def squeeze(g, self, dim=None): if dim is None: return g.op("Squeeze", self) # dim as a tensor if not symbolic_helper._is_constant(dim): return symbolic_helper._squeeze_helper(g, self, [dim]) dim = symbolic_helper._get_const(dim, "i", "dim") input_rank = symbolic_helper._get_tensor_rank(self) adjusted_dim = dim if input_rank is not None and dim < 0: adjusted_dim += input_rank dim_size = symbolic_helper._get_tensor_dim_size(self, adjusted_dim) if (dim < 0 and input_rank is None) or dim_size is None: # If onnx shape inference is not on, export always as dynamic. # Because we cannot tell if observed static shape is also static at runtime. # create "cond" node (condition is shape[i]==1) dim_constant = g.op("Constant", value_t=torch.tensor([dim])) size = symbolic_helper._size_helper(g, self, dim_constant) const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64)) cond = g.op("Equal", size, const_one) # create the "If" node and add the "then" and "else" blocks to it. if_node_outputs = g.op("If", cond) if_node = if_node_outputs.node() if_block = utils._add_block(if_node) squeeze_ = symbolic_helper._squeeze_helper(if_block, self, [dim]) utils._add_output_to_block(if_block, squeeze_) else_block = utils._add_block(if_node) identity_ = else_block.op("Identity", self) utils._add_output_to_block(else_block, identity_) return if_node_outputs # For static input shape dim = adjusted_dim if dim_size > 1: warnings.warn( "This model contains a squeeze operation on dimension " + str(dim) + ". The size of " + "this dimension in the given input is " + str(dim_size) + ". The model will " + "be exported without the squeeze node. If the model is intended to be used with dynamic " + "input shapes, please export with dynamic_axes argument." ) return self return symbolic_helper._squeeze_helper(g, self, [dim])
def unfold(g, input, dimension, size, step): const_size = sym_help._maybe_get_const(size, "i") const_step = sym_help._maybe_get_const(step, "i") if not sym_help._is_value(const_size) and not sym_help._is_value(const_step): from torch.onnx.symbolic_opset9 import unfold as _unfold return _unfold(g, input, dimension, const_size, const_step) if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK: return g.op("ATen", input, operator_s="unfold", dimension_i=dimension, size_i=size, step_i=step) sizedim = sym_help._get_tensor_dim_size(input, dimension) if sizedim is not None: low_start = g.op("Constant", value_t=torch.tensor(0)) low_end = g.op("Constant", value_t=torch.tensor(sizedim)) hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1)) low_indices = g.op("Range", low_start, low_end, step) hi_indices = g.op("Range", size, hi_end, step) low_size = sym_help._size_helper(g, low_indices, g.op("Constant", value_t=torch.tensor(0))) hi_size = sym_help._size_helper(g, hi_indices, g.op("Constant", value_t=torch.tensor(0))) ndim = sym_help._get_tensor_rank(input) perm = list(range(0, ndim)) perm.append(perm.pop(dimension)) unsqueeze_list = [] loop_condition = g.op("Constant", value_t=torch.tensor(1)) loop_condition = g.op("Cast", loop_condition, to_i=9) loop_len = g.op("Min", low_size, hi_size) loop = g.op("Loop", loop_len, loop_condition) loop_block = _add_block(loop.node()) block_input_iter = _add_input_to_block(loop_block) cond = _add_input_to_block(loop_block) starts = loop_block.op("Gather", low_indices, block_input_iter) ends = loop_block.op("Gather", hi_indices, block_input_iter) axes = loop_block.op("Constant", value_t=torch.tensor([2])) starts = sym_help._unsqueeze_helper(loop_block, starts, [0]) ends = sym_help._unsqueeze_helper(loop_block, ends, [0]) stack = loop_block.op("Slice", input, starts, ends, axes) unsqueeze = sym_help._unsqueeze_helper(loop_block, loop_block.op("Transpose", stack, perm_i=perm), [dimension]) unsqueeze_list.append(unsqueeze) concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0) cond_out = loop_block.op("Cast", loop_condition, to_i=9) _add_output_to_block(loop_block, cond_out) _add_output_to_block(loop_block, concat) loop_output = loop.node().output() perm = [0, 1, 2, 3, 4] perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0] transpose = g.op("Transpose", loop_output, perm_i=perm) squeeze = sym_help._squeeze_helper(g, transpose, [0]) return squeeze else: return _unimplemented("Unfold", "input size not accessible")
def embedding_bag(g, embedding_matrix, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights, include_last_offset, padding_idx): if scale_grad_by_freq and sym_help._training_mode: return sym_help._onnx_unsupported( 'embedding_bag with scale_grad_by_freq for training mode') if padding_idx is not None and padding_idx >= 0: raise RuntimeError('embedding_bag with padding_idx') loop_condition = g.op("Constant", value_t=torch.tensor(1)) loop_condition = g.op("Cast", loop_condition, to_i=9) zero = g.op("Constant", value_t=torch.tensor([0])) indices_len = sym_help._unsqueeze_helper( g, sym_help._size_helper(g, indices, g.op("Constant", value_t=torch.tensor(0))), [0]) if not include_last_offset: offsets = [offsets, indices_len] offsets = g.op("Concat", *offsets, axis_i=0) # Offsets holds the starting index position of each bag. So we create a list of the indices slices (determined by # offsets) and gather those indices in indices_row. Then we use this subset of indices to gather from embeddings. # The embeddings output is a loop scan output, so we can avoid creating a sequence and inserting elements in. offsets_starts = sym_help._slice_helper(g, offsets, axes=[0], starts=[0], ends=[maxsize], steps=[1]) offsets_ends = sym_help._slice_helper(g, offsets, axes=[0], starts=[1], ends=[maxsize], steps=[1]) loop_len = sym_help._size_helper(g, offsets_ends, g.op("Constant", value_t=torch.tensor(0))) loop = g.op("Loop", loop_len, loop_condition) loop_block = _add_block(loop.node()) block_input_iter = _add_input_to_block(loop_block) cond = _add_input_to_block(loop_block) indices_start = loop_block.op("Gather", offsets_starts, block_input_iter, axis_i=0) indices_end = loop_block.op("Gather", offsets_ends, block_input_iter, axis_i=0) indices_start = sym_help._unsqueeze_helper(loop_block, indices_start, [0]) indices_end = sym_help._unsqueeze_helper(loop_block, indices_end, [0]) indices_row = loop_block.op("Slice", indices, indices_start, indices_end, zero) embeddings = loop_block.op("Gather", embedding_matrix, indices_row, axis_i=0) if not sym_help._is_none(per_sample_weights): per_sample_weights_row = loop_block.op("Slice", per_sample_weights, indices_start, indices_end, zero) per_sample_weights_row = sym_help._unsqueeze_helper( loop_block, per_sample_weights_row, [1]) embeddings = loop_block.op("Mul", embeddings, per_sample_weights_row) if mode == 0: embeddings = sym_help._reducesum_helper(loop_block, embeddings, axes_i=[0], keepdims_i=0) elif mode == 1: embeddings = loop_block.op("ReduceMean", embeddings, axes_i=[0], keepdims_i=0) else: embeddings = loop_block.op("ReduceMax", embeddings, axes_i=[0], keepdims_i=0) cond_out = loop_block.op("Cast", loop_condition, to_i=9) _add_output_to_block(loop_block, cond_out) _add_output_to_block(loop_block, embeddings) # aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices. # But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag. return loop.node().output(), None, None, None
def repeat_interleave(g, self, repeats, dim=None): from torch.onnx.symbolic_opset9 import reshape input = self final_dim = dim # if dim is None flatten # By default, use the flattened input array, and return a flat output array if sym_help._is_none(dim): input = reshape(g, self, g.op("Constant", value_t=torch.tensor([-1]))) dim = 0 else: dim = sym_help._maybe_get_scalar(dim) repeats_dim = sym_help._get_tensor_rank(repeats) repeats_sizes = sym_help._get_tensor_sizes(repeats) input_sizes = sym_help._get_tensor_sizes(input) if repeats_dim is None: raise RuntimeError( 'Unsupported: ONNX export of repeat_interleave for unknown ' 'repeats rank.') if repeats_sizes is None: raise RuntimeError( 'Unsupported: ONNX export of repeat_interleave for unknown ' 'repeats size.') if input_sizes is None: raise RuntimeError( 'Unsupported: ONNX export of repeat_interleave for unknown ' 'input size.') # Handle cases where dim is negative if dim < 0: dim += len(input_sizes) output_sizes = input_sizes.copy() perm_i = [0] for idx, input_size in enumerate(input_sizes): perm_i.append(idx + 1) if input_size is None: output_sizes[idx], input_sizes[idx] = 0, -1 perm_i[0], perm_i[dim] = perm_i[dim], perm_i[0] # Cases when repeats is a single value tensor and dim has unknown input size if (repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1)) and output_sizes[dim] == 0: if not sym_help._is_tensor(repeats): repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) reps = sym_help._size_helper(g, input, dim) reps = unsqueeze(g, reps, 0) repeats = g.op("Expand", repeats, reps) # There are cases when the repeats are 1-d tensor with multiple repeats, but dim # provided along one of the dynamic axes provided. A simple example would be # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2 # Now, repeat interleaving can be performed in pytorch when the value of * matches # with the number of elements in repeat, for example if * -> 2, number of repeats # should be 2 as well. else: return torch.onnx.symbolic_opset9.repeat_interleave( g, self, repeats, final_dim) reps_like = g.op("ConstantOfShape", g.op("Shape", repeats), value_t=torch.tensor([1], dtype=torch.long)) r_splits = split(g, repeats, reps_like, 0) i_splits = split(g, input, reps_like, dim) output_sizes[dim], input_sizes[dim] = -1, 1 # Create a loop to iterate over each value along the dimension # and perform individual interleaving using the repeats tensor # Loop is of the following pattern # input (trip_count, cond) # int trip_count = ...; # bool cond = ...; # for (int i=0; i < trip_count && cond; ++i) { # cond = ...; # } # Loop conditions loop_condition = g.op("Constant", value_t=torch.tensor(1)) loop_condition = g.op("Cast", loop_condition, to_i=9) loop_len = reps loop = g.op("Loop", loop_len, loop_condition) # Loop inputs loop_block = _add_block(loop.node()) block_input_iter = _add_input_to_block(loop_block) cond = _add_input_to_block(loop_block) r_split = loop_block.op("SequenceAt", r_splits, block_input_iter) i_split = loop_block.op("SequenceAt", i_splits, block_input_iter) i_split = unsqueeze(loop_block, i_split, dim + 1) r_concat = [ loop_block.op("Constant", value_t=torch.LongTensor(input_sizes[:dim + 1])), r_split, loop_block.op("Constant", value_t=torch.LongTensor(input_sizes[dim + 1:])) ] r_concat = loop_block.op("Concat", *r_concat, axis_i=0) i_split = expand(loop_block, i_split, r_concat, None) i_split = reshape(loop_block, i_split, g.op("Constant", value_t=torch.LongTensor(output_sizes))) # Loop outputs cond_out = loop_block.op("Cast", loop_condition, to_i=9) _add_output_to_block(loop_block, cond_out) _add_output_to_block(loop_block, i_split) loop_out = loop.node().output() # In this loop, the outputs are scan outputs and are concatenated along # the zero'th dimension (by default). In order to avoid this and concatenate # along the dimension provided, some post-processing is required loop_out = g.op("Transpose", loop_out, perm_i=perm_i) return reshape(g, loop_out, g.op("Constant", value_t=torch.LongTensor(output_sizes)))
def repeat_interleave(g, self, repeats, dim=None, output_size=None): input = self final_dim = dim # if dim is None flatten # By default, use the flattened input array, and return a flat output array if sym_help._is_none(dim): input = sym_help._reshape_helper( g, self, g.op("Constant", value_t=torch.tensor([-1]))) dim = 0 else: dim = sym_help._maybe_get_scalar(dim) repeats_dim = sym_help._get_tensor_rank(repeats) repeats_sizes = sym_help._get_tensor_sizes(repeats) input_sizes = sym_help._get_tensor_sizes(input) if repeats_dim is None: raise RuntimeError( "Unsupported: ONNX export of repeat_interleave for unknown " "repeats rank.") if repeats_sizes is None: raise RuntimeError( "Unsupported: ONNX export of repeat_interleave for unknown " "repeats size.") if input_sizes is None: raise RuntimeError( "Unsupported: ONNX export of repeat_interleave for unknown " "input size.") # Handle cases where dim is negative if dim < 0: dim += len(input_sizes) output_sizes = input_sizes.copy() for idx, input_size in enumerate(input_sizes): if input_size is None: output_sizes[idx], input_sizes[idx] = 0, -1 print(output_sizes, input_sizes) cond_dynamic_repeats = (repeats_dim == 1 and repeats_sizes[0] is None) # If input size is dynamic or repeats vector is dynamic if output_sizes[dim] == 0 or cond_dynamic_repeats: reps = sym_help._size_helper(g, input, dim) reps = unsqueeze(g, reps, 0) # Check if repeats vector is a single integer value # or a single dimension tensor with non-dynamic values if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1): if not sym_help._is_tensor(repeats): repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) repeats = g.op("Expand", repeats, reps) # Check if repeats is dynamic # As repeats is dynamic, we use a where node as a substitute for the if statement # If repests_dim = 1, expand repeats otherwise use original tensor elif cond_dynamic_repeats: repeat_dim = sym_help._size_helper( g, repeats, g.op("Constant", value_t=torch.LongTensor([0]))) repeat_cond = g.op("Equal", repeat_dim, g.op("Constant", value_t=torch.LongTensor([1]))) repeats = where(g, repeat_cond, g.op("Expand", repeats, reps), repeats) # There are cases when the repeats are 1-d tensor with multiple repeats, but dim # provided along one of the dynamic axes provided. A simple example would be # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2 # Now, repeat interleaving can be performed in pytorch when the value of * matches # with the number of elements in repeat, for example if * -> 2, number of repeats # should be 2 as well. else: return torch.onnx.symbolic_opset9.repeat_interleave( g, self, repeats, final_dim) reps_like = g.op("ConstantOfShape", g.op("Shape", repeats), value_t=torch.tensor([1], dtype=torch.long)) r_splits = split(g, repeats, reps_like, 0) i_splits = split(g, input, reps_like, dim) output_sizes[dim], input_sizes[dim] = -1, 1 # Create a loop to iterate over each value along the dimension # and perform individual interleaving using the repeats tensor # Loop is of the following pattern # input (trip_count, cond) # int trip_count = ...; # bool cond = ...; # for (int i=0; i < trip_count && cond; ++i) { # cond = ...; # } # Loop conditions loop_condition = g.op("Constant", value_t=torch.tensor(1)) loop_condition = g.op("Cast", loop_condition, to_i=9) loop_len = reps # Create an empty sequence to store final expansions final_splits = g.op("SequenceEmpty") loop = g.op("Loop", loop_len, loop_condition, final_splits) # Loop inputs loop_block = _add_block(loop.node()) block_input_iter = _add_input_to_block(loop_block) cond = _add_input_to_block(loop_block) final_splits = _add_input_to_block(loop_block) r_split = loop_block.op("SequenceAt", r_splits, block_input_iter) i_split = loop_block.op("SequenceAt", i_splits, block_input_iter) i_split = unsqueeze(loop_block, i_split, dim + 1) r_concat = [ loop_block.op("Constant", value_t=torch.LongTensor(input_sizes[:dim + 1])), r_split, loop_block.op("Constant", value_t=torch.LongTensor(input_sizes[dim + 1:])) ] r_concat = loop_block.op("Concat", *r_concat, axis_i=0) i_split = expand(loop_block, i_split, r_concat, None) i_split = sym_help._reshape_helper( loop_block, i_split, g.op("Constant", value_t=torch.LongTensor(output_sizes))) final_splits = loop_block.op("SequenceInsert", final_splits, i_split) # Loop outputs cond_out = loop_block.op("Cast", loop_condition, to_i=9) _add_output_to_block(loop_block, cond_out) _add_output_to_block(loop_block, final_splits) loop_out = loop.node().output() loop_out = g.op("ConcatFromSequence", loop_out, axis_i=dim) return loop_out
def diagonal(g, self, offset, dim1, dim2): dim1_size = opset9.size( g, self, dim=g.op("Constant", value_t=torch.LongTensor([dim1])) ) dim2_size = opset9.size( g, self, dim=g.op("Constant", value_t=torch.LongTensor([dim2])) ) # Create appropriate mask mask_shape = g.op("Concat", dim1_size, dim2_size, axis_i=0) mask = opset9.zeros(g, mask_shape, None, None, None) mask = g.op("EyeLike", mask, k_i=offset) # dim1 and dim2 appended as a dimension at the end of the shape rank = symbolic_helper._get_tensor_rank(self) if rank is not None: axes = list(range(rank)) axes.remove(dim1) axes.remove(dim2) self = g.op("Transpose", self, perm_i=axes + [dim1, dim2]) else: return symbolic_helper._unimplemented("diagonal", "unknown input rank") # Multiply input and mask to calculate values along diagonal # The mask consists of one values where diagonal values are to be calculated # For example: # [[1.1, 1.2, 1.3], * [[1, 0, 0] = [[1.1, 0, 0], # [2.1, 2.2, 2.3], [0, 1, 0] [0, 2.2, 0], # [3.1, 3.2, 3.3]] [0, 0, 1]] [0, 0, 3.3]] result = g.op("Mul", self, mask) result = symbolic_helper._reducesum_helper(g, result, axes_i=[-1], keepdims_i=0) # Calculate gather indices based on offset and dims # If offset is greater than zero, set offset to zero as this aids in # calculation of selection window offset_op = g.op("Constant", value_t=torch.LongTensor([offset])) if offset >= 0: diag_size = g.op( "Max", g.op("Min", dim1_size, g.op("Sub", dim2_size, offset_op)), g.op("Constant", value_t=torch.LongTensor([0])), ) offset = 0 else: diag_size = g.op( "Max", g.op("Min", g.op("Add", dim1_size, offset_op), dim2_size), g.op("Constant", value_t=torch.LongTensor([0])), ) diag_size = g.op("Concat", diag_size, axis_i=0) # Calculate which diagonal values to select # For example, in cases with offsets: # [[0, 1.1, 0] # [0, 0, 2.2]] # we need to select the last two columns, so we create a tensor # with all columns that are to be selected # So in this example, it is [1, 2] select_window_ones_fill = opset9.ones(g, diag_size, 4, None, None) select_window = g.op( "CumSum", select_window_ones_fill, g.op("Constant", value_t=torch.LongTensor([0])), ) select_window = g.op( "Add", select_window, g.op("Constant", value_t=torch.LongTensor([abs(offset) - 1])), ) gather_shape = [ opset9.size(g, result, dim=g.op("Constant", value_t=torch.LongTensor([axis]))) for axis in list(range(rank))[:-2] ] gather_shape.append(diag_size) gather_shape = g.op("Concat", *gather_shape, axis_i=0) gather_indices = opset9.zeros(g, gather_shape, 4, None, None) # There might be cases where offset value is greater than number of rows/columns # and might cause the diagonal to overrun and as a result of this, diag_size would be zero. # For example, if # offset = 9, dim1_size = 2 (columns), dim2_size = 4 (rows) # diag_size = max(min(2, (4-9)), 0) = 0, based on calculation above # Cases with diagonal overrun always result in diag_size = max(0, -ve value) = 0 # In cases without diagonal overrun, we select the appropriate rows/columns along which we # are calculating diagonal values. In cases with diagonal overrun, we return a tensor which has # the dimension of the row/column where overrun occurred as 0-dim, as we are essentially # returning an empty tensor overrun_cond = g.op( "Not", g.op( "Equal", diag_size, g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64)), ), ) if_op = g.op("If", overrun_cond) if_node = if_op.node() if_block = utils._add_block(if_node) gather_indices_if_block = if_block.op("Add", gather_indices, select_window) gather_indices_if_block = symbolic_helper._unsqueeze_helper( if_block, gather_indices_if_block, [rank - 1] ) final_non_overrun_ = if_block.op( "GatherND", result, gather_indices_if_block, batch_dims_i=rank - 2 ) utils._add_output_to_block(if_block, final_non_overrun_) else_block = utils._add_block(if_node) final_overrun_ = opset9.zeros(else_block, gather_shape, 6, None, None) utils._add_output_to_block(else_block, final_overrun_) return if_op
def tensor_split(g, self, indices_or_sections, dim, _outputs=None): axis = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long)) axis = opset11.unsqueeze(g, axis, 0) const_1 = g.op("Constant", value_t=torch.tensor(1, dtype=torch.long)) if symbolic_helper._is_split_static(indices_or_sections, _outputs): split_val = symbolic_helper._node_get(indices_or_sections.node(), "value") if split_val.dim() > 0: start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long)) res = [] assert _outputs is not None for i in range(_outputs - 1): end = g.op( "Gather", indices_or_sections, g.op("Constant", value_t=torch.tensor([i], dtype=torch.long)), axis_i=0, ) res.append(g.op("Slice", self, start, end, axis)) start = end end = symbolic_helper._size_helper(g, self, axis) res.append(g.op("Slice", self, start, end, axis)) return res split_size = symbolic_helper._get_const( indices_or_sections, "i", "indices_or_sections" ) size = symbolic_helper._get_tensor_dim_size(self, dim) if size is None: if _outputs is not None: size = split_size * _outputs else: raise errors.SymbolicValueError( "Unknown dimension size not supported", self ) min_split_size = size // split_size num_splits_one_extra = size % split_size splits = num_splits_one_extra * [min_split_size + 1] leftover = (split_size - num_splits_one_extra) * [min_split_size] splits = g.op( "Constant", value_t=torch.tensor(splits + leftover, dtype=torch.long) ) return g.op("Split", self, splits, axis_i=dim, outputs=_outputs) if ( symbolic_helper._is_tensor(indices_or_sections) and symbolic_helper._get_tensor_rank(indices_or_sections) == 1 ): loop_len = symbolic_helper._size_helper( g, indices_or_sections, g.op("Constant", value_t=torch.tensor(0)) ) loop_len = opset11.unsqueeze(g, loop_len, 0) loop_condition = g.op("Cast", const_1, to_i=_C_onnx.TensorProtoDataType.BOOL) # To make the first slice in the below loop work, # we pad a zero to the first position so that it will be the initial start of slice. padding_0 = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long)) indices_or_sections = g.op("Concat", padding_0, indices_or_sections, axis_i=0) final_splits = g.op("SequenceEmpty") loop = g.op("Loop", loop_len, loop_condition, final_splits) # Loop inputs loop_block = utils._add_block(loop.node()) block_input_iter = utils._add_input_to_block(loop_block) cond = utils._add_input_to_block(loop_block) final_splits = utils._add_input_to_block(loop_block) start = loop_block.op("Gather", indices_or_sections, block_input_iter, axis_i=0) end = loop_block.op( "Gather", indices_or_sections, loop_block.op("Add", block_input_iter, const_1), axis_i=0, ) slice = loop_block.op("Slice", self, start, end, axis) final_splits = loop_block.op("SequenceInsert", final_splits, slice) # Loop outputs cond_out = loop_block.op("Identity", loop_condition) utils._add_output_to_block(loop_block, cond_out) utils._add_output_to_block(loop_block, final_splits) loop_out = loop.node().output() start = g.op( "Gather", indices_or_sections, g.op("Constant", value_t=torch.tensor(-1, dtype=torch.long)), axis_i=0, ) start = opset11.unsqueeze(g, start, 0) end = symbolic_helper._size_helper(g, self, axis) last_slice = g.op("Slice", self, start, end, axis) return g.op("SequenceInsert", loop_out, last_slice) else: # scalar tensor dim_size = symbolic_helper._size_helper(g, self, axis) min_split_size = g.op("Div", dim_size, indices_or_sections) min_split_size_plus_1 = g.op( "Add", min_split_size, const_1, ) num_splits_one_extra = g.op("Mod", dim_size, indices_or_sections) splits = g.op("Tile", min_split_size_plus_1, num_splits_one_extra) leftover = g.op( "Tile", min_split_size, g.op( "Sub", opset11.unsqueeze(g, indices_or_sections, 0), num_splits_one_extra, ), ) splits = g.op("Concat", splits, leftover, axis_i=0) if _outputs is None: return g.op("SplitToSequence", self, splits, axis_i=dim) return g.op("Split", self, splits, axis_i=dim, outputs=_outputs)
def unfold(g, input, dimension, size, step): const_size = symbolic_helper._maybe_get_const(size, "i") const_step = symbolic_helper._maybe_get_const(step, "i") if not symbolic_helper._is_value( const_size) and not symbolic_helper._is_value(const_step): return opset9.unfold(g, input, dimension, const_size, const_step) if symbolic_helper.is_caffe2_aten_fallback(): return g.at("unfold", input, dimension_i=dimension, size_i=size, step_i=step) sizedim = symbolic_helper._get_tensor_dim_size(input, dimension) if sizedim is not None: low_start = g.op("Constant", value_t=torch.tensor(0)) low_end = g.op("Constant", value_t=torch.tensor(sizedim)) hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1)) low_indices = g.op("Range", low_start, low_end, step) hi_indices = g.op("Range", size, hi_end, step) low_size = symbolic_helper._size_helper( g, low_indices, g.op("Constant", value_t=torch.tensor(0))) hi_size = symbolic_helper._size_helper( g, hi_indices, g.op("Constant", value_t=torch.tensor(0))) ndim = symbolic_helper._get_tensor_rank(input) assert ndim is not None perm = list(range(0, ndim)) perm.append(perm.pop(dimension)) unsqueeze_list = [] loop_condition = g.op("Constant", value_t=torch.tensor(1)) loop_condition = g.op("Cast", loop_condition, to_i=9) loop_len = g.op("Min", low_size, hi_size) loop = g.op("Loop", loop_len, loop_condition) loop_block = utils._add_block(loop.node()) block_input_iter = utils._add_input_to_block(loop_block) cond = utils._add_input_to_block(loop_block) starts = loop_block.op("Gather", low_indices, block_input_iter) ends = loop_block.op("Gather", hi_indices, block_input_iter) axes = loop_block.op("Constant", value_t=torch.tensor([2])) starts = symbolic_helper._unsqueeze_helper(loop_block, starts, [0]) ends = symbolic_helper._unsqueeze_helper(loop_block, ends, [0]) stack = loop_block.op("Slice", input, starts, ends, axes) unsqueeze = symbolic_helper._unsqueeze_helper( loop_block, loop_block.op("Transpose", stack, perm_i=perm), [dimension]) unsqueeze_list.append(unsqueeze) concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0) cond_out = loop_block.op("Cast", loop_condition, to_i=9) utils._add_output_to_block(loop_block, cond_out) utils._add_output_to_block(loop_block, concat) loop_output = loop.node().output() perm = [0, 1, 2, 3, 4] perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0] transpose = g.op("Transpose", loop_output, perm_i=perm) squeeze = symbolic_helper._squeeze_helper(g, transpose, [0]) return squeeze else: return symbolic_helper._unimplemented("Unfold", "input size not accessible")