示例#1
0
def squeeze(g, self, dim=None):
    if dim is None:
        return g.op("Squeeze", self)

    # dim as a tensor
    if not symbolic_helper._is_constant(dim):
        return symbolic_helper._squeeze_helper(g, self, [dim])

    dim = symbolic_helper._get_const(dim, "i", "dim")

    input_rank = symbolic_helper._get_tensor_rank(self)
    adjusted_dim = dim
    if input_rank is not None and dim < 0:
        adjusted_dim += input_rank
    dim_size = symbolic_helper._get_tensor_dim_size(self, adjusted_dim)
    if (dim < 0 and input_rank is None) or dim_size is None:
        # If onnx shape inference is not on, export always as dynamic.
        # Because we cannot tell if observed static shape is also static at runtime.
        # create "cond" node (condition is shape[i]==1)
        dim_constant = g.op("Constant", value_t=torch.tensor([dim]))
        size = symbolic_helper._size_helper(g, self, dim_constant)
        const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64))
        cond = g.op("Equal", size, const_one)
        # create the "If" node and add the "then" and "else" blocks to it.
        if_node_outputs = g.op("If", cond)
        if_node = if_node_outputs.node()
        if_block = utils._add_block(if_node)
        squeeze_ = symbolic_helper._squeeze_helper(if_block, self, [dim])
        utils._add_output_to_block(if_block, squeeze_)
        else_block = utils._add_block(if_node)
        identity_ = else_block.op("Identity", self)
        utils._add_output_to_block(else_block, identity_)
        return if_node_outputs

    # For static input shape
    dim = adjusted_dim
    if dim_size > 1:
        warnings.warn(
            "This model contains a squeeze operation on dimension "
            + str(dim)
            + ". The size of "
            + "this dimension in the given input is "
            + str(dim_size)
            + ". The model will "
            + "be exported without the squeeze node. If the model is intended to be used with dynamic "
            + "input shapes, please export with dynamic_axes argument."
        )
        return self
    return symbolic_helper._squeeze_helper(g, self, [dim])
def unfold(g, input, dimension, size, step):
    const_size = sym_help._maybe_get_const(size, "i")
    const_step = sym_help._maybe_get_const(step, "i")
    if not sym_help._is_value(const_size) and not sym_help._is_value(const_step):
        from torch.onnx.symbolic_opset9 import unfold as _unfold
        return _unfold(g, input, dimension, const_size, const_step)
    if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
        return g.op("ATen", input, operator_s="unfold", dimension_i=dimension, size_i=size, step_i=step)

    sizedim = sym_help._get_tensor_dim_size(input, dimension)
    if sizedim is not None:
        low_start = g.op("Constant", value_t=torch.tensor(0))
        low_end = g.op("Constant", value_t=torch.tensor(sizedim))
        hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
        low_indices = g.op("Range", low_start, low_end, step)
        hi_indices = g.op("Range", size, hi_end, step)

        low_size = sym_help._size_helper(g, low_indices, g.op("Constant", value_t=torch.tensor(0)))
        hi_size = sym_help._size_helper(g, hi_indices, g.op("Constant", value_t=torch.tensor(0)))

        ndim = sym_help._get_tensor_rank(input)
        perm = list(range(0, ndim))
        perm.append(perm.pop(dimension))

        unsqueeze_list = []
        loop_condition = g.op("Constant", value_t=torch.tensor(1))
        loop_condition = g.op("Cast", loop_condition, to_i=9)
        loop_len = g.op("Min", low_size, hi_size)
        loop = g.op("Loop", loop_len, loop_condition)

        loop_block = _add_block(loop.node())
        block_input_iter = _add_input_to_block(loop_block)
        cond = _add_input_to_block(loop_block)

        starts = loop_block.op("Gather", low_indices, block_input_iter)
        ends = loop_block.op("Gather", hi_indices, block_input_iter)
        axes = loop_block.op("Constant", value_t=torch.tensor([2]))
        starts = sym_help._unsqueeze_helper(loop_block, starts, [0])
        ends = sym_help._unsqueeze_helper(loop_block, ends, [0])
        stack = loop_block.op("Slice", input, starts, ends, axes)

        unsqueeze = sym_help._unsqueeze_helper(loop_block, loop_block.op("Transpose", stack, perm_i=perm), [dimension])
        unsqueeze_list.append(unsqueeze)
        concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0)

        cond_out = loop_block.op("Cast", loop_condition, to_i=9)
        _add_output_to_block(loop_block, cond_out)
        _add_output_to_block(loop_block, concat)

        loop_output = loop.node().output()
        perm = [0, 1, 2, 3, 4]
        perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
        transpose = g.op("Transpose", loop_output, perm_i=perm)
        squeeze = sym_help._squeeze_helper(g, transpose, [0])

        return squeeze
    else:
        return _unimplemented("Unfold", "input size not accessible")
def embedding_bag(g, embedding_matrix, indices, offsets, scale_grad_by_freq,
                  mode, sparse, per_sample_weights, include_last_offset,
                  padding_idx):
    if scale_grad_by_freq and sym_help._training_mode:
        return sym_help._onnx_unsupported(
            'embedding_bag with scale_grad_by_freq for training mode')
    if padding_idx is not None and padding_idx >= 0:
        raise RuntimeError('embedding_bag with padding_idx')

    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    zero = g.op("Constant", value_t=torch.tensor([0]))

    indices_len = sym_help._unsqueeze_helper(
        g,
        sym_help._size_helper(g, indices,
                              g.op("Constant", value_t=torch.tensor(0))), [0])
    if not include_last_offset:
        offsets = [offsets, indices_len]
        offsets = g.op("Concat", *offsets, axis_i=0)

    # Offsets holds the starting index position of each bag. So we create a list of the indices slices (determined by
    # offsets) and gather those indices in indices_row. Then we use this subset of indices to gather from embeddings.
    # The embeddings output is a loop scan output, so we can avoid creating a sequence and inserting elements in.
    offsets_starts = sym_help._slice_helper(g,
                                            offsets,
                                            axes=[0],
                                            starts=[0],
                                            ends=[maxsize],
                                            steps=[1])
    offsets_ends = sym_help._slice_helper(g,
                                          offsets,
                                          axes=[0],
                                          starts=[1],
                                          ends=[maxsize],
                                          steps=[1])

    loop_len = sym_help._size_helper(g, offsets_ends,
                                     g.op("Constant", value_t=torch.tensor(0)))
    loop = g.op("Loop", loop_len, loop_condition)

    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)

    indices_start = loop_block.op("Gather",
                                  offsets_starts,
                                  block_input_iter,
                                  axis_i=0)
    indices_end = loop_block.op("Gather",
                                offsets_ends,
                                block_input_iter,
                                axis_i=0)
    indices_start = sym_help._unsqueeze_helper(loop_block, indices_start, [0])
    indices_end = sym_help._unsqueeze_helper(loop_block, indices_end, [0])

    indices_row = loop_block.op("Slice", indices, indices_start, indices_end,
                                zero)
    embeddings = loop_block.op("Gather",
                               embedding_matrix,
                               indices_row,
                               axis_i=0)
    if not sym_help._is_none(per_sample_weights):
        per_sample_weights_row = loop_block.op("Slice", per_sample_weights,
                                               indices_start, indices_end,
                                               zero)
        per_sample_weights_row = sym_help._unsqueeze_helper(
            loop_block, per_sample_weights_row, [1])
        embeddings = loop_block.op("Mul", embeddings, per_sample_weights_row)
    if mode == 0:
        embeddings = sym_help._reducesum_helper(loop_block,
                                                embeddings,
                                                axes_i=[0],
                                                keepdims_i=0)
    elif mode == 1:
        embeddings = loop_block.op("ReduceMean",
                                   embeddings,
                                   axes_i=[0],
                                   keepdims_i=0)
    else:
        embeddings = loop_block.op("ReduceMax",
                                   embeddings,
                                   axes_i=[0],
                                   keepdims_i=0)

    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, embeddings)

    # aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices.
    # But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag.
    return loop.node().output(), None, None, None
def repeat_interleave(g, self, repeats, dim=None):
    from torch.onnx.symbolic_opset9 import reshape
    input = self
    final_dim = dim
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = reshape(g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            'Unsupported: ONNX export of repeat_interleave for unknown '
            'repeats rank.')
    if repeats_sizes is None:
        raise RuntimeError(
            'Unsupported: ONNX export of repeat_interleave for unknown '
            'repeats size.')
    if input_sizes is None:
        raise RuntimeError(
            'Unsupported: ONNX export of repeat_interleave for unknown '
            'input size.')
    # Handle cases where dim is negative
    if dim < 0:
        dim += len(input_sizes)

    output_sizes = input_sizes.copy()
    perm_i = [0]
    for idx, input_size in enumerate(input_sizes):
        perm_i.append(idx + 1)
        if input_size is None:
            output_sizes[idx], input_sizes[idx] = 0, -1
    perm_i[0], perm_i[dim] = perm_i[dim], perm_i[0]

    # Cases when repeats is a single value tensor and dim has unknown input size
    if (repeats_dim == 0 or
        (repeats_dim == 1
         and repeats_sizes[0] == 1)) and output_sizes[dim] == 0:
        if not sym_help._is_tensor(repeats):
            repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
        reps = sym_help._size_helper(g, input, dim)
        reps = unsqueeze(g, reps, 0)
        repeats = g.op("Expand", repeats, reps)
    # There are cases when the repeats are 1-d tensor with multiple repeats, but dim
    # provided along one of the dynamic axes provided. A simple example would be
    # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2
    # Now, repeat interleaving can be performed in pytorch when the value of * matches
    # with the number of elements in repeat, for example if * -> 2, number of repeats
    # should be 2 as well.
    else:
        return torch.onnx.symbolic_opset9.repeat_interleave(
            g, self, repeats, final_dim)

    reps_like = g.op("ConstantOfShape",
                     g.op("Shape", repeats),
                     value_t=torch.tensor([1], dtype=torch.long))
    r_splits = split(g, repeats, reps_like, 0)
    i_splits = split(g, input, reps_like, dim)

    output_sizes[dim], input_sizes[dim] = -1, 1

    # Create a loop to iterate over each value along the dimension
    # and perform individual interleaving using the repeats tensor
    # Loop is of the following pattern
    # input (trip_count, cond)
    #   int trip_count = ...;
    #   bool cond = ...;
    #   for (int i=0; i < trip_count && cond; ++i) {
    #     cond = ...;
    #   }

    # Loop conditions
    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    loop_len = reps
    loop = g.op("Loop", loop_len, loop_condition)

    # Loop inputs
    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)

    r_split = loop_block.op("SequenceAt", r_splits, block_input_iter)
    i_split = loop_block.op("SequenceAt", i_splits, block_input_iter)

    i_split = unsqueeze(loop_block, i_split, dim + 1)
    r_concat = [
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[:dim + 1])),
        r_split,
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[dim + 1:]))
    ]
    r_concat = loop_block.op("Concat", *r_concat, axis_i=0)
    i_split = expand(loop_block, i_split, r_concat, None)
    i_split = reshape(loop_block, i_split,
                      g.op("Constant", value_t=torch.LongTensor(output_sizes)))

    # Loop outputs
    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, i_split)
    loop_out = loop.node().output()

    # In this loop, the outputs are scan outputs and are concatenated along
    # the zero'th dimension (by default). In order to avoid this and concatenate
    # along the dimension provided, some post-processing is required
    loop_out = g.op("Transpose", loop_out, perm_i=perm_i)
    return reshape(g, loop_out,
                   g.op("Constant", value_t=torch.LongTensor(output_sizes)))
示例#5
0
def repeat_interleave(g, self, repeats, dim=None, output_size=None):
    input = self
    final_dim = dim
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = sym_help._reshape_helper(
            g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats rank.")
    if repeats_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats size.")
    if input_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "input size.")
    # Handle cases where dim is negative
    if dim < 0:
        dim += len(input_sizes)

    output_sizes = input_sizes.copy()
    for idx, input_size in enumerate(input_sizes):
        if input_size is None:
            output_sizes[idx], input_sizes[idx] = 0, -1
    print(output_sizes, input_sizes)

    cond_dynamic_repeats = (repeats_dim == 1 and repeats_sizes[0] is None)
    # If input size is dynamic or repeats vector is dynamic
    if output_sizes[dim] == 0 or cond_dynamic_repeats:
        reps = sym_help._size_helper(g, input, dim)
        reps = unsqueeze(g, reps, 0)
        # Check if repeats vector is a single integer value
        # or a single dimension tensor with non-dynamic values
        if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1):
            if not sym_help._is_tensor(repeats):
                repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
            repeats = g.op("Expand", repeats, reps)
        # Check if repeats is dynamic
        # As repeats is dynamic, we use a where node as a substitute for the if statement
        # If repests_dim = 1, expand repeats otherwise use original tensor
        elif cond_dynamic_repeats:
            repeat_dim = sym_help._size_helper(
                g, repeats, g.op("Constant", value_t=torch.LongTensor([0])))
            repeat_cond = g.op("Equal", repeat_dim,
                               g.op("Constant", value_t=torch.LongTensor([1])))
            repeats = where(g, repeat_cond, g.op("Expand", repeats, reps),
                            repeats)
    # There are cases when the repeats are 1-d tensor with multiple repeats, but dim
    # provided along one of the dynamic axes provided. A simple example would be
    # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2
    # Now, repeat interleaving can be performed in pytorch when the value of * matches
    # with the number of elements in repeat, for example if * -> 2, number of repeats
    # should be 2 as well.
    else:
        return torch.onnx.symbolic_opset9.repeat_interleave(
            g, self, repeats, final_dim)

    reps_like = g.op("ConstantOfShape",
                     g.op("Shape", repeats),
                     value_t=torch.tensor([1], dtype=torch.long))
    r_splits = split(g, repeats, reps_like, 0)
    i_splits = split(g, input, reps_like, dim)

    output_sizes[dim], input_sizes[dim] = -1, 1

    # Create a loop to iterate over each value along the dimension
    # and perform individual interleaving using the repeats tensor
    # Loop is of the following pattern
    # input (trip_count, cond)
    #   int trip_count = ...;
    #   bool cond = ...;
    #   for (int i=0; i < trip_count && cond; ++i) {
    #     cond = ...;
    #   }

    # Loop conditions
    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    loop_len = reps

    # Create an empty sequence to store final expansions
    final_splits = g.op("SequenceEmpty")
    loop = g.op("Loop", loop_len, loop_condition, final_splits)

    # Loop inputs
    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)
    final_splits = _add_input_to_block(loop_block)

    r_split = loop_block.op("SequenceAt", r_splits, block_input_iter)
    i_split = loop_block.op("SequenceAt", i_splits, block_input_iter)

    i_split = unsqueeze(loop_block, i_split, dim + 1)
    r_concat = [
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[:dim + 1])),
        r_split,
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[dim + 1:]))
    ]
    r_concat = loop_block.op("Concat", *r_concat, axis_i=0)
    i_split = expand(loop_block, i_split, r_concat, None)
    i_split = sym_help._reshape_helper(
        loop_block, i_split,
        g.op("Constant", value_t=torch.LongTensor(output_sizes)))
    final_splits = loop_block.op("SequenceInsert", final_splits, i_split)

    # Loop outputs
    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, final_splits)

    loop_out = loop.node().output()
    loop_out = g.op("ConcatFromSequence", loop_out, axis_i=dim)
    return loop_out
示例#6
0
def diagonal(g, self, offset, dim1, dim2):
    dim1_size = opset9.size(
        g, self, dim=g.op("Constant", value_t=torch.LongTensor([dim1]))
    )
    dim2_size = opset9.size(
        g, self, dim=g.op("Constant", value_t=torch.LongTensor([dim2]))
    )

    # Create appropriate mask
    mask_shape = g.op("Concat", dim1_size, dim2_size, axis_i=0)
    mask = opset9.zeros(g, mask_shape, None, None, None)
    mask = g.op("EyeLike", mask, k_i=offset)

    # dim1 and dim2 appended as a dimension at the end of the shape
    rank = symbolic_helper._get_tensor_rank(self)
    if rank is not None:
        axes = list(range(rank))
        axes.remove(dim1)
        axes.remove(dim2)
        self = g.op("Transpose", self, perm_i=axes + [dim1, dim2])
    else:
        return symbolic_helper._unimplemented("diagonal", "unknown input rank")

    # Multiply input and mask to calculate values along diagonal
    # The mask consists of one values where diagonal values are to be calculated
    # For example:
    # [[1.1, 1.2, 1.3],   *    [[1, 0, 0]   =   [[1.1, 0, 0],
    #  [2.1, 2.2, 2.3],         [0, 1, 0]        [0, 2.2, 0],
    #  [3.1, 3.2, 3.3]]         [0, 0, 1]]       [0, 0, 3.3]]
    result = g.op("Mul", self, mask)
    result = symbolic_helper._reducesum_helper(g, result, axes_i=[-1], keepdims_i=0)

    # Calculate gather indices based on offset and dims
    # If offset is greater than zero, set offset to zero as this aids in
    # calculation of selection window
    offset_op = g.op("Constant", value_t=torch.LongTensor([offset]))
    if offset >= 0:
        diag_size = g.op(
            "Max",
            g.op("Min", dim1_size, g.op("Sub", dim2_size, offset_op)),
            g.op("Constant", value_t=torch.LongTensor([0])),
        )
        offset = 0
    else:
        diag_size = g.op(
            "Max",
            g.op("Min", g.op("Add", dim1_size, offset_op), dim2_size),
            g.op("Constant", value_t=torch.LongTensor([0])),
        )
    diag_size = g.op("Concat", diag_size, axis_i=0)

    # Calculate which diagonal values to select
    # For example, in cases with offsets:
    # [[0, 1.1, 0]
    #  [0, 0, 2.2]]
    # we need to select the last two columns, so we create a tensor
    # with all columns that are to be selected
    # So in this example, it is [1, 2]
    select_window_ones_fill = opset9.ones(g, diag_size, 4, None, None)
    select_window = g.op(
        "CumSum",
        select_window_ones_fill,
        g.op("Constant", value_t=torch.LongTensor([0])),
    )
    select_window = g.op(
        "Add",
        select_window,
        g.op("Constant", value_t=torch.LongTensor([abs(offset) - 1])),
    )

    gather_shape = [
        opset9.size(g, result, dim=g.op("Constant", value_t=torch.LongTensor([axis])))
        for axis in list(range(rank))[:-2]
    ]
    gather_shape.append(diag_size)
    gather_shape = g.op("Concat", *gather_shape, axis_i=0)
    gather_indices = opset9.zeros(g, gather_shape, 4, None, None)

    # There might be cases where offset value is greater than number of rows/columns
    # and might cause the diagonal to overrun and as a result of this, diag_size would be zero.
    # For example, if
    #       offset = 9, dim1_size = 2 (columns), dim2_size = 4 (rows)
    #       diag_size = max(min(2, (4-9)), 0) = 0, based on calculation above
    # Cases with diagonal overrun always result in diag_size = max(0, -ve value) = 0
    # In cases without diagonal overrun, we select the appropriate rows/columns along which we
    # are calculating diagonal values. In cases with diagonal overrun, we return a tensor which has
    # the dimension of the row/column where overrun occurred as 0-dim, as we are essentially
    # returning an empty tensor
    overrun_cond = g.op(
        "Not",
        g.op(
            "Equal",
            diag_size,
            g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64)),
        ),
    )
    if_op = g.op("If", overrun_cond)
    if_node = if_op.node()

    if_block = utils._add_block(if_node)
    gather_indices_if_block = if_block.op("Add", gather_indices, select_window)
    gather_indices_if_block = symbolic_helper._unsqueeze_helper(
        if_block, gather_indices_if_block, [rank - 1]
    )
    final_non_overrun_ = if_block.op(
        "GatherND", result, gather_indices_if_block, batch_dims_i=rank - 2
    )
    utils._add_output_to_block(if_block, final_non_overrun_)

    else_block = utils._add_block(if_node)
    final_overrun_ = opset9.zeros(else_block, gather_shape, 6, None, None)
    utils._add_output_to_block(else_block, final_overrun_)
    return if_op
示例#7
0
def tensor_split(g, self, indices_or_sections, dim, _outputs=None):
    axis = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long))
    axis = opset11.unsqueeze(g, axis, 0)
    const_1 = g.op("Constant", value_t=torch.tensor(1, dtype=torch.long))

    if symbolic_helper._is_split_static(indices_or_sections, _outputs):
        split_val = symbolic_helper._node_get(indices_or_sections.node(), "value")

        if split_val.dim() > 0:
            start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
            res = []
            assert _outputs is not None
            for i in range(_outputs - 1):
                end = g.op(
                    "Gather",
                    indices_or_sections,
                    g.op("Constant", value_t=torch.tensor([i], dtype=torch.long)),
                    axis_i=0,
                )
                res.append(g.op("Slice", self, start, end, axis))
                start = end

            end = symbolic_helper._size_helper(g, self, axis)
            res.append(g.op("Slice", self, start, end, axis))
            return res

        split_size = symbolic_helper._get_const(
            indices_or_sections, "i", "indices_or_sections"
        )

        size = symbolic_helper._get_tensor_dim_size(self, dim)
        if size is None:
            if _outputs is not None:
                size = split_size * _outputs
            else:
                raise errors.SymbolicValueError(
                    "Unknown dimension size not supported", self
                )

        min_split_size = size // split_size
        num_splits_one_extra = size % split_size

        splits = num_splits_one_extra * [min_split_size + 1]
        leftover = (split_size - num_splits_one_extra) * [min_split_size]

        splits = g.op(
            "Constant", value_t=torch.tensor(splits + leftover, dtype=torch.long)
        )
        return g.op("Split", self, splits, axis_i=dim, outputs=_outputs)

    if (
        symbolic_helper._is_tensor(indices_or_sections)
        and symbolic_helper._get_tensor_rank(indices_or_sections) == 1
    ):
        loop_len = symbolic_helper._size_helper(
            g, indices_or_sections, g.op("Constant", value_t=torch.tensor(0))
        )
        loop_len = opset11.unsqueeze(g, loop_len, 0)
        loop_condition = g.op("Cast", const_1, to_i=_C_onnx.TensorProtoDataType.BOOL)

        # To make the first slice in the below loop work,
        # we pad a zero to the first position so that it will be the initial start of slice.
        padding_0 = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
        indices_or_sections = g.op("Concat", padding_0, indices_or_sections, axis_i=0)

        final_splits = g.op("SequenceEmpty")
        loop = g.op("Loop", loop_len, loop_condition, final_splits)

        # Loop inputs
        loop_block = utils._add_block(loop.node())
        block_input_iter = utils._add_input_to_block(loop_block)
        cond = utils._add_input_to_block(loop_block)
        final_splits = utils._add_input_to_block(loop_block)

        start = loop_block.op("Gather", indices_or_sections, block_input_iter, axis_i=0)
        end = loop_block.op(
            "Gather",
            indices_or_sections,
            loop_block.op("Add", block_input_iter, const_1),
            axis_i=0,
        )

        slice = loop_block.op("Slice", self, start, end, axis)
        final_splits = loop_block.op("SequenceInsert", final_splits, slice)

        # Loop outputs
        cond_out = loop_block.op("Identity", loop_condition)
        utils._add_output_to_block(loop_block, cond_out)
        utils._add_output_to_block(loop_block, final_splits)

        loop_out = loop.node().output()
        start = g.op(
            "Gather",
            indices_or_sections,
            g.op("Constant", value_t=torch.tensor(-1, dtype=torch.long)),
            axis_i=0,
        )
        start = opset11.unsqueeze(g, start, 0)
        end = symbolic_helper._size_helper(g, self, axis)

        last_slice = g.op("Slice", self, start, end, axis)

        return g.op("SequenceInsert", loop_out, last_slice)

    else:  # scalar tensor
        dim_size = symbolic_helper._size_helper(g, self, axis)
        min_split_size = g.op("Div", dim_size, indices_or_sections)
        min_split_size_plus_1 = g.op(
            "Add",
            min_split_size,
            const_1,
        )
        num_splits_one_extra = g.op("Mod", dim_size, indices_or_sections)
        splits = g.op("Tile", min_split_size_plus_1, num_splits_one_extra)
        leftover = g.op(
            "Tile",
            min_split_size,
            g.op(
                "Sub",
                opset11.unsqueeze(g, indices_or_sections, 0),
                num_splits_one_extra,
            ),
        )

        splits = g.op("Concat", splits, leftover, axis_i=0)
        if _outputs is None:
            return g.op("SplitToSequence", self, splits, axis_i=dim)
        return g.op("Split", self, splits, axis_i=dim, outputs=_outputs)
示例#8
0
def unfold(g, input, dimension, size, step):
    const_size = symbolic_helper._maybe_get_const(size, "i")
    const_step = symbolic_helper._maybe_get_const(step, "i")
    if not symbolic_helper._is_value(
            const_size) and not symbolic_helper._is_value(const_step):
        return opset9.unfold(g, input, dimension, const_size, const_step)
    if symbolic_helper.is_caffe2_aten_fallback():
        return g.at("unfold",
                    input,
                    dimension_i=dimension,
                    size_i=size,
                    step_i=step)

    sizedim = symbolic_helper._get_tensor_dim_size(input, dimension)
    if sizedim is not None:
        low_start = g.op("Constant", value_t=torch.tensor(0))
        low_end = g.op("Constant", value_t=torch.tensor(sizedim))
        hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
        low_indices = g.op("Range", low_start, low_end, step)
        hi_indices = g.op("Range", size, hi_end, step)

        low_size = symbolic_helper._size_helper(
            g, low_indices, g.op("Constant", value_t=torch.tensor(0)))
        hi_size = symbolic_helper._size_helper(
            g, hi_indices, g.op("Constant", value_t=torch.tensor(0)))

        ndim = symbolic_helper._get_tensor_rank(input)
        assert ndim is not None
        perm = list(range(0, ndim))
        perm.append(perm.pop(dimension))

        unsqueeze_list = []
        loop_condition = g.op("Constant", value_t=torch.tensor(1))
        loop_condition = g.op("Cast", loop_condition, to_i=9)
        loop_len = g.op("Min", low_size, hi_size)
        loop = g.op("Loop", loop_len, loop_condition)

        loop_block = utils._add_block(loop.node())
        block_input_iter = utils._add_input_to_block(loop_block)
        cond = utils._add_input_to_block(loop_block)

        starts = loop_block.op("Gather", low_indices, block_input_iter)
        ends = loop_block.op("Gather", hi_indices, block_input_iter)
        axes = loop_block.op("Constant", value_t=torch.tensor([2]))
        starts = symbolic_helper._unsqueeze_helper(loop_block, starts, [0])
        ends = symbolic_helper._unsqueeze_helper(loop_block, ends, [0])
        stack = loop_block.op("Slice", input, starts, ends, axes)

        unsqueeze = symbolic_helper._unsqueeze_helper(
            loop_block, loop_block.op("Transpose", stack, perm_i=perm),
            [dimension])
        unsqueeze_list.append(unsqueeze)
        concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0)

        cond_out = loop_block.op("Cast", loop_condition, to_i=9)
        utils._add_output_to_block(loop_block, cond_out)
        utils._add_output_to_block(loop_block, concat)

        loop_output = loop.node().output()
        perm = [0, 1, 2, 3, 4]
        perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
        transpose = g.op("Transpose", loop_output, perm_i=perm)
        squeeze = symbolic_helper._squeeze_helper(g, transpose, [0])

        return squeeze
    else:
        return symbolic_helper._unimplemented("Unfold",
                                              "input size not accessible")