Beispiel #1
0
 def eval(self, environment, gene, date1, date2):
     timeperiod = (gene.next_value(environment, date1, date2))
     date1 = environment.shift_date(date1, -(timeperiod - 1), -1)
     df = gene.next_value(environment, date1, date2)
     res = df.apply(lambda x: pd.Series(
         talib.TSF(x.values, timeperiod=timeperiod), index=df.index))
     return res.iloc[timeperiod - 1:]
Beispiel #2
0
 def test_TSF(self):
     self.env.add_operator('linearreg', {
         'operator': OperatorTSF,
         })
     string = 'linearreg(14, open)'
     gene = self.env.parse_string(string)
     self.assertRaises(IndexError, gene.eval, self.env, self.dates[12], self.dates[-1])
     df = gene.eval(self.env, self.dates[13], self.dates[14])
     ser0, ser1 = df.iloc[0], df.iloc[1]
     o = self.env.get_data_value('open').values
     res0, res1, res = [], [], []
     for i in df.columns:
         res0.append(talib.TSF(o[:14, i], timeperiod=14)[-1] == ser0[i])
         res1.append(talib.TSF(o[1:14+1, i], timeperiod=14)[-1] == ser1[i])
         res.append(talib.TSF(o[:14+1, i], timeperiod=14)[-1] == ser1[i])
     self.assertTrue(all(res0) and all(res1) and all(res))
def TSF(close_ts, timeperiod=14):
    import talib
    close_np = close_ts.cpu().detach().numpy()
    close_df = pd.DataFrame(close_np)
    TSF = close_df.apply(lambda x: talib.TSF(x, timeperiod=14))
    TSF_ts = torch.tensor(tsf.values, dtype=close_ts.dtype, device=close_ts.device)
    return TSF_ts
Beispiel #4
0
def extract_features(data):
    high = data['High']
    low = data['Low']
    close = data['Close']
    volume = data['Volume']
    open_ = data['Open']
    
    data['ADX'] = ta.ADX(high, low, close, timeperiod=19)
    data['CCI'] = ta.CCI(high, low, close, timeperiod=19)  
    data['CMO'] = ta.CMO(close, timeperiod=14)
    data['MACD'], X, Y = ta.MACD(close, fastperiod=10, slowperiod=30, signalperiod=9)
    data['MFI'] = ta.MFI(high, low, close, volume, timeperiod=19)
    data['MOM'] = ta.MOM(close, timeperiod=9)
    data['ROCR'] = ta.ROCR(close, timeperiod=12) 
    data['RSI'] = ta.RSI(close, timeperiod=19)  
    data['STOCHSLOWK'], data['STOCHSLOWD'] = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
    data['TRIX'] = ta.TRIX(close, timeperiod=30)
    data['WILLR'] = ta.WILLR(high, low, close, timeperiod=14)
    data['OBV'] = ta.OBV(close, volume)
    data['TSF'] = ta.TSF(close, timeperiod=14)
    data['NATR'] = ta.NATR(high, low, close)#, timeperiod=14)
    data['ULTOSC'] = ta.ULTOSC(high, low, close)
    data['AROONOSC'] = ta.AROONOSC(high, low, timeperiod=14)
    data['BOP'] = ta.BOP(open_, high, low, close)
    data['LINEARREG'] = ta.LINEARREG(close)
    data['AP0'] = ta.APO(close, fastperiod=9, slowperiod=23, matype=1)
    data['TEMA'] = ta.TRIMA(close, 29)
    
    return data
Beispiel #5
0
 def compTSF(self):
     tsf = talib.TSF(self.close,timeperiod=self.lookback) 
     self.removeNullID(tsf)
     self.rawFeatures['TSF'] = tsf
     
     FEATURE_SIZE_DICT['TSF'] = 1
     
     return
Beispiel #6
0
    def update(self, data, N):
        close = data[4]
        self.clear()
        self.series.attachAxis(self.chart.ax)
        self.series.attachAxis(self.chart.ay)

        tsf = talib.TSF(close, timeperiod=14)
        firstNotNan = np.where(np.isnan(tsf))[0][-1] + 1
        tsf[:firstNotNan] = tsf[firstNotNan]
        for i, val in enumerate(tsf[-N:]):
            self.series.append(i + 0.5, val)
Beispiel #7
0
def TSF(close, timeperiod=14):
    ''' Time Series Forecast 时间序列预测

    分组: Statistic Functions 统计函数

    简介: 一种历史资料延伸预测,也称历史引伸预测法。
    是以时间数列所能反映的社会经济现象的发展过程和规律性,
    进行引伸外推,预测其发展趋势的方法

    real = TSF(close, timeperiod=14)
    '''
    return talib.TSF(close, timeperiod)
Beispiel #8
0
def __get_predictors(data):
    open_list = np.asarray(data["open"].tolist())
    close_list = np.asarray(data["close"].tolist())
    high_list = np.asarray(data["high"].tolist())
    low_list = np.asarray(data["low"].tolist())
    volume_list = np.asarray(data["volume"].tolist())

    adj_close = close_list
    obv = talib.OBV(close_list, volume_list)
    rsi6 = talib.RSI(close_list, timeperiod=6)
    rsi12 = talib.RSI(close_list, timeperiod=12)
    sma3 = talib.SMA(close_list, timeperiod=3)
    ema6 = talib.EMA(close_list, timeperiod=6)
    ema12 = talib.EMA(close_list, timeperiod=12)
    atr14 = talib.ATR(high_list, low_list, close_list, timeperiod=14)
    mfi14 = talib.MFI(high_list,
                      low_list,
                      close_list,
                      volume_list,
                      timeperiod=14)
    adx14 = talib.ADX(high_list, low_list, close_list, timeperiod=14)
    adx20 = talib.ADX(high_list, low_list, close_list, timeperiod=20)
    mom1 = talib.MOM(close_list, timeperiod=1)
    mom3 = talib.MOM(close_list, timeperiod=3)
    cci12 = talib.CCI(high_list, low_list, close_list, timeperiod=14)
    cci20 = talib.CCI(high_list, low_list, close_list, timeperiod=20)
    rocr3 = talib.ROCR(close_list, timeperiod=3)
    rocr12 = talib.ROCR(close_list, timeperiod=12)
    macd, macd_sig, macd_hist = talib.MACD(close_list)
    willr = talib.WILLR(high_list, low_list, close_list)
    tsf10 = talib.TSF(close_list, timeperiod=10)
    tsf20 = talib.TSF(close_list, timeperiod=20)
    trix = talib.TRIX(close_list)
    bbandupper, bbandmiddle, bbandlower = talib.BBANDS(close_list)
    return [adj_close[-1], obv[-1], rsi6[-1], rsi12[-1], sma3[-1], ema6[-1], ema12[-1], atr14[-1], mfi14[-1], adx14[-1], adx20[-1], mom1[-1], mom3[-1], cci12[-1], cci20[-1], \
            rocr3[-1], rocr12[-1], macd[-1], macd_sig[-1], macd_hist[-1], willr[-1], tsf10[-1], tsf20[-1], trix[-1], bbandupper[-1], bbandmiddle[-1], bbandlower[-1]]
Beispiel #9
0
def getStatFunctions(df):
    high = df['High']
    low = df['Low']
    close = df['Close']
    open = df['Open']
    volume = df['Volume']

    df['BETA'] = ta.BETA(high, low, timeperiod=5)
    df['CORREL'] = ta.CORREL(high, low, timeperiod=30)
    df['LINREG'] = ta.LINEARREG(close, timeperiod=14)
    df['LINREGANGLE'] = ta.LINEARREG_ANGLE(close, timeperiod=14)
    df['LINREGINTERCEPT'] = ta.LINEARREG_INTERCEPT(close, timeperiod=14)
    df['LINREGSLOPE'] = ta.LINEARREG_SLOPE(close, timeperiod=14)
    df['STDDEV'] = ta.STDDEV(close, timeperiod=5, nbdev=1)
    df['TSF'] = ta.TSF(close, timeperiod=14)
    df['VAR'] = ta.VAR(close, timeperiod=5, nbdev=1)
Beispiel #10
0
def tsf(client, symbol, range="6m", closecol="close", period=14, nbdev=1):
    """This will return a dataframe of standard deviation for the given symbol across
    the given range

    Args:
        client (pyEX.Client): Client
        symbol (string): Ticker
        range (string): range to use, for pyEX.chart
        closecol (string): column to use to calculate
        period (int): period to calculate adx across

    Returns:
        DataFrame: result
    """
    df = client.chartDF(symbol, range)
    tsf = t.TSF(df[closecol].values.astype(float), period)
    return pd.DataFrame({closecol: df[closecol].values, "tsf": tsf})
Beispiel #11
0
def tsf(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> Union[
    float, np.ndarray]:
    """
    TSF - Time Series Forecast

    :param candles: np.ndarray
    :param period: int - default: 14
    :param source_type: str - default: "close"
    :param sequential: bool - default: False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)
    res = talib.TSF(source, timeperiod=period)

    return res if sequential else res[-1]
def statistic_process(event):
    print(event.widget.get())
    statistic = event.widget.get()

    upperband, middleband, lowerband = ta.BBANDS(close,
                                                 timeperiod=5,
                                                 nbdevup=2,
                                                 nbdevdn=2,
                                                 matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(statistic, fontproperties='SimHei')

    if statistic == '线性回归':
        real = ta.LINEARREG(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '线性回归角度':
        real = ta.LINEARREG_ANGLE(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '线性回归截距':
        real = ta.LINEARREG_INTERCEPT(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '线性回归斜率':
        real = ta.LINEARREG_SLOPE(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '标准差':
        real = ta.STDDEV(close, timeperiod=5, nbdev=1)
        axes[1].plot(real, 'r-')
    elif statistic == '时间序列预测':
        real = ta.TSF(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '方差':
        real = ta.VAR(close, timeperiod=5, nbdev=1)
        axes[1].plot(real, 'r-')

    plt.show()
Beispiel #13
0
Datei: tsf.py Projekt: wcy/jesse
def tsf(candles: np.ndarray,
        period: int = 14,
        source_type: str = "close",
        sequential: bool = False) -> Union[float, np.ndarray]:
    """
    TSF - Time Series Forecast

    :param candles: np.ndarray
    :param period: int - default: 14
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    warmup_candles_num = get_config('env.data.warmup_candles_num', 240)
    if not sequential and len(candles) > warmup_candles_num:
        candles = candles[-warmup_candles_num:]

    source = get_candle_source(candles, source_type=source_type)
    res = talib.TSF(source, timeperiod=period)

    return res if sequential else res[-1]
Beispiel #14
0
def Stat_Function(dataframe):
	#Statistic Functions
	#BETA - Beta
	df[f'{ratio}_BETA'] = talib.BETA(High, Low, timeperiod=5)
	#CORREL - Pearson's Correlation Coefficient (r)
	df[f'{ratio}_CORREL'] = talib.CORREL(High, Low, timeperiod=30)
	#LINEARREG - Linear Regression
	df[f'{ratio}_LINEARREG'] = talib.LINEARREG(Close, timeperiod=14)
	#LINEARREG_ANGLE - Linear Regression Angle
	df[f'{ratio}_LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(Close, timeperiod=14)
	#LINEARREG_INTERCEPT - Linear Regression Intercept
	df[f'{ratio}_LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT(Close, timeperiod=14)
	#LINEARREG_SLOPE - Linear Regression Slope
	df[f'{ratio}_LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(Close, timeperiod=14)
	#STDDEV - Standard Deviation
	df[f'{ratio}_STDDEV'] = talib.STDDEV(Close, timeperiod=5, nbdev=1)
	#TSF - Time Series Forecast
	df[f'{ratio}_TSF'] = talib.TSF(Close, timeperiod=14)
	#VAR - Variance
	df[f'{ratio}_VAR'] = talib.VAR(Close, timeperiod=5, nbdev=1)

	return
def addFeatures(stock):
	"""
	Input pandas data frame, generate features for sock.
	"""
	df = stock
	df['TSF'] = talib.TSF(np.asarray(df.AdjClose))
	df['STDDEV'] = talib.STDDEV(np.asarray(df.AdjClose))
	real = talib.ADOSC(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose), np.asarray(df.Volume.astype('double')))
	df['ADOSC'] = real > 0
	df['ADOSC'] = df['ADOSC'].astype(int)
	df['ADX'] = talib.ADX(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose))
	macd, macdsignal, macdhist = talib.MACD(np.asarray(df.AdjClose))
	df['MACD'] = macd
	df['MOM'] = talib.MOM(np.asarray(df.AdjClose))
	df['MFI'] = talib.MFI(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose), np.asarray(df.Volume.astype('double')))
	df['RSI'] = talib.RSI(np.asarray(df.AdjClose))
	df['TRIX'] = talib.TRIX(np.asarray(df.AdjClose))
	df['ATR'] = talib.ATR(np.asarray(df.High), np.asarray(df.Low), np.asarray(df.AdjClose))
	#Add 9 lagged return
	for i in range(1,10):
		name = 'laggedReturn_' + str(i)
		df[name] = df.AdjClose.pct_change(periods=i)
	return df
Beispiel #16
0
def plot_timeseries(ax, data):
    """This function plots
######################## TIME SERIES FORCAST ###################################

The Time Series Forecast indicator displays the statistical trend of a 
security's price over a specified time period. The trend is based on linear
regression analysis. Rather than plotting a straight linear regression 
trendline, the Time Series Forecast plots the last point of multiple linear 
regression trendlines. The resulting Time Series Forecast indicator is 
sometimes referred to as the "moving linear regression" indicator or 
the "regression oscillator." The interpretation of a Time Series Forecast 
is identical to a moving average. However, the Time Series Forecast
indicator has two advantages over classic moving averages. Unlike a moving
average, a Time Series Forecast does not exhibit as much delay when 
adjusting to price changes. Since the indicator is "fitting" itself 
to the data rather than averaging them, the Time Series Forecast is more 
responsive to price changes."""

    time_series_ind = talib.TSF(data['Adj_Close'], timeperiod=14)

    ax.plot(data["Date"],
            time_series_ind,
            label="TIME SERIES FORCAST",
            color="sandybrown")
df['CORREL'] = ta.CORREL(np.array(df['High'].shift(1)),
                         np.array(df['Low'].shift(1)),
                         timeperiod=n)
df['LINEARREG'] = ta.LINEARREG(np.array(df['Adj Close'].shift(1)),
                               timeperiod=n)
df['LINEARREG_ANGLE'] = ta.LINEARREG_ANGLE(np.array(df['Adj Close'].shift(1)),
                                           timeperiod=n)
df['LINEARREG_INTERCEPT'] = ta.LINEARREG_INTERCEPT(np.array(
    df['Adj Close'].shift(1)),
                                                   timeperiod=n)
df['LINEARREG_SLOPE'] = ta.LINEARREG_SLOPE(np.array(df['Adj Close'].shift(1)),
                                           timeperiod=n)
df['STDDEV'] = ta.STDDEV(np.array(df['Adj Close'].shift(1)),
                         timeperiod=n,
                         nbdev=1)
df['Time Series Forecast'] = ta.TSF(np.array(df['Adj Close'].shift(1)),
                                    timeperiod=n)
df['VAR'] = ta.VAR(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1)

# Overlap Studies Functions
df['upperband'], df['middleband'], df['lowerband'] = ta.BBANDS(np.array(
    df['Adj Close'].shift(1)),
                                                               timeperiod=n,
                                                               nbdevup=2,
                                                               nbdevdn=2,
                                                               matype=0)
df['DEMA'] = ta.DEMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['EMA'] = ta.EMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['HT_TRENDLINE'] = ta.HT_TRENDLINE(np.array(df['Adj Close'].shift(1)))
df['KAMA'] = ta.KAMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['MA'] = ta.MA(np.array(df['Adj Close'].shift(1)), timeperiod=n, matype=0)
# df['mama'],df['fama'] = ta.MAMA(np.array(df['Adj Close'].shift(1)), fastlimit=0, slowlimit=0)
Beispiel #18
0
import talib as ta
from forex_python.converter import CurrencyRates

moving_averages_functions = {
    'SMA': lambda close, time_p: ta.SMA(close, time_p),
    'EMA': lambda close, time_p: ta.EMA(close, time_p),
    'WMA': lambda close, time_p: ta.WMA(close, time_p),
    'LINEAR_REG': lambda close, time_p: ta.LINEARREG(close, time_p),
    'TRIMA': lambda close, time_p: ta.TRIMA(close, time_p),
    'DEMA': lambda close, time_p: ta.DEMA(close, time_p),
    'HT_TRENDLINE': lambda close, time_p: ta.HT_TRENDLINE(close, time_p),
    'TSF': lambda close, time_p: ta.TSF(close, time_p)
}


def get_pip_value(symbol, account_currency):
    first_symbol = symbol[0:3]
    second_symbol = symbol[3:6]
    c = CurrencyRates()
    return c.convert(second_symbol, account_currency, c.convert(first_symbol, second_symbol, 1))
Beispiel #19
0
 def get_tsf(self):
     return talib.TSF(self.close_list)
Beispiel #20
0
def TSF(data, **kwargs):
    _check_talib_presence()
    prices = _extract_series(data)
    return talib.TSF(prices, **kwargs)
def ta(name, price_h, price_l, price_c, price_v, price_o):
    # function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing
    if name == 'AD':
        return talib.AD(np.array(price_h), np.array(price_l),
                        np.array(price_c), np.asarray(price_v, dtype='float'))
    if name == 'ADOSC':
        return talib.ADOSC(np.array(price_h),
                           np.array(price_l),
                           np.array(price_c),
                           np.asarray(price_v, dtype='float'),
                           fastperiod=2,
                           slowperiod=10)
    if name == 'ADX':
        return talib.ADX(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'ADXR':
        return talib.ADXR(np.array(price_h),
                          np.array(price_l),
                          np.asarray(price_c, dtype='float'),
                          timeperiod=14)
    if name == 'APO':
        return talib.APO(np.asarray(price_c, dtype='float'),
                         fastperiod=12,
                         slowperiod=26,
                         matype=0)
    if name == 'AROON':
        AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h),
                                            np.asarray(price_l, dtype='float'),
                                            timeperiod=90)
        return (AROON_DWON, AROON2_UP)
    if name == 'AROONOSC':
        return talib.AROONOSC(np.array(price_h),
                              np.asarray(price_l, dtype='float'),
                              timeperiod=14)
    if name == 'ATR':
        return talib.ATR(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'AVGPRICE':
        return talib.AVGPRICE(np.array(price_o), np.array(price_h),
                              np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'BBANDS':
        BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c,
                                                            dtype='float'),
                                                 matype=MA_Type.T3)
        return BBANDS1
    if name == 'BETA':
        return talib.BETA(np.array(price_h),
                          np.asarray(price_l, dtype='float'),
                          timeperiod=5)
    if name == 'BOP':
        return talib.BOP(np.array(price_o), np.array(price_h),
                         np.array(price_l), np.asarray(price_c, dtype='float'))
    if name == 'CCI':
        return talib.CCI(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'CDL2CROWS':
        return talib.CDL2CROWS(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDL3BLACKCROWS':
        return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDL3INSIDE':
        return talib.CDL3INSIDE(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDL3LINESTRIKE':
        return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDL3OUTSIDE':
        return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDL3STARSINSOUTH':
        return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDL3WHITESOLDIERS':
        return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLABANDONEDBABY':
        return talib.CDLABANDONEDBABY(np.array(price_o),
                                      np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'),
                                      penetration=0)
    if name == 'CDLADVANCEBLOCK':
        return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLBELTHOLD':
        return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLBREAKAWAY':
        return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLCLOSINGMARUBOZU':
        return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLCONCEALBABYSWALL':
        return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLCOUNTERATTACK':
        return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLDARKCLOUDCOVER':
        return talib.CDLDARKCLOUDCOVER(np.array(price_o),
                                       np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'),
                                       penetration=0)
    if name == 'CDLDOJI':
        return talib.CDLDOJI(np.array(price_o), np.array(price_h),
                             np.array(price_l),
                             np.asarray(price_c, dtype='float'))
    if name == 'CDLDOJISTAR':
        return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLDRAGONFLYDOJI':
        return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLENGULFING':
        return talib.CDLENGULFING(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLEVENINGDOJISTAR':
        return talib.CDLEVENINGDOJISTAR(np.array(price_o),
                                        np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        penetration=0)
    if name == 'CDLEVENINGSTAR':
        return talib.CDLEVENINGSTAR(np.array(price_o),
                                    np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'),
                                    penetration=0)
    if name == 'CDLGAPSIDESIDEWHITE':
        return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLGRAVESTONEDOJI':
        return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLHAMMER':
        return talib.CDLHAMMER(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLHANGINGMAN':
        return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h),
                                   np.array(price_l),
                                   np.asarray(price_c, dtype='float'))
    if name == 'CDLHARAMI':
        return talib.CDLHARAMI(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLHARAMICROSS':
        return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLHIGHWAVE':
        return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLHIKKAKE':
        return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLHIKKAKEMOD':
        return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h),
                                   np.array(price_l),
                                   np.asarray(price_c, dtype='float'))
    if name == 'CDLHOMINGPIGEON':
        return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLIDENTICAL3CROWS':
        return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLINNECK':
        return talib.CDLINNECK(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLINVERTEDHAMMER':
        return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLKICKING':
        return talib.CDLKICKING(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLKICKINGBYLENGTH':
        return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))

    if name == 'CDLLADDERBOTTOM':
        return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLLONGLEGGEDDOJI':
        return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLLONGLINE':
        return talib.CDLLONGLINE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLMARUBOZU':
        return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLMATCHINGLOW':
        return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLMATHOLD':
        return talib.CDLMATHOLD(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLMORNINGDOJISTAR':
        return talib.CDLMORNINGDOJISTAR(np.array(price_o),
                                        np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        penetration=0)
    if name == 'CDLMORNINGSTAR':
        return talib.CDLMORNINGSTAR(np.array(price_o),
                                    np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'),
                                    penetration=0)
    if name == 'CDLONNECK':
        return talib.CDLONNECK(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLPIERCING':
        return talib.CDLPIERCING(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLRICKSHAWMAN':
        return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLRISEFALL3METHODS':
        return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLSEPARATINGLINES':
        return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLSHOOTINGSTAR':
        return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLSHORTLINE':
        return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLSPINNINGTOP':
        return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLSTALLEDPATTERN':
        return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLSTICKSANDWICH':
        return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLTAKURI':
        return talib.CDLTAKURI(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLTASUKIGAP':
        return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLTHRUSTING':
        return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLTRISTAR':
        return talib.CDLTRISTAR(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLUNIQUE3RIVER':
        return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLUPSIDEGAP2CROWS':
        return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLXSIDEGAP3METHODS':
        return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CMO':
        return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'CORREL':
        return talib.CORREL(np.array(price_h),
                            np.asarray(price_l, dtype='float'),
                            timeperiod=30)
    if name == 'DEMA':
        return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'DX':
        return talib.DX(np.array(price_h),
                        np.array(price_l),
                        np.asarray(price_c, dtype='float'),
                        timeperiod=14)
    if name == 'EMA':
        return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'HT_DCPERIOD':
        return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float'))
    if name == 'HT_DCPHASE':
        return talib.HT_DCPHASE(np.asarray(price_c, dtype='float'))
    if name == 'HT_PHASOR':
        HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR(
            np.asarray(price_c, dtype='float')
        )  # use HT_PHASOR1 for the indication of up and down
        return HT_PHASOR1
    if name == 'HT_SINE':
        HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float'))
        return HT_SINE1
    if name == 'HT_TRENDLINE':
        return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float'))
    if name == 'HT_TRENDMODE':
        return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float'))
    if name == 'KAMA':
        return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'LINEARREG':
        return talib.LINEARREG(np.asarray(price_c, dtype='float'),
                               timeperiod=14)
    if name == 'LINEARREG_ANGLE':
        return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'),
                                     timeperiod=14)
    if name == 'LINEARREG_INTERCEPT':
        return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'),
                                         timeperiod=14)
    if name == 'LINEARREG_SLOPE':
        return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'),
                                     timeperiod=14)
    if name == 'MA':
        return talib.MA(np.asarray(price_c, dtype='float'),
                        timeperiod=30,
                        matype=0)
    if name == 'MACD':
        MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'),
                                         fastperiod=12,
                                         slowperiod=26,
                                         signalperiod=9)
        return MACD1
    if nam == 'MACDEXT':
        return talib.MACDEXT(np.asarray(price_c, dtype='float'),
                             fastperiod=12,
                             fastmatype=0,
                             slowperiod=26,
                             slowmatype=0,
                             signalperiod=9,
                             signalmatype=0)
    if name == 'MACDFIX':
        MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c,
                                                                dtype='float'),
                                                     signalperiod=9)
        return MACDFIX1
    if name == 'MAMA':
        MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'),
                                  fastlimit=0,
                                  slowlimit=0)
        return MAMA1
    if name == 'MEDPRICE':
        return talib.MEDPRICE(np.array(price_h),
                              np.asarray(price_l, dtype='float'))
    if name == 'MINUS_DI':
        return talib.MINUS_DI(np.array(price_h),
                              np.array(price_l),
                              np.asarray(price_c, dtype='float'),
                              timeperiod=14)
    if name == 'MINUS_DM':
        return talib.MINUS_DM(np.array(price_h),
                              np.asarray(price_l, dtype='float'),
                              timeperiod=14)
    if name == 'MOM':
        return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'NATR':
        return talib.NATR(np.array(price_h),
                          np.array(price_l),
                          np.asarray(price_c, dtype='float'),
                          timeperiod=14)
    if name == 'OBV':
        return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float'))
    if name == 'PLUS_DI':
        return talib.PLUS_DI(np.array(price_h),
                             np.array(price_l),
                             np.asarray(price_c, dtype='float'),
                             timeperiod=14)
    if name == 'PLUS_DM':
        return talib.PLUS_DM(np.array(price_h),
                             np.asarray(price_l, dtype='float'),
                             timeperiod=14)
    if name == 'PPO':
        return talib.PPO(np.asarray(price_c, dtype='float'),
                         fastperiod=12,
                         slowperiod=26,
                         matype=0)
    if name == 'ROC':
        return talib.ROC(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'ROCP':
        return talib.ROCP(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'ROCR100':
        return talib.ROCR100(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'RSI':
        return talib.RSI(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'SAR':
        return talib.SAR(np.array(price_h),
                         np.asarray(price_l, dtype='float'),
                         acceleration=0,
                         maximum=0)
    if name == 'SAREXT':
        return talib.SAREXT(np.array(price_h),
                            np.asarray(price_l, dtype='float'),
                            startvalue=0,
                            offsetonreverse=0,
                            accelerationinitlong=0,
                            accelerationlong=0,
                            accelerationmaxlong=0,
                            accelerationinitshort=0,
                            accelerationshort=0,
                            accelerationmaxshort=0)
    if name == 'SMA':
        return talib.SMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'STDDEV':
        return talib.STDDEV(np.asarray(price_c, dtype='float'),
                            timeperiod=5,
                            nbdev=1)
    if name == 'STOCH':
        STOCH1, STOCH2 = talib.STOCH(np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'),
                                     fastk_period=5,
                                     slowk_period=3,
                                     slowk_matype=0,
                                     slowd_period=3,
                                     slowd_matype=0)
        return STOCH1
    if name == 'STOCHF':
        STOCHF1, STOCHF2 = talib.STOCHF(np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        fastk_period=5,
                                        fastd_period=3,
                                        fastd_matype=0)
        return STOCHF1
    if name == 'STOCHRSI':
        STOCHRSI1, STOCHRSI2 = talib.STOCHRSI(np.asarray(price_c,
                                                         dtype='float'),
                                              timeperiod=14,
                                              fastk_period=5,
                                              fastd_period=3,
                                              fastd_matype=0)
        return STOCHRSI1
    if name == 'T3':
        return talib.T3(np.asarray(price_c, dtype='float'),
                        timeperiod=5,
                        vfactor=0)
    if name == 'TEMA':
        return talib.TEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TRANGE':
        return talib.TRANGE(np.array(price_h), np.array(price_l),
                            np.asarray(price_c, dtype='float'))
    if name == 'TRIMA':
        return talib.TRIMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TRIX':
        return talib.TRIX(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TSF':
        return talib.TSF(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'TYPPRICE':
        return talib.TYPPRICE(np.array(price_h), np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'ULTOSC':
        return talib.ULTOSC(np.array(price_h),
                            np.array(price_l),
                            np.asarray(price_c, dtype='float'),
                            timeperiod1=7,
                            timeperiod2=14,
                            timeperiod3=28)
    if name == 'VAR':
        return talib.VAR(np.asarray(price_c, dtype='float'),
                         timeperiod=5,
                         nbdev=1)
    if name == 'WCLPRICE':
        return talib.WCLPRICE(np.array(price_h), np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'WILLR':
        return talib.WILLR(np.array(price_h),
                           np.array(price_l),
                           np.asarray(price_c, dtype='float'),
                           timeperiod=14)
    if name == 'WMA':
        return talib.WMA(np.asarray(price_c, dtype='float'), timeperiod=30)
def get_talib_stock_daily(
        stock_code,
        s,
        e,
        append_ori_close=False,
        norms=['volume', 'amount', 'ht_dcphase', 'obv', 'adosc', 'ad', 'cci']):
    """获取经过talib处理后的股票日线数据"""
    stock_data = QA.QA_fetch_stock_day_adv(stock_code, s, e)
    stock_df = stock_data.to_qfq().data
    if append_ori_close:
        stock_df['o_close'] = stock_data.data['close']
    # stock_df['high_qfq'] = stock_data.to_qfq().data['high']
    # stock_df['low_hfq'] = stock_data.to_hfq().data['low']

    close = np.array(stock_df['close'])
    high = np.array(stock_df['high'])
    low = np.array(stock_df['low'])
    _open = np.array(stock_df['open'])
    _volume = np.array(stock_df['volume'])

    stock_df['dema'] = talib.DEMA(close)
    stock_df['ema'] = talib.EMA(close)
    stock_df['ht_tradeline'] = talib.HT_TRENDLINE(close)
    stock_df['kama'] = talib.KAMA(close)
    stock_df['ma'] = talib.MA(close)
    stock_df['mama'], stock_df['fama'] = talib.MAMA(close)
    # MAVP
    stock_df['midpoint'] = talib.MIDPOINT(close)
    stock_df['midprice'] = talib.MIDPRICE(high, low)
    stock_df['sar'] = talib.SAR(high, low)
    stock_df['sarext'] = talib.SAREXT(high, low)
    stock_df['sma'] = talib.SMA(close)
    stock_df['t3'] = talib.T3(close)
    stock_df['tema'] = talib.TEMA(close)
    stock_df['trima'] = talib.TRIMA(close)
    stock_df['wma'] = talib.WMA(close)

    stock_df['adx'] = talib.ADX(high, low, close)
    stock_df['adxr'] = talib.ADXR(high, low, close)
    stock_df['apo'] = talib.APO(close)

    stock_df['aroondown'], stock_df['aroonup'] = talib.AROON(high, low)
    stock_df['aroonosc'] = talib.AROONOSC(high, low)
    stock_df['bop'] = talib.BOP(_open, high, low, close)
    stock_df['cci'] = talib.CCI(high, low, close)
    stock_df['cmo'] = talib.CMO(close)
    stock_df['dx'] = talib.DX(high, low, close)
    # MACD
    stock_df['macd'], stock_df['macdsignal'], stock_df[
        'macdhist'] = talib.MACDEXT(close)
    # MACDFIX
    stock_df['mfi'] = talib.MFI(high, low, close, _volume)
    stock_df['minus_di'] = talib.MINUS_DI(high, low, close)
    stock_df['minus_dm'] = talib.MINUS_DM(high, low)
    stock_df['mom'] = talib.MOM(close)
    stock_df['plus_di'] = talib.PLUS_DI(high, low, close)
    stock_df['plus_dm'] = talib.PLUS_DM(high, low)
    stock_df['ppo'] = talib.PPO(close)
    stock_df['roc'] = talib.ROC(close)
    stock_df['rocp'] = talib.ROCP(close)
    stock_df['rocr'] = talib.ROCR(close)
    stock_df['rocr100'] = talib.ROCR100(close)
    stock_df['rsi'] = talib.RSI(close)
    stock_df['slowk'], stock_df['slowd'] = talib.STOCH(high, low, close)
    stock_df['fastk'], stock_df['fastd'] = talib.STOCHF(high, low, close)
    # STOCHRSI - Stochastic Relative Strength Index
    stock_df['trix'] = talib.TRIX(close)
    stock_df['ultosc'] = talib.ULTOSC(high, low, close)
    stock_df['willr'] = talib.WILLR(high, low, close)

    stock_df['ad'] = talib.AD(high, low, close, _volume)
    stock_df['adosc'] = talib.ADOSC(high, low, close, _volume)
    stock_df['obv'] = talib.OBV(close, _volume)

    stock_df['ht_dcperiod'] = talib.HT_DCPERIOD(close)
    stock_df['ht_dcphase'] = talib.HT_DCPHASE(close)
    stock_df['inphase'], stock_df['quadrature'] = talib.HT_PHASOR(close)
    stock_df['sine'], stock_df['leadsine'] = talib.HT_PHASOR(close)
    stock_df['ht_trendmode'] = talib.HT_TRENDMODE(close)

    stock_df['avgprice'] = talib.AVGPRICE(_open, high, low, close)
    stock_df['medprice'] = talib.MEDPRICE(high, low)
    stock_df['typprice'] = talib.TYPPRICE(high, low, close)
    stock_df['wclprice'] = talib.WCLPRICE(high, low, close)

    stock_df['atr'] = talib.ATR(high, low, close)
    stock_df['natr'] = talib.NATR(high, low, close)
    stock_df['trange'] = talib.TRANGE(high, low, close)

    stock_df['beta'] = talib.BETA(high, low)
    stock_df['correl'] = talib.CORREL(high, low)
    stock_df['linearreg'] = talib.LINEARREG(close)
    stock_df['linearreg_angle'] = talib.LINEARREG_ANGLE(close)
    stock_df['linearreg_intercept'] = talib.LINEARREG_INTERCEPT(close)
    stock_df['linearreg_slope'] = talib.LINEARREG_SLOPE(close)
    stock_df['stddev'] = talib.STDDEV(close)
    stock_df['tsf'] = talib.TSF(close)
    stock_df['var'] = talib.VAR(close)

    stock_df = stock_df.reset_index().set_index('date')

    if norms:
        x = stock_df[norms].values  # returns a numpy array
        x_scaled = MinMaxScaler().fit_transform(x)
        stock_df = stock_df.drop(columns=norms).join(
            pd.DataFrame(x_scaled, columns=norms, index=stock_df.index))

    # stock_df = stock_df.drop(columns=['code', 'open', 'high', 'low'])
    stock_df = stock_df.dropna()
    stock_df = stock_df.drop(columns=['code'])
    return stock_df
Beispiel #23
0
def get_datasets(asset, currency, granularity, datapoints):
    """Fetch the API and precess the desired pair

    Arguments:
        asset {str} -- First pair
        currency {str} -- Second pair
        granularity {str ['day', 'hour']} -- Granularity
        datapoints {int [100 - 2000]} -- [description]

    Returns:
        pandas.Dataframe -- The OHLCV and indicators dataframe
    """
    df_train_path = 'datasets/bot_train_{}_{}_{}.csv'.format(
        asset + currency, datapoints, granularity)
    df_rollout_path = 'datasets/bot_rollout_{}_{}_{}.csv'.format(
        asset + currency, datapoints, granularity)
    emojis = [
        ':moneybag:', ':yen:', ':dollar:', ':pound:', ':euro:',
        ':credit_card:', ':money_with_wings:', ':gem:'
    ]

    if not os.path.exists(df_rollout_path):
        headers = {
            'User-Agent':
            'Mozilla/5.0',
            'authorization':
            'Apikey 3d7d3e9e6006669ac00584978342451c95c3c78421268ff7aeef69995f9a09ce'
        }

        # OHLC
        # url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&e=Binance&limit={}'.format(granularity, asset, currency, datapoints)
        url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&limit={}'.format(
            granularity, asset, currency, datapoints)
        # print(emoji.emojize(':dizzy: :large_blue_diamond: :gem: :bar_chart: :crystal_ball: :chart_with_downwards_trend: :chart_with_upwards_trend: :large_orange_diamond: loading...', use_aliases=True))
        print(
            colored(
                emoji.emojize('> ' + random.choice(emojis) + ' downloading ' +
                              asset + '/' + currency,
                              use_aliases=True), 'green'))
        # print(colored('> downloading ' + asset + '/' + currency, 'green'))
        response = requests.get(url, headers=headers)
        json_response = response.json()
        status = json_response['Response']
        if status == "Error":
            print(colored('=== {} ==='.format(json_response['Message']),
                          'red'))
            raise AssertionError()
        result = json_response['Data']
        df = pd.DataFrame(result)
        print(df.tail())
        df['Date'] = pd.to_datetime(df['time'], utc=True, unit='s')
        df.drop('time', axis=1, inplace=True)

        # indicators
        # https://github.com/mrjbq7/ta-lib/blob/master/docs/func.md
        open_price, high, low, close = np.array(df['open']), np.array(
            df['high']), np.array(df['low']), np.array(df['close'])
        volume = np.array(df['volumefrom'])
        # cycle indicators
        df.loc[:, 'HT_DCPERIOD'] = talib.HT_DCPERIOD(close)
        df.loc[:, 'HT_DCPHASE'] = talib.HT_DCPHASE(close)
        df.loc[:,
               'HT_PHASOR_inphase'], df.loc[:,
                                            'HT_PHASOR_quadrature'] = talib.HT_PHASOR(
                                                close)
        df.loc[:, 'HT_SINE_sine'], df.loc[:,
                                          'HT_SINE_leadsine'] = talib.HT_SINE(
                                              close)
        df.loc[:, 'HT_TRENDMODE'] = talib.HT_TRENDMODE(close)
        # momemtum indicators
        df.loc[:, 'ADX'] = talib.ADX(high, low, close, timeperiod=12)
        df.loc[:, 'ADXR'] = talib.ADXR(high, low, close, timeperiod=13)
        df.loc[:, 'APO'] = talib.APO(close,
                                     fastperiod=5,
                                     slowperiod=10,
                                     matype=0)
        df.loc[:,
               'AROON_down'], df.loc[:,
                                     'AROON_up'] = talib.AROON(high,
                                                               low,
                                                               timeperiod=15)
        df.loc[:, 'AROONOSC'] = talib.AROONOSC(high, low, timeperiod=13)
        df.loc[:, 'BOP'] = talib.BOP(open_price, high, low, close)
        df.loc[:, 'CCI'] = talib.CCI(high, low, close, timeperiod=13)
        df.loc[:, 'CMO'] = talib.CMO(close, timeperiod=14)
        df.loc[:, 'DX'] = talib.DX(high, low, close, timeperiod=10)
        df['MACD'], df['MACD_signal'], df['MACD_hist'] = talib.MACD(
            close, fastperiod=5, slowperiod=10, signalperiod=20)
        df.loc[:, 'MFI'] = talib.MFI(high, low, close, volume, timeperiod=12)
        df.loc[:, 'MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=10)
        df.loc[:, 'MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14)
        df.loc[:, 'MOM'] = talib.MOM(close, timeperiod=20)
        df.loc[:, 'PPO'] = talib.PPO(close,
                                     fastperiod=17,
                                     slowperiod=35,
                                     matype=2)
        df.loc[:, 'ROC'] = talib.ROC(close, timeperiod=12)
        df.loc[:, 'RSI'] = talib.RSI(close, timeperiod=25)
        df.loc[:, 'STOCH_k'], df.loc[:,
                                     'STOCH_d'] = talib.STOCH(high,
                                                              low,
                                                              close,
                                                              fastk_period=35,
                                                              slowk_period=12,
                                                              slowk_matype=0,
                                                              slowd_period=7,
                                                              slowd_matype=0)
        df.loc[:,
               'STOCHF_k'], df.loc[:,
                                   'STOCHF_d'] = talib.STOCHF(high,
                                                              low,
                                                              close,
                                                              fastk_period=28,
                                                              fastd_period=14,
                                                              fastd_matype=0)
        df.loc[:, 'STOCHRSI_K'], df.loc[:, 'STOCHRSI_D'] = talib.STOCHRSI(
            close,
            timeperiod=35,
            fastk_period=12,
            fastd_period=10,
            fastd_matype=1)
        df.loc[:, 'TRIX'] = talib.TRIX(close, timeperiod=30)
        df.loc[:, 'ULTOSC'] = talib.ULTOSC(high,
                                           low,
                                           close,
                                           timeperiod1=14,
                                           timeperiod2=28,
                                           timeperiod3=35)
        df.loc[:, 'WILLR'] = talib.WILLR(high, low, close, timeperiod=35)
        # overlap studies
        df.loc[:,
               'BBANDS_upper'], df.loc[:,
                                       'BBANDS_middle'], df.loc[:,
                                                                'BBANDS_lower'] = talib.BBANDS(
                                                                    close,
                                                                    timeperiod=
                                                                    12,
                                                                    nbdevup=2,
                                                                    nbdevdn=2,
                                                                    matype=0)
        df.loc[:, 'DEMA'] = talib.DEMA(close, timeperiod=30)
        df.loc[:, 'EMA'] = talib.EMA(close, timeperiod=7)
        df.loc[:, 'HT_TRENDLINE'] = talib.HT_TRENDLINE(close)
        df.loc[:, 'KAMA'] = talib.KAMA(close, timeperiod=5)
        df.loc[:, 'MA'] = talib.MA(close, timeperiod=5, matype=0)
        df.loc[:, 'MIDPOINT'] = talib.MIDPOINT(close, timeperiod=20)
        df.loc[:, 'WMA'] = talib.WMA(close, timeperiod=15)
        df.loc[:, 'SMA'] = talib.SMA(close)
        # pattern recoginition
        df.loc[:, 'CDL2CROWS'] = talib.CDL2CROWS(open_price, high, low, close)
        df.loc[:, 'CDL3BLACKCROWS'] = talib.CDL3BLACKCROWS(
            open_price, high, low, close)
        df.loc[:, 'CDL3INSIDE'] = talib.CDL3INSIDE(open_price, high, low,
                                                   close)
        df.loc[:, 'CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE(
            open_price, high, low, close)
        # price transform
        df.loc[:, 'WCLPRICE'] = talib.WCLPRICE(high, low, close)
        # statistic funcitons
        df.loc[:, 'BETA'] = talib.BETA(high, low, timeperiod=20)
        df.loc[:, 'CORREL'] = talib.CORREL(high, low, timeperiod=20)
        df.loc[:, 'STDDEV'] = talib.STDDEV(close, timeperiod=20, nbdev=1)
        df.loc[:, 'TSF'] = talib.TSF(close, timeperiod=20)
        df.loc[:, 'VAR'] = talib.VAR(close, timeperiod=20, nbdev=1)
        # volatility indicators
        df.loc[:, 'ATR'] = talib.ATR(high, low, close, timeperiod=7)
        df.loc[:, 'NATR'] = talib.NATR(high, low, close, timeperiod=20)
        df.loc[:, 'TRANGE'] = talib.TRANGE(high, low, close)
        # volume indicators
        df.loc[:, 'AD'] = talib.AD(high, low, close, volume)
        df.loc[:, 'ADOSC'] = talib.ADOSC(high,
                                         low,
                                         close,
                                         volume,
                                         fastperiod=10,
                                         slowperiod=20)
        df.loc[:, 'OBV'] = talib.OBV(close, volume)

        # df.fillna(df.mean(), inplace=True)
        df.dropna(inplace=True)
        df.set_index('Date', inplace=True)
        print(colored('> caching' + asset + '/' + currency + ':)', 'cyan'))
        train_size = round(
            len(df) *
            DF_TRAIN_SIZE)  # 75% to train -> test with different value
        df_train = df[:train_size]
        df_rollout = df[train_size:]
        df_train.to_csv(df_train_path)
        df_rollout.to_csv(df_rollout_path)
        df_train = pd.read_csv(
            df_train_path)  # re-read to avoid indexing issue w/ Ray
        df_rollout = pd.read_csv(df_rollout_path)
    else:

        print(
            colored(
                emoji.emojize('> ' + random.choice(emojis) + ' feching ' +
                              asset + '/' + currency + ' from cache',
                              use_aliases=True), 'magenta'))

        # print(colored('> feching ' + asset + '/' + currency + ' from cache :)', 'magenta'))
        df_train = pd.read_csv(df_train_path)
        df_rollout = pd.read_csv(df_rollout_path)
        # df_train.set_index('Date', inplace=True)
        # df_rollout.set_index('Date', inplace=True)

    return df_train, df_rollout
Beispiel #24
0
def main():
    ohlcv = api_ohlcv('20191017')
    open, high, low, close, volume, timestamp = [], [], [], [], [], []

    for i in ohlcv:
        open.append(int(i[0]))
        high.append(int(i[1]))
        low.append(int(i[2]))
        close.append(int(i[3]))
        volume.append(float(i[4]))
        time_str = str(i[5])
        timestamp.append(
            datetime.fromtimestamp(int(
                time_str[:10])).strftime('%Y/%m/%d %H:%M:%M'))

    date_time_index = pd.to_datetime(
        timestamp)  # convert to DateTimeIndex type
    df = pd.DataFrame(
        {
            'open': open,
            'high': high,
            'low': low,
            'close': close,
            'volume': volume
        },
        index=date_time_index)
    # df.index += pd.offsets.Hour(9) # adjustment for JST if required
    print(df.shape)
    print(df.columns)

    # pct_change
    f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan
    y = df.rename(columns={
        'close': 'y'
    }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0)
    X = df.copy()
    y_ = pd.DataFrame(y.map(f), columns=['y'])
    y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0)
    df_ = pd.concat([X, y_], axis=1)

    # check the shape
    print(
        '----------------------------------------------------------------------------------------'
    )
    print('X shape: (%i,%i)' % X.shape)
    print('y shape: (%i,%i)' % y_.shape)
    print(
        '----------------------------------------------------------------------------------------'
    )
    print(y_.groupby('y').size())
    print('y=1 up, y=0 stay, y=-1 down')
    print(
        '----------------------------------------------------------------------------------------'
    )

    # feature calculation
    open = pd.Series(df['open'])
    high = pd.Series(df['high'])
    low = pd.Series(df['low'])
    close = pd.Series(df['close'])
    volume = pd.Series(df['volume'])

    # pct_change for new column
    X['diff'] = y

    # Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())

    # Momentum
    momentum = talib.MOM(close, timeperiod=5)
    momentum = momentum.fillna(momentum.mean())

    # RSI
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())

    # ADX
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())

    # ADX change
    adx_change = adx.pct_change(1).shift(-1)
    adx_change = adx_change.fillna(adx_change.mean())

    # AD
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())

    X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad],
                   axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad']
    X_.join(y_).head(10)

    # default parameter models
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)
    print('X_train shape: {}'.format(X_train.shape))
    print('X_test shape: {}'.format(X_test.shape))
    print('y_train shape: {}'.format(y_train.shape))
    print('y_test shape: {}'.format(y_test.shape))

    pipe_knn = Pipeline([('scl', StandardScaler()),
                         ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic = Pipeline([('scl', StandardScaler()),
                              ('est',
                               LogisticRegression(solver='lbfgs',
                                                  multi_class='multinomial',
                                                  random_state=39))])
    pipe_rf = Pipeline([('scl', StandardScaler()),
                        ('est', RandomForestClassifier(random_state=39))])
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb]

    for (i, pipe) in enumerate(pipe_lines):
        pipe.fit(X_train, y_train.values.ravel())
        print(pipe)
        print('%s: %.3f' %
              (pipe_names[i] + ' Train Accuracy',
               accuracy_score(y_train.values.ravel(), pipe.predict(X_train))))
        print('%s: %.3f' %
              (pipe_names[i] + ' Test Accuracy',
               accuracy_score(y_test.values.ravel(), pipe.predict(X_test))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train.values.ravel(),
                                     pipe.predict(X_train),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test.values.ravel(),
                                     pipe.predict(X_test),
                                     average='micro')))

    for (i, pipe) in enumerate(pipe_lines):
        predict = pipe.predict(X_test)
        cm = confusion_matrix(y_test.values.ravel(),
                              predict,
                              labels=[-1, 0, 1])
        print('{} Confusion Matrix'.format(pipe_names[i]))
        print(cm)

    ## Overlap Studies Functions
    # DEMA - Double Exponential Moving Average
    dema = talib.DEMA(close, timeperiod=3)
    dema = dema.fillna(dema.mean())
    print('DEMA - Double Exponential Moving Average shape: {}'.format(
        dema.shape))

    # EMA - Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())
    print('EMA - Exponential Moving Average shape: {}'.format(ema.shape))

    # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    hilbert = talib.HT_TRENDLINE(close)
    hilbert = hilbert.fillna(hilbert.mean())
    print(
        'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'.
        format(hilbert.shape))

    # KAMA - Kaufman Adaptive Moving Average
    kama = talib.KAMA(close, timeperiod=3)
    kama = kama.fillna(kama.mean())
    print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format(
        kama.shape))

    # MA - Moving average
    ma = talib.MA(close, timeperiod=3, matype=0)
    ma = ma.fillna(ma.mean())
    print('MA - Moving average shape: {}'.format(kama.shape))

    # MIDPOINT - MidPoint over period
    midpoint = talib.MIDPOINT(close, timeperiod=7)
    midpoint = midpoint.fillna(midpoint.mean())
    print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape))

    # MIDPRICE - Midpoint Price over period
    midprice = talib.MIDPRICE(high, low, timeperiod=7)
    midprice = midprice.fillna(midprice.mean())
    print('MIDPRICE - Midpoint Price over period shape: {}'.format(
        midprice.shape))

    # SAR - Parabolic SAR
    sar = talib.SAR(high, low, acceleration=0, maximum=0)
    sar = sar.fillna(sar.mean())
    print('SAR - Parabolic SAR shape: {}'.format(sar.shape))

    # SAREXT - Parabolic SAR - Extended
    sarext = talib.SAREXT(high,
                          low,
                          startvalue=0,
                          offsetonreverse=0,
                          accelerationinitlong=0,
                          accelerationlong=0,
                          accelerationmaxlong=0,
                          accelerationinitshort=0,
                          accelerationshort=0,
                          accelerationmaxshort=0)
    sarext = sarext.fillna(sarext.mean())
    print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape))

    # SMA - Simple Moving Average
    sma = talib.SMA(close, timeperiod=3)
    sma = sma.fillna(sma.mean())
    print('SMA - Simple Moving Average shape: {}'.format(sma.shape))

    # T3 - Triple Exponential Moving Average (T3)
    t3 = talib.T3(close, timeperiod=5, vfactor=0)
    t3 = t3.fillna(t3.mean())
    print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape))

    # TEMA - Triple Exponential Moving Average
    tema = talib.TEMA(close, timeperiod=3)
    tema = tema.fillna(tema.mean())
    print('TEMA - Triple Exponential Moving Average shape: {}'.format(
        tema.shape))

    # TRIMA - Triangular Moving Average
    trima = talib.TRIMA(close, timeperiod=3)
    trima = trima.fillna(trima.mean())
    print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape))

    # WMA - Weighted Moving Average
    wma = talib.WMA(close, timeperiod=3)
    wma = wma.fillna(wma.mean())
    print('WMA - Weighted Moving Average shape: {}'.format(wma.shape))

    ## Momentum Indicator Functions
    # ADX - Average Directional Movement Index
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())
    print('ADX - Average Directional Movement Index shape: {}'.format(
        adx.shape))

    # ADXR - Average Directional Movement Index Rating
    adxr = talib.ADXR(high, low, close, timeperiod=7)
    adxr = adxr.fillna(adxr.mean())
    print('ADXR - Average Directional Movement Index Rating shape: {}'.format(
        adxr.shape))

    # APO - Absolute Price Oscillator
    apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0)
    apo = apo.fillna(apo.mean())
    print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape))

    # AROONOSC - Aroon Oscillator
    aroon = talib.AROONOSC(high, low, timeperiod=14)
    aroon = aroon.fillna(aroon.mean())
    print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape))

    # BOP - Balance Of Power
    bop = talib.BOP(open, high, low, close)
    bop = bop.fillna(bop.mean())
    print('BOP - Balance Of Power shape: {}'.format(apo.shape))

    # CCI - Commodity Channel Index
    cci = talib.CCI(high, low, close, timeperiod=7)
    cci = cci.fillna(cci.mean())
    print('CCI - Commodity Channel Index shape: {}'.format(cci.shape))

    # CMO - Chande Momentum Oscillator
    cmo = talib.CMO(close, timeperiod=7)
    cmo = cmo.fillna(cmo.mean())
    print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape))

    # DX - Directional Movement Index
    dx = talib.DX(high, low, close, timeperiod=7)
    dx = dx.fillna(dx.mean())
    print('DX - Directional Movement Index shape: {}'.format(dx.shape))

    # MFI - Money Flow Index
    mfi = talib.MFI(high, low, close, volume, timeperiod=7)
    mfi = mfi.fillna(mfi.mean())
    print('MFI - Money Flow Index shape: {}'.format(mfi.shape))

    # MINUS_DI - Minus Directional Indicator
    minusdi = talib.MINUS_DI(high, low, close, timeperiod=14)
    minusdi = minusdi.fillna(minusdi.mean())
    print('MINUS_DI - Minus Directional Indicator shape: {}'.format(
        minusdi.shape))

    # MINUS_DM - Minus Directional Movement
    minusdm = talib.MINUS_DM(high, low, timeperiod=14)
    minusdm = minusdm.fillna(minusdm.mean())
    print('MINUS_DM - Minus Directional Movement shape: {}'.format(
        minusdm.shape))

    # MOM - Momentum
    mom = talib.MOM(close, timeperiod=5)
    mom = mom.fillna(mom.mean())
    print('MOM - Momentum shape: {}'.format(mom.shape))

    # PLUS_DI - Plus Directional Indicator
    plusdi = talib.PLUS_DI(high, low, close, timeperiod=14)
    plusdi = plusdi.fillna(plusdi.mean())
    print('PLUS_DI - Plus Directional Indicator shape: {}'.format(
        plusdi.shape))

    # PLUS_DM - Plus Directional Movement
    plusdm = talib.PLUS_DM(high, low, timeperiod=14)
    plusdm = plusdm.fillna(plusdm.mean())
    print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape))

    # PPO - Percentage Price Oscillator
    ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0)
    ppo = ppo.fillna(ppo.mean())
    print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape))

    # ROC - Rate of change:((price/prevPrice)-1)*100
    roc = talib.ROC(close, timeperiod=10)
    roc = roc.fillna(roc.mean())
    print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format(
        roc.shape))

    # RSI - Relative Strength Index
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())
    print('RSI - Relative Strength Index shape: {}'.format(rsi.shape))

    # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    trix = talib.TRIX(close, timeperiod=30)
    trix = trix.fillna(trix.mean())
    print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'.
          format(trix.shape))

    # ULTOSC - Ultimate Oscillator
    ultosc = talib.ULTOSC(high,
                          low,
                          close,
                          timeperiod1=7,
                          timeperiod2=14,
                          timeperiod3=28)
    ultosc = ultosc.fillna(ultosc.mean())
    print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape))

    # WILLR - Williams'%R
    willr = talib.WILLR(high, low, close, timeperiod=7)
    willr = willr.fillna(willr.mean())
    print("WILLR - Williams'%R shape: {}".format(willr.shape))

    ## Volume Indicator Functions
    # AD - Chaikin A/D Line
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())
    print('AD - Chaikin A/D Line shape: {}'.format(ad.shape))

    # ADOSC - Chaikin A/D Oscillator
    adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10)
    adosc = adosc.fillna(adosc.mean())
    print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape))

    # OBV - On Balance Volume
    obv = talib.OBV(close, volume)
    obv = obv.fillna(obv.mean())
    print('OBV - On Balance Volume shape: {}'.format(obv.shape))

    ## Volatility Indicator Functions
    # ATR - Average True Range
    atr = talib.ATR(high, low, close, timeperiod=7)
    atr = atr.fillna(atr.mean())
    print('ATR - Average True Range shape: {}'.format(atr.shape))

    # NATR - Normalized Average True Range
    natr = talib.NATR(high, low, close, timeperiod=7)
    natr = natr.fillna(natr.mean())
    print('NATR - Normalized Average True Range shape: {}'.format(natr.shape))

    # TRANGE - True Range
    trange = talib.TRANGE(high, low, close)
    trange = trange.fillna(trange.mean())
    print('TRANGE - True Range shape: {}'.format(natr.shape))

    ## Price Transform Functions
    # AVGPRICE - Average Price
    avg = talib.AVGPRICE(open, high, low, close)
    avg = avg.fillna(avg.mean())
    print('AVGPRICE - Average Price shape: {}'.format(natr.shape))

    # MEDPRICE - Median Price
    medprice = talib.MEDPRICE(high, low)
    medprice = medprice.fillna(medprice.mean())
    print('MEDPRICE - Median Price shape: {}'.format(medprice.shape))

    # TYPPRICE - Typical Price
    typ = talib.TYPPRICE(high, low, close)
    typ = typ.fillna(typ.mean())
    print('TYPPRICE - Typical Price shape: {}'.format(typ.shape))

    # WCLPRICE - Weighted Close Price
    wcl = talib.WCLPRICE(high, low, close)
    wcl = wcl.fillna(wcl.mean())
    print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape))

    ## Cycle Indicator Functions
    # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
    dcperiod = talib.HT_DCPERIOD(close)
    dcperiod = dcperiod.fillna(dcperiod.mean())
    print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'.
          format(dcperiod.shape))

    # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
    dcphase = talib.HT_DCPHASE(close)
    dcphase = dcphase.fillna(dcphase.mean())
    print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'.
          format(dcperiod.shape))

    ## Statistic Functions
    # BETA - Beta
    beta = talib.BETA(high, low, timeperiod=3)
    beta = beta.fillna(beta.mean())
    print('BETA - Beta shape: {}'.format(beta.shape))

    # CORREL - Pearson's Correlation Coefficient(r)
    correl = talib.CORREL(high, low, timeperiod=30)
    correl = correl.fillna(correl.mean())
    print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format(
        beta.shape))

    # LINEARREG - Linear Regression
    linreg = talib.LINEARREG(close, timeperiod=7)
    linreg = linreg.fillna(linreg.mean())
    print("LINEARREG - Linear Regression shape: {}".format(linreg.shape))

    # STDDEV - Standard Deviation
    stddev = talib.STDDEV(close, timeperiod=5, nbdev=1)
    stddev = stddev.fillna(stddev.mean())
    print("STDDEV - Standard Deviation shape: {}".format(stddev.shape))

    # TSF - Time Series Forecast
    tsf = talib.TSF(close, timeperiod=7)
    tsf = tsf.fillna(tsf.mean())
    print("TSF - Time Series Forecast shape: {}".format(tsf.shape))

    # VAR - Variance
    var = talib.VAR(close, timeperiod=5, nbdev=1)
    var = var.fillna(var.mean())
    print("VAR - Variance shape: {}".format(var.shape))

    ## Feature DataFrame
    X_full = pd.concat([
        X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma,
        t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi,
        minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc,
        willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl,
        dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var
    ],
                       axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_full.columns = [
        'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint',
        'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma',
        'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi',
        'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix',
        'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange',
        'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta',
        'correl', 'linreg', 'stddev', 'tsf', 'var'
    ]
    X_full.join(y_).head(10)

    # full feature models
    X_train_full, X_test_full, y_train_full, y_test_full = train_test_split(
        X_full, y_, test_size=0.33, random_state=42)
    print('X_train shape: {}'.format(X_train_full.shape))
    print('X_test shape: {}'.format(X_test_full.shape))
    print('y_train shape: {}'.format(y_train_full.shape))
    print('y_test shape: {}'.format(y_test_full.shape))

    pipe_knn_full = Pipeline([('scl', StandardScaler()),
                              ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic_full = Pipeline([
        ('scl', StandardScaler()),
        ('est',
         LogisticRegression(solver='lbfgs',
                            multi_class='multinomial',
                            random_state=39))
    ])
    pipe_rf_full = Pipeline([('scl', StandardScaler()),
                             ('est', RandomForestClassifier(random_state=39))])
    pipe_gb_full = Pipeline([('scl', StandardScaler()),
                             ('est',
                              GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines_full = [
        pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full
    ]

    for (i, pipe) in enumerate(pipe_lines_full):
        pipe.fit(X_train_full, y_train_full.values.ravel())
        print(pipe)
        print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy',
                            accuracy_score(y_train_full.values.ravel(),
                                           pipe.predict(X_train_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy',
                            accuracy_score(y_test_full.values.ravel(),
                                           pipe.predict(X_test_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train_full.values.ravel(),
                                     pipe.predict(X_train_full),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test_full.values.ravel(),
                                     pipe.predict(X_test_full),
                                     average='micro')))

    # Univariate Statistics
    select = SelectPercentile(percentile=25)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_selected = select.transform(X_train_full)
    X_test_selected = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Univariate Statistics-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Cllassifier with Univariate Statistics
    print(
        '---------------------------With Univariate Statistics--------------------------------------'
    )
    pipe_gb_percentile = Pipeline([
        ('scl', StandardScaler()),
        ('est', GradientBoostingClassifier(random_state=39))
    ])
    pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_percentile.predict(X_train_selected))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_percentile.predict(X_test_selected))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_percentile.predict(X_train_selected),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_percentile.predict(X_test_selected),
                 average='micro')))

    # Model-based Selection
    select = SelectFromModel(RandomForestClassifier(n_estimators=100,
                                                    random_state=42),
                             threshold="1.25*mean")
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_model = select.transform(X_train_full)
    X_test_model = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Model-based Selection--------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Model-based Selection
    print(
        '----------------------------With Model-based Selection--------------------------------------'
    )
    pipe_gb_model = Pipeline([('scl', StandardScaler()),
                              ('est',
                               GradientBoostingClassifier(random_state=39))])
    pipe_gb_model.fit(X_train_model, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_model.predict(X_train_model))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_model.predict(X_test_model))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_model.predict(X_train_model),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_model.predict(X_test_model),
                 average='micro')))

    # Recursive Feature Elimination
    select = RFE(RandomForestClassifier(n_estimators=100, random_state=42),
                 n_features_to_select=15)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_rfe = select.transform(X_train_full)
    X_test_rfe = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Recursive Feature Elimination-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Recursive Feature Elimination
    print(
        '----------------------------With Recursive Feature Elimination--------------------------------------'
    )
    pipe_gb_rfe = Pipeline([('scl', StandardScaler()),
                            ('est',
                             GradientBoostingClassifier(random_state=39))])
    pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_rfe.predict(X_train_rfe))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_rfe.predict(X_test_rfe))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_rfe.predict(X_train_rfe),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_rfe.predict(X_test_rfe),
                 average='micro')))

    cv = cross_val_score(pipe_gb,
                         X_,
                         y_.values.ravel(),
                         cv=StratifiedKFold(n_splits=10,
                                            shuffle=True,
                                            random_state=39))
    print('Cross validation with StratifiedKFold scores: {}'.format(cv))
    print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean()))

    # GridSearch
    n_features = len(df.columns)
    param_grid = {
        'learning_rate': [0.01, 0.1, 1, 10],
        'n_estimators': [1, 10, 100, 200, 300],
        'max_depth': [1, 2, 3, 4, 5]
    }
    stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39)
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)

    grid_search = GridSearchCV(GradientBoostingClassifier(),
                               param_grid,
                               cv=stratifiedcv)
    grid_search.fit(X_train, y_train.values.ravel())
    print('GridSearch Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train.values.ravel(), grid_search.predict(X_train))))
    print('GridSearch Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test.values.ravel(), grid_search.predict(X_test))))
    print('GridSearch Train F1 Score: {:.3f}'.format(
        f1_score(y_train.values.ravel(),
                 grid_search.predict(X_train),
                 average='micro')))
    print('GridSearch Test F1 Score: {:.3f}'.format(
        f1_score(y_test.values.ravel(),
                 grid_search.predict(X_test),
                 average='micro')))

    # GridSearch results
    print("Best params:\n{}".format(grid_search.best_params_))
    print("Best cross-validation score: {:.2f}".format(
        grid_search.best_score_))
    results = pd.DataFrame(grid_search.cv_results_)
    corr_params = results.drop(results.columns[[
        0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20
    ]],
                               axis=1)
    corr_params.head()

    # GridSearch in nested
    cv_gb = cross_val_score(grid_search,
                            X_,
                            y_.values.ravel(),
                            cv=StratifiedKFold(n_splits=3,
                                               shuffle=True,
                                               random_state=39))
    print('Grid Search with nested cross validation scores: {}'.format(cv_gb))
    print('Grid Search with nested cross validation mean: {}'.format(
        cv_gb.mean()))
Beispiel #25
0
def TALIB_TSF(close, timeperiod=14):
    '''00391,2,1'''
    return talib.TSF(close, timeperiod)
Beispiel #26
0
def add_ta_features(df, ta_settings):
    """Add technial analysis features from typical financial dataset that
    typically include columns such as "open", "high", "low", "price" and
    "volume".

    http://mrjbq7.github.io/ta-lib/

    Args:
        df(pandas.DataFrame): original DataFrame.
        ta_settings(dict): configuration.
    Returns:
        pandas.DataFrame: DataFrame with new features included.
    """

    open = df['open']
    high = df['high']
    low = df['low']
    close = df['price']
    volume = df['volume']

    if ta_settings['overlap']:

        df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[
            'ta_overlap_bbands_lower'] = ta.BBANDS(close,
                                                   timeperiod=5,
                                                   nbdevup=2,
                                                   nbdevdn=2,
                                                   matype=0)
        df['ta_overlap_dema'] = ta.DEMA(
            close, timeperiod=15)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30)
        df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30)
        df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0)
        df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close)
        period = np.random.randint(10, 20, size=len(close)).astype(float)
        df['ta_overlap_mavp'] = ta.MAVP(close,
                                        period,
                                        minperiod=2,
                                        maxperiod=30,
                                        matype=0)
        df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14)
        df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14)
        df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0)
        df['ta_overlap_sarext'] = ta.SAREXT(high,
                                            low,
                                            startvalue=0,
                                            offsetonreverse=0,
                                            accelerationinitlong=0,
                                            accelerationlong=0,
                                            accelerationmaxlong=0,
                                            accelerationinitshort=0,
                                            accelerationshort=0,
                                            accelerationmaxshort=0)
        df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30)
        df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0)
        df['ta_overlap_tema'] = ta.TEMA(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30)
        df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close)

    if ta_settings['momentum']:

        df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14)
        df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14)
        df['ta_momentum_apo'] = ta.APO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON(
            high, low, timeperiod=14)
        df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14)
        df['ta_momentum_bop'] = ta.BOP(open, high, low, close)
        df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14)
        df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14)
        df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14)
        df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[
            'ta_momentum_macd_hist'] = ta.MACD(close,
                                               fastperiod=12,
                                               slowperiod=26,
                                               signalperiod=9)
        df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[
            'ta_momentum_macdext_hist'] = ta.MACDEXT(close,
                                                     fastperiod=12,
                                                     fastmatype=0,
                                                     slowperiod=26,
                                                     slowmatype=0,
                                                     signalperiod=9,
                                                     signalmatype=0)
        df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[
            'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9)
        df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14)
        df['ta_momentum_minus_di'] = ta.MINUS_DI(high,
                                                 low,
                                                 close,
                                                 timeperiod=14)
        df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14)
        df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10)
        df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14)
        df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14)
        df['ta_momentum_ppo'] = ta.PPO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10)
        df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10)
        df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10)
        df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10)
        df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14)
        df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH(
            high,
            low,
            close,
            fastk_period=5,
            slowk_period=3,
            slowk_matype=0,
            slowd_period=3,
            slowd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF(
            high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI(
            close,
            timeperiod=14,
            fastk_period=5,
            fastd_period=3,
            fastd_matype=0)
        df['ta_momentum_trix'] = ta.TRIX(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_momentum_ultosc'] = ta.ULTOSC(high,
                                             low,
                                             close,
                                             timeperiod1=7,
                                             timeperiod2=14,
                                             timeperiod3=28)
        df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14)

    if ta_settings['volume']:

        df['ta_volume_ad'] = ta.AD(high, low, close, volume)
        df['ta_volume_adosc'] = ta.ADOSC(high,
                                         low,
                                         close,
                                         volume,
                                         fastperiod=3,
                                         slowperiod=10)
        df['ta_volume_obv'] = ta.OBV(close, volume)

    if ta_settings['volatility']:

        df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14)
        df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14)
        df['ta_volatility_trange'] = ta.TRANGE(high, low, close)

    if ta_settings['price']:

        df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close)
        df['ta_price_medprice'] = ta.MEDPRICE(high, low)
        df['ta_price_typprice'] = ta.TYPPRICE(high, low, close)
        df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close)

    if ta_settings['cycle']:

        df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close)
        df['ta_cycle_ht_phasor_inphase'], df[
            'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close)
        df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close)
        # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close)

    if ta_settings['pattern']:

        df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close)
        df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS(
            open, high, low, close)
        df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close)
        df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE(
            open, high, low, close)
        df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close)
        df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH(
            open, high, low, close)
        df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS(
            open, high, low, close)
        df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open,
                                                                high,
                                                                low,
                                                                close,
                                                                penetration=0)
        df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK(
            open, high, low, close)
        df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close)
        df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close)
        df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU(
            open, high, low, close)
        df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL(
            open, high, low, close)
        df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK(
            open, high, low, close)
        df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close)
        df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close)
        df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI(
            open, high, low, close)
        df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close)
        df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE(
            open, high, low, close)
        df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI(
            open, high, low, close)
        df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close)
        df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN(
            open, high, low, close)
        df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close)
        df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS(
            open, high, low, close)
        df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close)
        df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close)
        df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD(
            open, high, low, close)
        df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON(
            open, high, low, close)
        df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS(
            open, high, low, close)
        df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close)
        df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER(
            open, high, low, close)
        df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close)
        df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH(
            open, high, low, close)
        df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM(
            open, high, low, close)
        df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI(
            open, high, low, close)
        df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close)
        df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close)
        df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW(
            open, high, low, close)
        df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open,
                                                    high,
                                                    low,
                                                    close,
                                                    penetration=0)
        df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close)
        df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close)
        df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN(
            open, high, low, close)
        df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS(
            open, high, low, close)
        df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES(
            open, high, low, close)
        df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR(
            open, high, low, close)
        df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close)
        df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP(
            open, high, low, close)
        df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN(
            open, high, low, close)
        df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH(
            open, high, low, close)
        df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close)
        df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close)
        df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close)
        df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close)
        df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER(
            open, high, low, close)
        df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS(
            open, high, low, close)
        df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS(
            open, high, low, close)

    if ta_settings['statistic']:

        df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5)
        df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30)
        df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14)
        df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close,
                                                                timeperiod=14)
        df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT(
            close, timeperiod=14)
        df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close,
                                                                timeperiod=14)
        df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1)
        df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14)
        df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1)

    if ta_settings['math_transforms']:

        df['ta_math_transforms_atan'] = ta.ATAN(close)
        df['ta_math_transforms_ceil'] = ta.CEIL(close)
        df['ta_math_transforms_cos'] = ta.COS(close)
        df['ta_math_transforms_floor'] = ta.FLOOR(close)
        df['ta_math_transforms_ln'] = ta.LN(close)
        df['ta_math_transforms_log10'] = ta.LOG10(close)
        df['ta_math_transforms_sin'] = ta.SIN(close)
        df['ta_math_transforms_sqrt'] = ta.SQRT(close)
        df['ta_math_transforms_tan'] = ta.TAN(close)

    if ta_settings['math_operators']:

        df['ta_math_operators_add'] = ta.ADD(high, low)
        df['ta_math_operators_div'] = ta.DIV(high, low)
        df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX(
            close, timeperiod=30)
        df['ta_math_operators_minidx'], df[
            'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30)
        df['ta_math_operators_mult'] = ta.MULT(high, low)
        df['ta_math_operators_sub'] = ta.SUB(high, low)
        df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30)

    return df
Beispiel #27
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)
#获取交易数据用于示例分析
import tushare as ts
def get_data(code,start='2015-01-01'):
    df=ts.get_k_data(code,start)
    df.index=pd.to_datetime(df.date)
    df=df.sort_index()
    return df

#获取上证指数收盘价、最高、最低价格
df=get_data('sh')[['open','close','high','low']]

#收盘价对时间t的线性回归预测值
df['linearreg']=ta.LINEARREG(df.close, timeperiod=14)
#时间序列预测值
df['tsf']=ta.TSF(df.close, timeperiod=14)
#画图
df.loc['2018-08-01':,['close','linearreg','tsf']].plot(figsize=(12,6))

plt.show()

df['beta']=ta.BETA(df.high,df.low,timeperiod=5)
df['correl']=ta.CORREL(df.high, df.low, timeperiod=30)
df['stdev']=ta.STDDEV(df.close, timeperiod=5, nbdev=1)
#将上述函数计算得到的结果进行可视化
df[['close','beta','correl','stdev']].plot(figsize=(12,8),
       subplots = True,layout=(2, 2))
plt.subplots_adjust(wspace=0,hspace=0.2)

plt.show()
Beispiel #29
0
def get_factors(index,
                Open,
                Close,
                High,
                Low,
                Volume,
                rolling=26,
                drop=False,
                normalization=True):
    tmp = pd.DataFrame()
    tmp['tradeTime'] = index

    # 累积/派发线(Accumulation / Distribution Line,该指标将每日的成交量通过价格加权累计,
    # 用以计算成交量的动量。属于趋势型因子
    tmp['AD'] = talib.AD(High, Low, Close, Volume)

    # 佳庆指标(Chaikin Oscillator),该指标基于AD曲线的指数移动均线而计算得到。属于趋势型因子
    tmp['ADOSC'] = talib.ADOSC(High,
                               Low,
                               Close,
                               Volume,
                               fastperiod=3,
                               slowperiod=10)

    # 平均动向指数,DMI因子的构成部分。属于趋势型因子
    tmp['ADX'] = talib.ADX(High, Low, Close, timeperiod=14)

    # 相对平均动向指数,DMI因子的构成部分。属于趋势型因子
    tmp['ADXR'] = talib.ADXR(High, Low, Close, timeperiod=14)

    # 绝对价格振荡指数
    tmp['APO'] = talib.APO(Close, fastperiod=12, slowperiod=26)

    # Aroon通过计算自价格达到近期最高值和最低值以来所经过的期间数,帮助投资者预测证券价格从趋势到区域区域或反转的变化,
    # Aroon指标分为Aroon、AroonUp和AroonDown3个具体指标。属于趋势型因子
    tmp['AROONDown'], tmp['AROONUp'] = talib.AROON(High, Low, timeperiod=14)
    tmp['AROONOSC'] = talib.AROONOSC(High, Low, timeperiod=14)

    # 均幅指标(Average TRUE Ranger),取一定时间周期内的股价波动幅度的移动平均值,
    # 是显示市场变化率的指标,主要用于研判买卖时机。属于超买超卖型因子。
    tmp['ATR14'] = talib.ATR(High, Low, Close, timeperiod=14)
    tmp['ATR6'] = talib.ATR(High, Low, Close, timeperiod=6)

    # 布林带
    tmp['Boll_Up'], tmp['Boll_Mid'], tmp['Boll_Down'] = talib.BBANDS(
        Close, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)

    # 均势指标
    tmp['BOP'] = talib.BOP(Open, High, Low, Close)

    # 5日顺势指标(Commodity Channel Index),专门测量股价是否已超出常态分布范围。属于超买超卖型因子。
    tmp['CCI5'] = talib.CCI(High, Low, Close, timeperiod=5)
    tmp['CCI10'] = talib.CCI(High, Low, Close, timeperiod=10)
    tmp['CCI20'] = talib.CCI(High, Low, Close, timeperiod=20)
    tmp['CCI88'] = talib.CCI(High, Low, Close, timeperiod=88)

    # 钱德动量摆动指标(Chande Momentum Osciliator),与其他动量指标摆动指标如相对强弱指标(RSI)和随机指标(KDJ)不同,
    # 钱德动量指标在计算公式的分子中采用上涨日和下跌日的数据。属于超买超卖型因子
    tmp['CMO_Close'] = talib.CMO(Close, timeperiod=14)
    tmp['CMO_Open'] = talib.CMO(Close, timeperiod=14)

    # DEMA双指数移动平均线
    tmp['DEMA6'] = talib.DEMA(Close, timeperiod=6)
    tmp['DEMA12'] = talib.DEMA(Close, timeperiod=12)
    tmp['DEMA26'] = talib.DEMA(Close, timeperiod=26)

    # DX 动向指数
    tmp['DX'] = talib.DX(High, Low, Close, timeperiod=14)

    # EMA 指数移动平均线
    tmp['EMA6'] = talib.EMA(Close, timeperiod=6)
    tmp['EMA12'] = talib.EMA(Close, timeperiod=12)
    tmp['EMA26'] = talib.EMA(Close, timeperiod=26)

    # KAMA 适应性移动平均线
    tmp['KAMA'] = talib.KAMA(Close, timeperiod=30)

    # MACD
    tmp['MACD_DIF'], tmp['MACD_DEA'], tmp['MACD_bar'] = talib.MACD(
        Close, fastperiod=12, slowperiod=24, signalperiod=9)

    # 中位数价格 不知道是什么意思
    tmp['MEDPRICE'] = talib.MEDPRICE(High, Low)

    # 负向指标 负向运动
    tmp['MiNUS_DI'] = talib.MINUS_DI(High, Low, Close, timeperiod=14)
    tmp['MiNUS_DM'] = talib.MINUS_DM(High, Low, timeperiod=14)

    # 动量指标(Momentom Index),动量指数以分析股价波动的速度为目的,研究股价在波动过程中各种加速,
    # 减速,惯性作用以及股价由静到动或由动转静的现象。属于趋势型因子
    tmp['MOM'] = talib.MOM(Close, timeperiod=10)

    # 归一化平均值范围
    tmp['NATR'] = talib.NATR(High, Low, Close, timeperiod=14)

    # OBV 	能量潮指标(On Balance Volume,OBV),以股市的成交量变化来衡量股市的推动力,
    # 从而研判股价的走势。属于成交量型因子
    tmp['OBV'] = talib.OBV(Close, Volume)

    # PLUS_DI 更向指示器
    tmp['PLUS_DI'] = talib.PLUS_DI(High, Low, Close, timeperiod=14)
    tmp['PLUS_DM'] = talib.PLUS_DM(High, Low, timeperiod=14)

    # PPO 价格振荡百分比
    tmp['PPO'] = talib.PPO(Close, fastperiod=6, slowperiod=26, matype=0)

    # ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较,
    # 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。
    tmp['ROC6'] = talib.ROC(Close, timeperiod=6)
    tmp['ROC20'] = talib.ROC(Close, timeperiod=20)
    # 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较,
    # 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向,
    # 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿,
    # 属于成交量的反趋向指标。属于成交量型因子
    tmp['VROC6'] = talib.ROC(Volume, timeperiod=6)
    tmp['VROC20'] = talib.ROC(Volume, timeperiod=20)

    # ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较,
    # 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。
    tmp['ROCP6'] = talib.ROCP(Close, timeperiod=6)
    tmp['ROCP20'] = talib.ROCP(Close, timeperiod=20)
    # 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较,
    # 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向,
    # 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿,
    # 属于成交量的反趋向指标。属于成交量型因子
    tmp['VROCP6'] = talib.ROCP(Volume, timeperiod=6)
    tmp['VROCP20'] = talib.ROCP(Volume, timeperiod=20)

    # RSI
    tmp['RSI'] = talib.RSI(Close, timeperiod=14)

    # SAR 抛物线转向
    tmp['SAR'] = talib.SAR(High, Low, acceleration=0.02, maximum=0.2)

    # TEMA
    tmp['TEMA6'] = talib.TEMA(Close, timeperiod=6)
    tmp['TEMA12'] = talib.TEMA(Close, timeperiod=12)
    tmp['TEMA26'] = talib.TEMA(Close, timeperiod=26)

    # TRANGE 真实范围
    tmp['TRANGE'] = talib.TRANGE(High, Low, Close)

    # TYPPRICE 典型价格
    tmp['TYPPRICE'] = talib.TYPPRICE(High, Low, Close)

    # TSF 时间序列预测
    tmp['TSF'] = talib.TSF(Close, timeperiod=14)

    # ULTOSC 极限振子
    tmp['ULTOSC'] = talib.ULTOSC(High,
                                 Low,
                                 Close,
                                 timeperiod1=7,
                                 timeperiod2=14,
                                 timeperiod3=28)

    # 威廉指标
    tmp['WILLR'] = talib.WILLR(High, Low, Close, timeperiod=14)

    # 标准化
    if normalization:
        factors_list = tmp.columns.tolist()[1:]

        if rolling >= 26:
            for i in factors_list:
                tmp[i] = (tmp[i] - tmp[i].rolling(window=rolling, center=False).mean()) \
                         / tmp[i].rolling(window=rolling, center=False).std()
        elif rolling < 26 & rolling > 0:
            print('Recommended rolling range greater than 26')
        elif rolling <= 0:
            for i in factors_list:
                tmp[i] = (tmp[i] - tmp[i].mean()) / tmp[i].std()

    if drop:
        tmp.dropna(inplace=True)

    tmp.set_index('tradeTime', inplace=True)

    return tmp
 def talib_041(self):
     data_TSF = copy.deepcopy(self.close)
     for symbol in symbols:
         data_TSF[symbol] = ta.TSF(self.close[symbol].values, timeperiod=14)
     return data_TSF