identical to a moving average. However, the Time Series Forecast indicator has two advantages over classic moving averages. Unlike a moving average, a Time Series Forecast does not exhibit as much delay when adjusting to price changes. Since the indicator is "fitting" itself to the data rather than averaging them, the Time Series Forecast is more responsive to price changes.""" time_series_ind = talib.TSF(data['Adj_Close'], timeperiod=14) ax.plot(data["Date"], time_series_ind, label="TIME SERIES FORCAST", color="sandybrown")
df['CORREL'] = ta.CORREL(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), timeperiod=n) df['LINEARREG'] = ta.LINEARREG(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_ANGLE'] = ta.LINEARREG_ANGLE(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_INTERCEPT'] = ta.LINEARREG_INTERCEPT(np.array( df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_SLOPE'] = ta.LINEARREG_SLOPE(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['STDDEV'] = ta.STDDEV(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1) df['Time Series Forecast'] = ta.TSF(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['VAR'] = ta.VAR(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1) # Overlap Studies Functions df['upperband'], df['middleband'], df['lowerband'] = ta.BBANDS(np.array( df['Adj Close'].shift(1)), timeperiod=n, nbdevup=2, nbdevdn=2, matype=0) df['DEMA'] = ta.DEMA(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['EMA'] = ta.EMA(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['HT_TRENDLINE'] = ta.HT_TRENDLINE(np.array(df['Adj Close'].shift(1))) df['KAMA'] = ta.KAMA(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['MA'] = ta.MA(np.array(df['Adj Close'].shift(1)), timeperiod=n, matype=0) # df['mama'],df['fama'] = ta.MAMA(np.array(df['Adj Close'].shift(1)), fastlimit=0, slowlimit=0)
import talib as ta from forex_python.converter import CurrencyRates moving_averages_functions = { 'SMA': lambda close, time_p: ta.SMA(close, time_p), 'EMA': lambda close, time_p: ta.EMA(close, time_p), 'WMA': lambda close, time_p: ta.WMA(close, time_p), 'LINEAR_REG': lambda close, time_p: ta.LINEARREG(close, time_p), 'TRIMA': lambda close, time_p: ta.TRIMA(close, time_p), 'DEMA': lambda close, time_p: ta.DEMA(close, time_p), 'HT_TRENDLINE': lambda close, time_p: ta.HT_TRENDLINE(close, time_p), 'TSF': lambda close, time_p: ta.TSF(close, time_p) } def get_pip_value(symbol, account_currency): first_symbol = symbol[0:3] second_symbol = symbol[3:6] c = CurrencyRates() return c.convert(second_symbol, account_currency, c.convert(first_symbol, second_symbol, 1))
def get_tsf(self): return talib.TSF(self.close_list)
def TSF(data, **kwargs): _check_talib_presence() prices = _extract_series(data) return talib.TSF(prices, **kwargs)
def ta(name, price_h, price_l, price_c, price_v, price_o): # function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing if name == 'AD': return talib.AD(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float')) if name == 'ADOSC': return talib.ADOSC(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float'), fastperiod=2, slowperiod=10) if name == 'ADX': return talib.ADX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'ADXR': return talib.ADXR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'APO': return talib.APO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0) if name == 'AROON': AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=90) return (AROON_DWON, AROON2_UP) if name == 'AROONOSC': return talib.AROONOSC(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'ATR': return talib.ATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'AVGPRICE': return talib.AVGPRICE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'BBANDS': BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c, dtype='float'), matype=MA_Type.T3) return BBANDS1 if name == 'BETA': return talib.BETA(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=5) if name == 'BOP': return talib.BOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CCI': return talib.CCI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'CDL2CROWS': return talib.CDL2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3BLACKCROWS': return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3INSIDE': return talib.CDL3INSIDE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3LINESTRIKE': return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3OUTSIDE': return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3STARSINSOUTH': return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3WHITESOLDIERS': return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLABANDONEDBABY': return talib.CDLABANDONEDBABY(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLADVANCEBLOCK': return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLBELTHOLD': return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLBREAKAWAY': return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCLOSINGMARUBOZU': return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCONCEALBABYSWALL': return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCOUNTERATTACK': return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDARKCLOUDCOVER': return talib.CDLDARKCLOUDCOVER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLDOJI': return talib.CDLDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDOJISTAR': return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDRAGONFLYDOJI': return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLENGULFING': return talib.CDLENGULFING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLEVENINGDOJISTAR': return talib.CDLEVENINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLEVENINGSTAR': return talib.CDLEVENINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLGAPSIDESIDEWHITE': return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLGRAVESTONEDOJI': return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHAMMER': return talib.CDLHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHANGINGMAN': return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHARAMI': return talib.CDLHARAMI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHARAMICROSS': return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIGHWAVE': return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIKKAKE': return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIKKAKEMOD': return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHOMINGPIGEON': return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLIDENTICAL3CROWS': return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLINNECK': return talib.CDLINNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLINVERTEDHAMMER': return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLKICKING': return talib.CDLKICKING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLKICKINGBYLENGTH': return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLADDERBOTTOM': return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLONGLEGGEDDOJI': return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLONGLINE': return talib.CDLLONGLINE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMARUBOZU': return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMATCHINGLOW': return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMATHOLD': return talib.CDLMATHOLD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMORNINGDOJISTAR': return talib.CDLMORNINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLMORNINGSTAR': return talib.CDLMORNINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLONNECK': return talib.CDLONNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLPIERCING': return talib.CDLPIERCING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLRICKSHAWMAN': return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLRISEFALL3METHODS': return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSEPARATINGLINES': return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSHOOTINGSTAR': return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSHORTLINE': return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSPINNINGTOP': return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSTALLEDPATTERN': return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSTICKSANDWICH': return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTAKURI': return talib.CDLTAKURI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTASUKIGAP': return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTHRUSTING': return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTRISTAR': return talib.CDLTRISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLUNIQUE3RIVER': return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLUPSIDEGAP2CROWS': return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLXSIDEGAP3METHODS': return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CMO': return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'CORREL': return talib.CORREL(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=30) if name == 'DEMA': return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'DX': return talib.DX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'EMA': return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'HT_DCPERIOD': return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float')) if name == 'HT_DCPHASE': return talib.HT_DCPHASE(np.asarray(price_c, dtype='float')) if name == 'HT_PHASOR': HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR( np.asarray(price_c, dtype='float') ) # use HT_PHASOR1 for the indication of up and down return HT_PHASOR1 if name == 'HT_SINE': HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float')) return HT_SINE1 if name == 'HT_TRENDLINE': return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float')) if name == 'HT_TRENDMODE': return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float')) if name == 'KAMA': return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'LINEARREG': return talib.LINEARREG(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_ANGLE': return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_INTERCEPT': return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_SLOPE': return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'MA': return talib.MA(np.asarray(price_c, dtype='float'), timeperiod=30, matype=0) if name == 'MACD': MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, signalperiod=9) return MACD1 if nam == 'MACDEXT': return talib.MACDEXT(np.asarray(price_c, dtype='float'), fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) if name == 'MACDFIX': MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c, dtype='float'), signalperiod=9) return MACDFIX1 if name == 'MAMA': MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'), fastlimit=0, slowlimit=0) return MAMA1 if name == 'MEDPRICE': return talib.MEDPRICE(np.array(price_h), np.asarray(price_l, dtype='float')) if name == 'MINUS_DI': return talib.MINUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'MINUS_DM': return talib.MINUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'MOM': return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'NATR': return talib.NATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'OBV': return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float')) if name == 'PLUS_DI': return talib.PLUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'PLUS_DM': return talib.PLUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'PPO': return talib.PPO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0) if name == 'ROC': return talib.ROC(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'ROCP': return talib.ROCP(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'ROCR100': return talib.ROCR100(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'RSI': return talib.RSI(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'SAR': return talib.SAR(np.array(price_h), np.asarray(price_l, dtype='float'), acceleration=0, maximum=0) if name == 'SAREXT': return talib.SAREXT(np.array(price_h), np.asarray(price_l, dtype='float'), startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) if name == 'SMA': return talib.SMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'STDDEV': return talib.STDDEV(np.asarray(price_c, dtype='float'), timeperiod=5, nbdev=1) if name == 'STOCH': STOCH1, STOCH2 = talib.STOCH(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) return STOCH1 if name == 'STOCHF': STOCHF1, STOCHF2 = talib.STOCHF(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), fastk_period=5, fastd_period=3, fastd_matype=0) return STOCHF1 if name == 'STOCHRSI': STOCHRSI1, STOCHRSI2 = talib.STOCHRSI(np.asarray(price_c, dtype='float'), timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) return STOCHRSI1 if name == 'T3': return talib.T3(np.asarray(price_c, dtype='float'), timeperiod=5, vfactor=0) if name == 'TEMA': return talib.TEMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TRANGE': return talib.TRANGE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'TRIMA': return talib.TRIMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TRIX': return talib.TRIX(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TSF': return talib.TSF(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'TYPPRICE': return talib.TYPPRICE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'ULTOSC': return talib.ULTOSC(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod1=7, timeperiod2=14, timeperiod3=28) if name == 'VAR': return talib.VAR(np.asarray(price_c, dtype='float'), timeperiod=5, nbdev=1) if name == 'WCLPRICE': return talib.WCLPRICE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'WILLR': return talib.WILLR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'WMA': return talib.WMA(np.asarray(price_c, dtype='float'), timeperiod=30)
def get_talib_stock_daily( stock_code, s, e, append_ori_close=False, norms=['volume', 'amount', 'ht_dcphase', 'obv', 'adosc', 'ad', 'cci']): """获取经过talib处理后的股票日线数据""" stock_data = QA.QA_fetch_stock_day_adv(stock_code, s, e) stock_df = stock_data.to_qfq().data if append_ori_close: stock_df['o_close'] = stock_data.data['close'] # stock_df['high_qfq'] = stock_data.to_qfq().data['high'] # stock_df['low_hfq'] = stock_data.to_hfq().data['low'] close = np.array(stock_df['close']) high = np.array(stock_df['high']) low = np.array(stock_df['low']) _open = np.array(stock_df['open']) _volume = np.array(stock_df['volume']) stock_df['dema'] = talib.DEMA(close) stock_df['ema'] = talib.EMA(close) stock_df['ht_tradeline'] = talib.HT_TRENDLINE(close) stock_df['kama'] = talib.KAMA(close) stock_df['ma'] = talib.MA(close) stock_df['mama'], stock_df['fama'] = talib.MAMA(close) # MAVP stock_df['midpoint'] = talib.MIDPOINT(close) stock_df['midprice'] = talib.MIDPRICE(high, low) stock_df['sar'] = talib.SAR(high, low) stock_df['sarext'] = talib.SAREXT(high, low) stock_df['sma'] = talib.SMA(close) stock_df['t3'] = talib.T3(close) stock_df['tema'] = talib.TEMA(close) stock_df['trima'] = talib.TRIMA(close) stock_df['wma'] = talib.WMA(close) stock_df['adx'] = talib.ADX(high, low, close) stock_df['adxr'] = talib.ADXR(high, low, close) stock_df['apo'] = talib.APO(close) stock_df['aroondown'], stock_df['aroonup'] = talib.AROON(high, low) stock_df['aroonosc'] = talib.AROONOSC(high, low) stock_df['bop'] = talib.BOP(_open, high, low, close) stock_df['cci'] = talib.CCI(high, low, close) stock_df['cmo'] = talib.CMO(close) stock_df['dx'] = talib.DX(high, low, close) # MACD stock_df['macd'], stock_df['macdsignal'], stock_df[ 'macdhist'] = talib.MACDEXT(close) # MACDFIX stock_df['mfi'] = talib.MFI(high, low, close, _volume) stock_df['minus_di'] = talib.MINUS_DI(high, low, close) stock_df['minus_dm'] = talib.MINUS_DM(high, low) stock_df['mom'] = talib.MOM(close) stock_df['plus_di'] = talib.PLUS_DI(high, low, close) stock_df['plus_dm'] = talib.PLUS_DM(high, low) stock_df['ppo'] = talib.PPO(close) stock_df['roc'] = talib.ROC(close) stock_df['rocp'] = talib.ROCP(close) stock_df['rocr'] = talib.ROCR(close) stock_df['rocr100'] = talib.ROCR100(close) stock_df['rsi'] = talib.RSI(close) stock_df['slowk'], stock_df['slowd'] = talib.STOCH(high, low, close) stock_df['fastk'], stock_df['fastd'] = talib.STOCHF(high, low, close) # STOCHRSI - Stochastic Relative Strength Index stock_df['trix'] = talib.TRIX(close) stock_df['ultosc'] = talib.ULTOSC(high, low, close) stock_df['willr'] = talib.WILLR(high, low, close) stock_df['ad'] = talib.AD(high, low, close, _volume) stock_df['adosc'] = talib.ADOSC(high, low, close, _volume) stock_df['obv'] = talib.OBV(close, _volume) stock_df['ht_dcperiod'] = talib.HT_DCPERIOD(close) stock_df['ht_dcphase'] = talib.HT_DCPHASE(close) stock_df['inphase'], stock_df['quadrature'] = talib.HT_PHASOR(close) stock_df['sine'], stock_df['leadsine'] = talib.HT_PHASOR(close) stock_df['ht_trendmode'] = talib.HT_TRENDMODE(close) stock_df['avgprice'] = talib.AVGPRICE(_open, high, low, close) stock_df['medprice'] = talib.MEDPRICE(high, low) stock_df['typprice'] = talib.TYPPRICE(high, low, close) stock_df['wclprice'] = talib.WCLPRICE(high, low, close) stock_df['atr'] = talib.ATR(high, low, close) stock_df['natr'] = talib.NATR(high, low, close) stock_df['trange'] = talib.TRANGE(high, low, close) stock_df['beta'] = talib.BETA(high, low) stock_df['correl'] = talib.CORREL(high, low) stock_df['linearreg'] = talib.LINEARREG(close) stock_df['linearreg_angle'] = talib.LINEARREG_ANGLE(close) stock_df['linearreg_intercept'] = talib.LINEARREG_INTERCEPT(close) stock_df['linearreg_slope'] = talib.LINEARREG_SLOPE(close) stock_df['stddev'] = talib.STDDEV(close) stock_df['tsf'] = talib.TSF(close) stock_df['var'] = talib.VAR(close) stock_df = stock_df.reset_index().set_index('date') if norms: x = stock_df[norms].values # returns a numpy array x_scaled = MinMaxScaler().fit_transform(x) stock_df = stock_df.drop(columns=norms).join( pd.DataFrame(x_scaled, columns=norms, index=stock_df.index)) # stock_df = stock_df.drop(columns=['code', 'open', 'high', 'low']) stock_df = stock_df.dropna() stock_df = stock_df.drop(columns=['code']) return stock_df
def get_datasets(asset, currency, granularity, datapoints): """Fetch the API and precess the desired pair Arguments: asset {str} -- First pair currency {str} -- Second pair granularity {str ['day', 'hour']} -- Granularity datapoints {int [100 - 2000]} -- [description] Returns: pandas.Dataframe -- The OHLCV and indicators dataframe """ df_train_path = 'datasets/bot_train_{}_{}_{}.csv'.format( asset + currency, datapoints, granularity) df_rollout_path = 'datasets/bot_rollout_{}_{}_{}.csv'.format( asset + currency, datapoints, granularity) emojis = [ ':moneybag:', ':yen:', ':dollar:', ':pound:', ':euro:', ':credit_card:', ':money_with_wings:', ':gem:' ] if not os.path.exists(df_rollout_path): headers = { 'User-Agent': 'Mozilla/5.0', 'authorization': 'Apikey 3d7d3e9e6006669ac00584978342451c95c3c78421268ff7aeef69995f9a09ce' } # OHLC # url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&e=Binance&limit={}'.format(granularity, asset, currency, datapoints) url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&limit={}'.format( granularity, asset, currency, datapoints) # print(emoji.emojize(':dizzy: :large_blue_diamond: :gem: :bar_chart: :crystal_ball: :chart_with_downwards_trend: :chart_with_upwards_trend: :large_orange_diamond: loading...', use_aliases=True)) print( colored( emoji.emojize('> ' + random.choice(emojis) + ' downloading ' + asset + '/' + currency, use_aliases=True), 'green')) # print(colored('> downloading ' + asset + '/' + currency, 'green')) response = requests.get(url, headers=headers) json_response = response.json() status = json_response['Response'] if status == "Error": print(colored('=== {} ==='.format(json_response['Message']), 'red')) raise AssertionError() result = json_response['Data'] df = pd.DataFrame(result) print(df.tail()) df['Date'] = pd.to_datetime(df['time'], utc=True, unit='s') df.drop('time', axis=1, inplace=True) # indicators # https://github.com/mrjbq7/ta-lib/blob/master/docs/func.md open_price, high, low, close = np.array(df['open']), np.array( df['high']), np.array(df['low']), np.array(df['close']) volume = np.array(df['volumefrom']) # cycle indicators df.loc[:, 'HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df.loc[:, 'HT_DCPHASE'] = talib.HT_DCPHASE(close) df.loc[:, 'HT_PHASOR_inphase'], df.loc[:, 'HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df.loc[:, 'HT_SINE_sine'], df.loc[:, 'HT_SINE_leadsine'] = talib.HT_SINE( close) df.loc[:, 'HT_TRENDMODE'] = talib.HT_TRENDMODE(close) # momemtum indicators df.loc[:, 'ADX'] = talib.ADX(high, low, close, timeperiod=12) df.loc[:, 'ADXR'] = talib.ADXR(high, low, close, timeperiod=13) df.loc[:, 'APO'] = talib.APO(close, fastperiod=5, slowperiod=10, matype=0) df.loc[:, 'AROON_down'], df.loc[:, 'AROON_up'] = talib.AROON(high, low, timeperiod=15) df.loc[:, 'AROONOSC'] = talib.AROONOSC(high, low, timeperiod=13) df.loc[:, 'BOP'] = talib.BOP(open_price, high, low, close) df.loc[:, 'CCI'] = talib.CCI(high, low, close, timeperiod=13) df.loc[:, 'CMO'] = talib.CMO(close, timeperiod=14) df.loc[:, 'DX'] = talib.DX(high, low, close, timeperiod=10) df['MACD'], df['MACD_signal'], df['MACD_hist'] = talib.MACD( close, fastperiod=5, slowperiod=10, signalperiod=20) df.loc[:, 'MFI'] = talib.MFI(high, low, close, volume, timeperiod=12) df.loc[:, 'MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=10) df.loc[:, 'MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df.loc[:, 'MOM'] = talib.MOM(close, timeperiod=20) df.loc[:, 'PPO'] = talib.PPO(close, fastperiod=17, slowperiod=35, matype=2) df.loc[:, 'ROC'] = talib.ROC(close, timeperiod=12) df.loc[:, 'RSI'] = talib.RSI(close, timeperiod=25) df.loc[:, 'STOCH_k'], df.loc[:, 'STOCH_d'] = talib.STOCH(high, low, close, fastk_period=35, slowk_period=12, slowk_matype=0, slowd_period=7, slowd_matype=0) df.loc[:, 'STOCHF_k'], df.loc[:, 'STOCHF_d'] = talib.STOCHF(high, low, close, fastk_period=28, fastd_period=14, fastd_matype=0) df.loc[:, 'STOCHRSI_K'], df.loc[:, 'STOCHRSI_D'] = talib.STOCHRSI( close, timeperiod=35, fastk_period=12, fastd_period=10, fastd_matype=1) df.loc[:, 'TRIX'] = talib.TRIX(close, timeperiod=30) df.loc[:, 'ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=14, timeperiod2=28, timeperiod3=35) df.loc[:, 'WILLR'] = talib.WILLR(high, low, close, timeperiod=35) # overlap studies df.loc[:, 'BBANDS_upper'], df.loc[:, 'BBANDS_middle'], df.loc[:, 'BBANDS_lower'] = talib.BBANDS( close, timeperiod= 12, nbdevup=2, nbdevdn=2, matype=0) df.loc[:, 'DEMA'] = talib.DEMA(close, timeperiod=30) df.loc[:, 'EMA'] = talib.EMA(close, timeperiod=7) df.loc[:, 'HT_TRENDLINE'] = talib.HT_TRENDLINE(close) df.loc[:, 'KAMA'] = talib.KAMA(close, timeperiod=5) df.loc[:, 'MA'] = talib.MA(close, timeperiod=5, matype=0) df.loc[:, 'MIDPOINT'] = talib.MIDPOINT(close, timeperiod=20) df.loc[:, 'WMA'] = talib.WMA(close, timeperiod=15) df.loc[:, 'SMA'] = talib.SMA(close) # pattern recoginition df.loc[:, 'CDL2CROWS'] = talib.CDL2CROWS(open_price, high, low, close) df.loc[:, 'CDL3BLACKCROWS'] = talib.CDL3BLACKCROWS( open_price, high, low, close) df.loc[:, 'CDL3INSIDE'] = talib.CDL3INSIDE(open_price, high, low, close) df.loc[:, 'CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE( open_price, high, low, close) # price transform df.loc[:, 'WCLPRICE'] = talib.WCLPRICE(high, low, close) # statistic funcitons df.loc[:, 'BETA'] = talib.BETA(high, low, timeperiod=20) df.loc[:, 'CORREL'] = talib.CORREL(high, low, timeperiod=20) df.loc[:, 'STDDEV'] = talib.STDDEV(close, timeperiod=20, nbdev=1) df.loc[:, 'TSF'] = talib.TSF(close, timeperiod=20) df.loc[:, 'VAR'] = talib.VAR(close, timeperiod=20, nbdev=1) # volatility indicators df.loc[:, 'ATR'] = talib.ATR(high, low, close, timeperiod=7) df.loc[:, 'NATR'] = talib.NATR(high, low, close, timeperiod=20) df.loc[:, 'TRANGE'] = talib.TRANGE(high, low, close) # volume indicators df.loc[:, 'AD'] = talib.AD(high, low, close, volume) df.loc[:, 'ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=10, slowperiod=20) df.loc[:, 'OBV'] = talib.OBV(close, volume) # df.fillna(df.mean(), inplace=True) df.dropna(inplace=True) df.set_index('Date', inplace=True) print(colored('> caching' + asset + '/' + currency + ':)', 'cyan')) train_size = round( len(df) * DF_TRAIN_SIZE) # 75% to train -> test with different value df_train = df[:train_size] df_rollout = df[train_size:] df_train.to_csv(df_train_path) df_rollout.to_csv(df_rollout_path) df_train = pd.read_csv( df_train_path) # re-read to avoid indexing issue w/ Ray df_rollout = pd.read_csv(df_rollout_path) else: print( colored( emoji.emojize('> ' + random.choice(emojis) + ' feching ' + asset + '/' + currency + ' from cache', use_aliases=True), 'magenta')) # print(colored('> feching ' + asset + '/' + currency + ' from cache :)', 'magenta')) df_train = pd.read_csv(df_train_path) df_rollout = pd.read_csv(df_rollout_path) # df_train.set_index('Date', inplace=True) # df_rollout.set_index('Date', inplace=True) return df_train, df_rollout
def main(): ohlcv = api_ohlcv('20191017') open, high, low, close, volume, timestamp = [], [], [], [], [], [] for i in ohlcv: open.append(int(i[0])) high.append(int(i[1])) low.append(int(i[2])) close.append(int(i[3])) volume.append(float(i[4])) time_str = str(i[5]) timestamp.append( datetime.fromtimestamp(int( time_str[:10])).strftime('%Y/%m/%d %H:%M:%M')) date_time_index = pd.to_datetime( timestamp) # convert to DateTimeIndex type df = pd.DataFrame( { 'open': open, 'high': high, 'low': low, 'close': close, 'volume': volume }, index=date_time_index) # df.index += pd.offsets.Hour(9) # adjustment for JST if required print(df.shape) print(df.columns) # pct_change f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan y = df.rename(columns={ 'close': 'y' }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0) X = df.copy() y_ = pd.DataFrame(y.map(f), columns=['y']) y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0) df_ = pd.concat([X, y_], axis=1) # check the shape print( '----------------------------------------------------------------------------------------' ) print('X shape: (%i,%i)' % X.shape) print('y shape: (%i,%i)' % y_.shape) print( '----------------------------------------------------------------------------------------' ) print(y_.groupby('y').size()) print('y=1 up, y=0 stay, y=-1 down') print( '----------------------------------------------------------------------------------------' ) # feature calculation open = pd.Series(df['open']) high = pd.Series(df['high']) low = pd.Series(df['low']) close = pd.Series(df['close']) volume = pd.Series(df['volume']) # pct_change for new column X['diff'] = y # Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) # Momentum momentum = talib.MOM(close, timeperiod=5) momentum = momentum.fillna(momentum.mean()) # RSI rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) # ADX adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) # ADX change adx_change = adx.pct_change(1).shift(-1) adx_change = adx_change.fillna(adx_change.mean()) # AD ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad'] X_.join(y_).head(10) # default parameter models X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train.shape)) print('X_test shape: {}'.format(X_test.shape)) print('y_train shape: {}'.format(y_train.shape)) print('y_test shape: {}'.format(y_test.shape)) pipe_knn = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic = Pipeline([('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39))]) pipe_rf = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb] for (i, pipe) in enumerate(pipe_lines): pipe.fit(X_train, y_train.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train.values.ravel(), pipe.predict(X_train)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test.values.ravel(), pipe.predict(X_test)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train.values.ravel(), pipe.predict(X_train), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test.values.ravel(), pipe.predict(X_test), average='micro'))) for (i, pipe) in enumerate(pipe_lines): predict = pipe.predict(X_test) cm = confusion_matrix(y_test.values.ravel(), predict, labels=[-1, 0, 1]) print('{} Confusion Matrix'.format(pipe_names[i])) print(cm) ## Overlap Studies Functions # DEMA - Double Exponential Moving Average dema = talib.DEMA(close, timeperiod=3) dema = dema.fillna(dema.mean()) print('DEMA - Double Exponential Moving Average shape: {}'.format( dema.shape)) # EMA - Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) print('EMA - Exponential Moving Average shape: {}'.format(ema.shape)) # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline hilbert = talib.HT_TRENDLINE(close) hilbert = hilbert.fillna(hilbert.mean()) print( 'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'. format(hilbert.shape)) # KAMA - Kaufman Adaptive Moving Average kama = talib.KAMA(close, timeperiod=3) kama = kama.fillna(kama.mean()) print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format( kama.shape)) # MA - Moving average ma = talib.MA(close, timeperiod=3, matype=0) ma = ma.fillna(ma.mean()) print('MA - Moving average shape: {}'.format(kama.shape)) # MIDPOINT - MidPoint over period midpoint = talib.MIDPOINT(close, timeperiod=7) midpoint = midpoint.fillna(midpoint.mean()) print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape)) # MIDPRICE - Midpoint Price over period midprice = talib.MIDPRICE(high, low, timeperiod=7) midprice = midprice.fillna(midprice.mean()) print('MIDPRICE - Midpoint Price over period shape: {}'.format( midprice.shape)) # SAR - Parabolic SAR sar = talib.SAR(high, low, acceleration=0, maximum=0) sar = sar.fillna(sar.mean()) print('SAR - Parabolic SAR shape: {}'.format(sar.shape)) # SAREXT - Parabolic SAR - Extended sarext = talib.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) sarext = sarext.fillna(sarext.mean()) print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape)) # SMA - Simple Moving Average sma = talib.SMA(close, timeperiod=3) sma = sma.fillna(sma.mean()) print('SMA - Simple Moving Average shape: {}'.format(sma.shape)) # T3 - Triple Exponential Moving Average (T3) t3 = talib.T3(close, timeperiod=5, vfactor=0) t3 = t3.fillna(t3.mean()) print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape)) # TEMA - Triple Exponential Moving Average tema = talib.TEMA(close, timeperiod=3) tema = tema.fillna(tema.mean()) print('TEMA - Triple Exponential Moving Average shape: {}'.format( tema.shape)) # TRIMA - Triangular Moving Average trima = talib.TRIMA(close, timeperiod=3) trima = trima.fillna(trima.mean()) print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape)) # WMA - Weighted Moving Average wma = talib.WMA(close, timeperiod=3) wma = wma.fillna(wma.mean()) print('WMA - Weighted Moving Average shape: {}'.format(wma.shape)) ## Momentum Indicator Functions # ADX - Average Directional Movement Index adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) print('ADX - Average Directional Movement Index shape: {}'.format( adx.shape)) # ADXR - Average Directional Movement Index Rating adxr = talib.ADXR(high, low, close, timeperiod=7) adxr = adxr.fillna(adxr.mean()) print('ADXR - Average Directional Movement Index Rating shape: {}'.format( adxr.shape)) # APO - Absolute Price Oscillator apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) apo = apo.fillna(apo.mean()) print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape)) # AROONOSC - Aroon Oscillator aroon = talib.AROONOSC(high, low, timeperiod=14) aroon = aroon.fillna(aroon.mean()) print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape)) # BOP - Balance Of Power bop = talib.BOP(open, high, low, close) bop = bop.fillna(bop.mean()) print('BOP - Balance Of Power shape: {}'.format(apo.shape)) # CCI - Commodity Channel Index cci = talib.CCI(high, low, close, timeperiod=7) cci = cci.fillna(cci.mean()) print('CCI - Commodity Channel Index shape: {}'.format(cci.shape)) # CMO - Chande Momentum Oscillator cmo = talib.CMO(close, timeperiod=7) cmo = cmo.fillna(cmo.mean()) print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape)) # DX - Directional Movement Index dx = talib.DX(high, low, close, timeperiod=7) dx = dx.fillna(dx.mean()) print('DX - Directional Movement Index shape: {}'.format(dx.shape)) # MFI - Money Flow Index mfi = talib.MFI(high, low, close, volume, timeperiod=7) mfi = mfi.fillna(mfi.mean()) print('MFI - Money Flow Index shape: {}'.format(mfi.shape)) # MINUS_DI - Minus Directional Indicator minusdi = talib.MINUS_DI(high, low, close, timeperiod=14) minusdi = minusdi.fillna(minusdi.mean()) print('MINUS_DI - Minus Directional Indicator shape: {}'.format( minusdi.shape)) # MINUS_DM - Minus Directional Movement minusdm = talib.MINUS_DM(high, low, timeperiod=14) minusdm = minusdm.fillna(minusdm.mean()) print('MINUS_DM - Minus Directional Movement shape: {}'.format( minusdm.shape)) # MOM - Momentum mom = talib.MOM(close, timeperiod=5) mom = mom.fillna(mom.mean()) print('MOM - Momentum shape: {}'.format(mom.shape)) # PLUS_DI - Plus Directional Indicator plusdi = talib.PLUS_DI(high, low, close, timeperiod=14) plusdi = plusdi.fillna(plusdi.mean()) print('PLUS_DI - Plus Directional Indicator shape: {}'.format( plusdi.shape)) # PLUS_DM - Plus Directional Movement plusdm = talib.PLUS_DM(high, low, timeperiod=14) plusdm = plusdm.fillna(plusdm.mean()) print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape)) # PPO - Percentage Price Oscillator ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0) ppo = ppo.fillna(ppo.mean()) print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape)) # ROC - Rate of change:((price/prevPrice)-1)*100 roc = talib.ROC(close, timeperiod=10) roc = roc.fillna(roc.mean()) print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format( roc.shape)) # RSI - Relative Strength Index rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) print('RSI - Relative Strength Index shape: {}'.format(rsi.shape)) # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA trix = talib.TRIX(close, timeperiod=30) trix = trix.fillna(trix.mean()) print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'. format(trix.shape)) # ULTOSC - Ultimate Oscillator ultosc = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) ultosc = ultosc.fillna(ultosc.mean()) print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape)) # WILLR - Williams'%R willr = talib.WILLR(high, low, close, timeperiod=7) willr = willr.fillna(willr.mean()) print("WILLR - Williams'%R shape: {}".format(willr.shape)) ## Volume Indicator Functions # AD - Chaikin A/D Line ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) print('AD - Chaikin A/D Line shape: {}'.format(ad.shape)) # ADOSC - Chaikin A/D Oscillator adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) adosc = adosc.fillna(adosc.mean()) print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape)) # OBV - On Balance Volume obv = talib.OBV(close, volume) obv = obv.fillna(obv.mean()) print('OBV - On Balance Volume shape: {}'.format(obv.shape)) ## Volatility Indicator Functions # ATR - Average True Range atr = talib.ATR(high, low, close, timeperiod=7) atr = atr.fillna(atr.mean()) print('ATR - Average True Range shape: {}'.format(atr.shape)) # NATR - Normalized Average True Range natr = talib.NATR(high, low, close, timeperiod=7) natr = natr.fillna(natr.mean()) print('NATR - Normalized Average True Range shape: {}'.format(natr.shape)) # TRANGE - True Range trange = talib.TRANGE(high, low, close) trange = trange.fillna(trange.mean()) print('TRANGE - True Range shape: {}'.format(natr.shape)) ## Price Transform Functions # AVGPRICE - Average Price avg = talib.AVGPRICE(open, high, low, close) avg = avg.fillna(avg.mean()) print('AVGPRICE - Average Price shape: {}'.format(natr.shape)) # MEDPRICE - Median Price medprice = talib.MEDPRICE(high, low) medprice = medprice.fillna(medprice.mean()) print('MEDPRICE - Median Price shape: {}'.format(medprice.shape)) # TYPPRICE - Typical Price typ = talib.TYPPRICE(high, low, close) typ = typ.fillna(typ.mean()) print('TYPPRICE - Typical Price shape: {}'.format(typ.shape)) # WCLPRICE - Weighted Close Price wcl = talib.WCLPRICE(high, low, close) wcl = wcl.fillna(wcl.mean()) print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape)) ## Cycle Indicator Functions # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period dcperiod = talib.HT_DCPERIOD(close) dcperiod = dcperiod.fillna(dcperiod.mean()) print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'. format(dcperiod.shape)) # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase dcphase = talib.HT_DCPHASE(close) dcphase = dcphase.fillna(dcphase.mean()) print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'. format(dcperiod.shape)) ## Statistic Functions # BETA - Beta beta = talib.BETA(high, low, timeperiod=3) beta = beta.fillna(beta.mean()) print('BETA - Beta shape: {}'.format(beta.shape)) # CORREL - Pearson's Correlation Coefficient(r) correl = talib.CORREL(high, low, timeperiod=30) correl = correl.fillna(correl.mean()) print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format( beta.shape)) # LINEARREG - Linear Regression linreg = talib.LINEARREG(close, timeperiod=7) linreg = linreg.fillna(linreg.mean()) print("LINEARREG - Linear Regression shape: {}".format(linreg.shape)) # STDDEV - Standard Deviation stddev = talib.STDDEV(close, timeperiod=5, nbdev=1) stddev = stddev.fillna(stddev.mean()) print("STDDEV - Standard Deviation shape: {}".format(stddev.shape)) # TSF - Time Series Forecast tsf = talib.TSF(close, timeperiod=7) tsf = tsf.fillna(tsf.mean()) print("TSF - Time Series Forecast shape: {}".format(tsf.shape)) # VAR - Variance var = talib.VAR(close, timeperiod=5, nbdev=1) var = var.fillna(var.mean()) print("VAR - Variance shape: {}".format(var.shape)) ## Feature DataFrame X_full = pd.concat([ X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma, t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi, minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc, willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl, dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var ], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_full.columns = [ 'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint', 'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma', 'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi', 'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix', 'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange', 'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta', 'correl', 'linreg', 'stddev', 'tsf', 'var' ] X_full.join(y_).head(10) # full feature models X_train_full, X_test_full, y_train_full, y_test_full = train_test_split( X_full, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train_full.shape)) print('X_test shape: {}'.format(X_test_full.shape)) print('y_train shape: {}'.format(y_train_full.shape)) print('y_test shape: {}'.format(y_test_full.shape)) pipe_knn_full = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic_full = Pipeline([ ('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39)) ]) pipe_rf_full = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb_full = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines_full = [ pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full ] for (i, pipe) in enumerate(pipe_lines_full): pipe.fit(X_train_full, y_train_full.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train_full.values.ravel(), pipe.predict(X_train_full)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test_full.values.ravel(), pipe.predict(X_test_full)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train_full.values.ravel(), pipe.predict(X_train_full), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test_full.values.ravel(), pipe.predict(X_test_full), average='micro'))) # Univariate Statistics select = SelectPercentile(percentile=25) select.fit(X_train_full, y_train_full.values.ravel()) X_train_selected = select.transform(X_train_full) X_test_selected = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Univariate Statistics-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Cllassifier with Univariate Statistics print( '---------------------------With Univariate Statistics--------------------------------------' ) pipe_gb_percentile = Pipeline([ ('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39)) ]) pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected), average='micro'))) # Model-based Selection select = SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42), threshold="1.25*mean") select.fit(X_train_full, y_train_full.values.ravel()) X_train_model = select.transform(X_train_full) X_test_model = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Model-based Selection--------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Model-based Selection print( '----------------------------With Model-based Selection--------------------------------------' ) pipe_gb_model = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_model.fit(X_train_model, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model), average='micro'))) # Recursive Feature Elimination select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=15) select.fit(X_train_full, y_train_full.values.ravel()) X_train_rfe = select.transform(X_train_full) X_test_rfe = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Recursive Feature Elimination-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Recursive Feature Elimination print( '----------------------------With Recursive Feature Elimination--------------------------------------' ) pipe_gb_rfe = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe), average='micro'))) cv = cross_val_score(pipe_gb, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=39)) print('Cross validation with StratifiedKFold scores: {}'.format(cv)) print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean())) # GridSearch n_features = len(df.columns) param_grid = { 'learning_rate': [0.01, 0.1, 1, 10], 'n_estimators': [1, 10, 100, 200, 300], 'max_depth': [1, 2, 3, 4, 5] } stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39) X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) grid_search = GridSearchCV(GradientBoostingClassifier(), param_grid, cv=stratifiedcv) grid_search.fit(X_train, y_train.values.ravel()) print('GridSearch Train Accuracy: {:.3f}'.format( accuracy_score(y_train.values.ravel(), grid_search.predict(X_train)))) print('GridSearch Test Accuracy: {:.3f}'.format( accuracy_score(y_test.values.ravel(), grid_search.predict(X_test)))) print('GridSearch Train F1 Score: {:.3f}'.format( f1_score(y_train.values.ravel(), grid_search.predict(X_train), average='micro'))) print('GridSearch Test F1 Score: {:.3f}'.format( f1_score(y_test.values.ravel(), grid_search.predict(X_test), average='micro'))) # GridSearch results print("Best params:\n{}".format(grid_search.best_params_)) print("Best cross-validation score: {:.2f}".format( grid_search.best_score_)) results = pd.DataFrame(grid_search.cv_results_) corr_params = results.drop(results.columns[[ 0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20 ]], axis=1) corr_params.head() # GridSearch in nested cv_gb = cross_val_score(grid_search, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=3, shuffle=True, random_state=39)) print('Grid Search with nested cross validation scores: {}'.format(cv_gb)) print('Grid Search with nested cross validation mean: {}'.format( cv_gb.mean()))
def TALIB_TSF(close, timeperiod=14): '''00391,2,1''' return talib.TSF(close, timeperiod)
def add_ta_features(df, ta_settings): """Add technial analysis features from typical financial dataset that typically include columns such as "open", "high", "low", "price" and "volume". http://mrjbq7.github.io/ta-lib/ Args: df(pandas.DataFrame): original DataFrame. ta_settings(dict): configuration. Returns: pandas.DataFrame: DataFrame with new features included. """ open = df['open'] high = df['high'] low = df['low'] close = df['price'] volume = df['volume'] if ta_settings['overlap']: df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[ 'ta_overlap_bbands_lower'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['ta_overlap_dema'] = ta.DEMA( close, timeperiod=15) # NOTE: Changed to avoid a lot of Nan values df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30) df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30) df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0) df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close) period = np.random.randint(10, 20, size=len(close)).astype(float) df['ta_overlap_mavp'] = ta.MAVP(close, period, minperiod=2, maxperiod=30, matype=0) df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14) df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14) df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0) df['ta_overlap_sarext'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30) df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0) df['ta_overlap_tema'] = ta.TEMA( close, timeperiod=12) # NOTE: Changed to avoid a lot of Nan values df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30) df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30) # NOTE: Commented to avoid a lot of Nan values # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close) if ta_settings['momentum']: df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14) df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14) df['ta_momentum_apo'] = ta.APO(close, fastperiod=12, slowperiod=26, matype=0) df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON( high, low, timeperiod=14) df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14) df['ta_momentum_bop'] = ta.BOP(open, high, low, close) df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14) df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14) df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14) df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[ 'ta_momentum_macd_hist'] = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[ 'ta_momentum_macdext_hist'] = ta.MACDEXT(close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[ 'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9) df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14) df['ta_momentum_minus_di'] = ta.MINUS_DI(high, low, close, timeperiod=14) df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14) df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10) df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14) df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14) df['ta_momentum_ppo'] = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0) df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10) df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10) df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10) df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10) df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14) df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH( high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF( high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI( close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['ta_momentum_trix'] = ta.TRIX( close, timeperiod=12) # NOTE: Changed to avoid a lot of Nan values df['ta_momentum_ultosc'] = ta.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14) if ta_settings['volume']: df['ta_volume_ad'] = ta.AD(high, low, close, volume) df['ta_volume_adosc'] = ta.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['ta_volume_obv'] = ta.OBV(close, volume) if ta_settings['volatility']: df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14) df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14) df['ta_volatility_trange'] = ta.TRANGE(high, low, close) if ta_settings['price']: df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close) df['ta_price_medprice'] = ta.MEDPRICE(high, low) df['ta_price_typprice'] = ta.TYPPRICE(high, low, close) df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close) if ta_settings['cycle']: df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close) df['ta_cycle_ht_phasor_inphase'], df[ 'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close) df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close) # NOTE: Commented to avoid a lot of Nan values # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close) # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close) if ta_settings['pattern']: df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close) df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS( open, high, low, close) df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close) df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE( open, high, low, close) df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close) df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH( open, high, low, close) df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS( open, high, low, close) df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open, high, low, close, penetration=0) df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK( open, high, low, close) df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close) df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close) df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU( open, high, low, close) df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL( open, high, low, close) df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK( open, high, low, close) df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER( open, high, low, close, penetration=0) df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close) df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close) df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI( open, high, low, close) df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close) df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR( open, high, low, close, penetration=0) df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open, high, low, close, penetration=0) df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE( open, high, low, close) df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI( open, high, low, close) df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close) df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN( open, high, low, close) df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close) df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS( open, high, low, close) df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close) df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close) df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD( open, high, low, close) df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON( open, high, low, close) df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS( open, high, low, close) df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close) df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER( open, high, low, close) df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close) df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH( open, high, low, close) df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM( open, high, low, close) df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI( open, high, low, close) df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close) df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close) df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW( open, high, low, close) df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open, high, low, close, penetration=0) df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR( open, high, low, close, penetration=0) df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open, high, low, close, penetration=0) df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close) df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close) df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN( open, high, low, close) df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS( open, high, low, close) df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES( open, high, low, close) df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR( open, high, low, close) df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close) df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP( open, high, low, close) df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN( open, high, low, close) df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH( open, high, low, close) df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close) df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close) df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close) df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close) df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER( open, high, low, close) df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS( open, high, low, close) df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS( open, high, low, close) if ta_settings['statistic']: df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5) df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30) df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14) df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close, timeperiod=14) df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT( close, timeperiod=14) df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close, timeperiod=14) df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1) df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14) df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1) if ta_settings['math_transforms']: df['ta_math_transforms_atan'] = ta.ATAN(close) df['ta_math_transforms_ceil'] = ta.CEIL(close) df['ta_math_transforms_cos'] = ta.COS(close) df['ta_math_transforms_floor'] = ta.FLOOR(close) df['ta_math_transforms_ln'] = ta.LN(close) df['ta_math_transforms_log10'] = ta.LOG10(close) df['ta_math_transforms_sin'] = ta.SIN(close) df['ta_math_transforms_sqrt'] = ta.SQRT(close) df['ta_math_transforms_tan'] = ta.TAN(close) if ta_settings['math_operators']: df['ta_math_operators_add'] = ta.ADD(high, low) df['ta_math_operators_div'] = ta.DIV(high, low) df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX( close, timeperiod=30) df['ta_math_operators_minidx'], df[ 'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30) df['ta_math_operators_mult'] = ta.MULT(high, low) df['ta_math_operators_sub'] = ta.SUB(high, low) df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30) return df
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)
#获取交易数据用于示例分析 import tushare as ts def get_data(code,start='2015-01-01'): df=ts.get_k_data(code,start) df.index=pd.to_datetime(df.date) df=df.sort_index() return df #获取上证指数收盘价、最高、最低价格 df=get_data('sh')[['open','close','high','low']] #收盘价对时间t的线性回归预测值 df['linearreg']=ta.LINEARREG(df.close, timeperiod=14) #时间序列预测值 df['tsf']=ta.TSF(df.close, timeperiod=14) #画图 df.loc['2018-08-01':,['close','linearreg','tsf']].plot(figsize=(12,6)) plt.show() df['beta']=ta.BETA(df.high,df.low,timeperiod=5) df['correl']=ta.CORREL(df.high, df.low, timeperiod=30) df['stdev']=ta.STDDEV(df.close, timeperiod=5, nbdev=1) #将上述函数计算得到的结果进行可视化 df[['close','beta','correl','stdev']].plot(figsize=(12,8), subplots = True,layout=(2, 2)) plt.subplots_adjust(wspace=0,hspace=0.2) plt.show()
def get_factors(index, Open, Close, High, Low, Volume, rolling=26, drop=False, normalization=True): tmp = pd.DataFrame() tmp['tradeTime'] = index # 累积/派发线(Accumulation / Distribution Line,该指标将每日的成交量通过价格加权累计, # 用以计算成交量的动量。属于趋势型因子 tmp['AD'] = talib.AD(High, Low, Close, Volume) # 佳庆指标(Chaikin Oscillator),该指标基于AD曲线的指数移动均线而计算得到。属于趋势型因子 tmp['ADOSC'] = talib.ADOSC(High, Low, Close, Volume, fastperiod=3, slowperiod=10) # 平均动向指数,DMI因子的构成部分。属于趋势型因子 tmp['ADX'] = talib.ADX(High, Low, Close, timeperiod=14) # 相对平均动向指数,DMI因子的构成部分。属于趋势型因子 tmp['ADXR'] = talib.ADXR(High, Low, Close, timeperiod=14) # 绝对价格振荡指数 tmp['APO'] = talib.APO(Close, fastperiod=12, slowperiod=26) # Aroon通过计算自价格达到近期最高值和最低值以来所经过的期间数,帮助投资者预测证券价格从趋势到区域区域或反转的变化, # Aroon指标分为Aroon、AroonUp和AroonDown3个具体指标。属于趋势型因子 tmp['AROONDown'], tmp['AROONUp'] = talib.AROON(High, Low, timeperiod=14) tmp['AROONOSC'] = talib.AROONOSC(High, Low, timeperiod=14) # 均幅指标(Average TRUE Ranger),取一定时间周期内的股价波动幅度的移动平均值, # 是显示市场变化率的指标,主要用于研判买卖时机。属于超买超卖型因子。 tmp['ATR14'] = talib.ATR(High, Low, Close, timeperiod=14) tmp['ATR6'] = talib.ATR(High, Low, Close, timeperiod=6) # 布林带 tmp['Boll_Up'], tmp['Boll_Mid'], tmp['Boll_Down'] = talib.BBANDS( Close, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0) # 均势指标 tmp['BOP'] = talib.BOP(Open, High, Low, Close) # 5日顺势指标(Commodity Channel Index),专门测量股价是否已超出常态分布范围。属于超买超卖型因子。 tmp['CCI5'] = talib.CCI(High, Low, Close, timeperiod=5) tmp['CCI10'] = talib.CCI(High, Low, Close, timeperiod=10) tmp['CCI20'] = talib.CCI(High, Low, Close, timeperiod=20) tmp['CCI88'] = talib.CCI(High, Low, Close, timeperiod=88) # 钱德动量摆动指标(Chande Momentum Osciliator),与其他动量指标摆动指标如相对强弱指标(RSI)和随机指标(KDJ)不同, # 钱德动量指标在计算公式的分子中采用上涨日和下跌日的数据。属于超买超卖型因子 tmp['CMO_Close'] = talib.CMO(Close, timeperiod=14) tmp['CMO_Open'] = talib.CMO(Close, timeperiod=14) # DEMA双指数移动平均线 tmp['DEMA6'] = talib.DEMA(Close, timeperiod=6) tmp['DEMA12'] = talib.DEMA(Close, timeperiod=12) tmp['DEMA26'] = talib.DEMA(Close, timeperiod=26) # DX 动向指数 tmp['DX'] = talib.DX(High, Low, Close, timeperiod=14) # EMA 指数移动平均线 tmp['EMA6'] = talib.EMA(Close, timeperiod=6) tmp['EMA12'] = talib.EMA(Close, timeperiod=12) tmp['EMA26'] = talib.EMA(Close, timeperiod=26) # KAMA 适应性移动平均线 tmp['KAMA'] = talib.KAMA(Close, timeperiod=30) # MACD tmp['MACD_DIF'], tmp['MACD_DEA'], tmp['MACD_bar'] = talib.MACD( Close, fastperiod=12, slowperiod=24, signalperiod=9) # 中位数价格 不知道是什么意思 tmp['MEDPRICE'] = talib.MEDPRICE(High, Low) # 负向指标 负向运动 tmp['MiNUS_DI'] = talib.MINUS_DI(High, Low, Close, timeperiod=14) tmp['MiNUS_DM'] = talib.MINUS_DM(High, Low, timeperiod=14) # 动量指标(Momentom Index),动量指数以分析股价波动的速度为目的,研究股价在波动过程中各种加速, # 减速,惯性作用以及股价由静到动或由动转静的现象。属于趋势型因子 tmp['MOM'] = talib.MOM(Close, timeperiod=10) # 归一化平均值范围 tmp['NATR'] = talib.NATR(High, Low, Close, timeperiod=14) # OBV 能量潮指标(On Balance Volume,OBV),以股市的成交量变化来衡量股市的推动力, # 从而研判股价的走势。属于成交量型因子 tmp['OBV'] = talib.OBV(Close, Volume) # PLUS_DI 更向指示器 tmp['PLUS_DI'] = talib.PLUS_DI(High, Low, Close, timeperiod=14) tmp['PLUS_DM'] = talib.PLUS_DM(High, Low, timeperiod=14) # PPO 价格振荡百分比 tmp['PPO'] = talib.PPO(Close, fastperiod=6, slowperiod=26, matype=0) # ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较, # 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。 tmp['ROC6'] = talib.ROC(Close, timeperiod=6) tmp['ROC20'] = talib.ROC(Close, timeperiod=20) # 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较, # 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向, # 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿, # 属于成交量的反趋向指标。属于成交量型因子 tmp['VROC6'] = talib.ROC(Volume, timeperiod=6) tmp['VROC20'] = talib.ROC(Volume, timeperiod=20) # ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较, # 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。 tmp['ROCP6'] = talib.ROCP(Close, timeperiod=6) tmp['ROCP20'] = talib.ROCP(Close, timeperiod=20) # 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较, # 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向, # 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿, # 属于成交量的反趋向指标。属于成交量型因子 tmp['VROCP6'] = talib.ROCP(Volume, timeperiod=6) tmp['VROCP20'] = talib.ROCP(Volume, timeperiod=20) # RSI tmp['RSI'] = talib.RSI(Close, timeperiod=14) # SAR 抛物线转向 tmp['SAR'] = talib.SAR(High, Low, acceleration=0.02, maximum=0.2) # TEMA tmp['TEMA6'] = talib.TEMA(Close, timeperiod=6) tmp['TEMA12'] = talib.TEMA(Close, timeperiod=12) tmp['TEMA26'] = talib.TEMA(Close, timeperiod=26) # TRANGE 真实范围 tmp['TRANGE'] = talib.TRANGE(High, Low, Close) # TYPPRICE 典型价格 tmp['TYPPRICE'] = talib.TYPPRICE(High, Low, Close) # TSF 时间序列预测 tmp['TSF'] = talib.TSF(Close, timeperiod=14) # ULTOSC 极限振子 tmp['ULTOSC'] = talib.ULTOSC(High, Low, Close, timeperiod1=7, timeperiod2=14, timeperiod3=28) # 威廉指标 tmp['WILLR'] = talib.WILLR(High, Low, Close, timeperiod=14) # 标准化 if normalization: factors_list = tmp.columns.tolist()[1:] if rolling >= 26: for i in factors_list: tmp[i] = (tmp[i] - tmp[i].rolling(window=rolling, center=False).mean()) \ / tmp[i].rolling(window=rolling, center=False).std() elif rolling < 26 & rolling > 0: print('Recommended rolling range greater than 26') elif rolling <= 0: for i in factors_list: tmp[i] = (tmp[i] - tmp[i].mean()) / tmp[i].std() if drop: tmp.dropna(inplace=True) tmp.set_index('tradeTime', inplace=True) return tmp
def talib_041(self): data_TSF = copy.deepcopy(self.close) for symbol in symbols: data_TSF[symbol] = ta.TSF(self.close[symbol].values, timeperiod=14) return data_TSF