def add_mixture_noise(data, y, se, unit=["iso3", "year"], noise_sd=[1.0, 10.0], mix_prob=[0.1, 0.9]): """ Add noise from a mixture of Normal distributions. Parameters ---------- data : ndarray A structured NumPy array y : string A label in data corresponding to the variable to add noise to se : string A label in data corresponding to standard error variable in which the standard error of the noise added will be stored unit : string or list of strings Levels defined by the unit variabes will share the same draws from the noise distributions noise_sd : list of floats The standard deviations of the Normal distributions mix_prob : list of floats A list of length len(sd) that gives the probability of using a standard deviation specified in sd. All values must be between 0 and 1 and together must sum up to 1. Returns ------- noisy_data : ndarray Exactly the same as data except noise has been added to the y variable. Examples -------- >>> data = np.array([('north','USA',1,2),('north','CAN',2,4)],dtype=[('region','|S6'),('iso3','|S4'),('y','<f4'), ('se','<f4')]) >>> noisy_data = add_mixture_noise(data, 'y', 'se', 'iso3', [5,10], [.5,.5]) >>> noisy_data['y'][0] != data['y'][0] True >>> noisy_data['y'][1] != data['y'][1] True >>> int(100*noisy_data['se'][0]) == 538 or int(100*noisy_data['se'][0]) == 1019 True >>> int(100*noisy_data['se'][1]) == 640 or int(100*noisy_data['se'][1]) == 1077 True >>> data = np.array([('north','USA',2,2),('north','CAN',2,2)],dtype=[('region','|S6'),('iso3','|S4'),('y','<f4'), ('se','<f4')]) >>> noisy_data = add_mixture_noise(data, 'y', 'se', 'region', [10], [1]) >>> abs(noisy_data['y'][0] - noisy_data['y'][1]) < .01 True >>> noisy_data = add_mixture_noise(data, 'y', 'se', 'iso3', [10], [1]) >>> abs(noisy_data['y'][0] - noisy_data['y'][1]) > .01 True """ noisy_data = copy.copy(data) prob_cut_offs = [] prob_cut_offs.append(mix_prob[0]) for i in range(1, len(mix_prob)): new_cut_off = 0.0 for j in range(0, i + 1): new_cut_off = new_cut_off + mix_prob[j] prob_cut_offs.append(new_cut_off) noisy_data = utilities.add_unique_id(noisy_data, unit, "unique_id_for_noise") noise_to_add = {} var_to_add = {} for i, id in enumerate(np.unique(noisy_data["unique_id_for_noise"])): r = random.random() min_dist = np.inf index = 999 for j, prob in enumerate(prob_cut_offs): if abs(r - prob) < min_dist and prob - r > 0: min_dist = abs(r - prob) index = j noise_to_add[id] = random.gauss(0, noise_sd[index]) var_to_add[id] = pow(noise_sd[index], 2) for i in range(0, len(data[y])): id = noisy_data["unique_id_for_noise"][i] noisy_data[y][i] = noisy_data[y][i] + noise_to_add[id] noisy_data[se][i] = np.sqrt(pow(noisy_data[se][i], 2) + var_to_add[id]) noisy_data = numpy.lib.recfunctions.drop_fields(noisy_data, "unique_id_for_noise") return noisy_data
def evaluate_estimates(out_file, key, est_dir, est_y, gold_standard_file, y): """ Evaluate estimates stored in a directory of csvs against the gold standard. Parameters ---------- out_file : string A path to a csv in which to store summary error metrics key : list of strings A list of strings that correspond to columns in the estimates files and in the gold standard files to serve as the key in merging these files. If evaluates_estimates is being run from the command line, then key must be enclosed in double quotes (e.g. \"['iso3','year']\") est_dir : string The path to a directory with the csvs of the estimates. All csvs in this directory will be assumed to contain estimates. The path should end with a / est_y : string The name of the column in the estimate files that holds the predictions from the model y : string The name of the column in the gold standard file that holds the response variable. This should also be the name of the column in the estimates files that holds the knocked out and noised response variable. gold_standard_file : string The path to the gold standard file Notes ----- see parse_filename for a guide to the naming convention of the predicted response variables """ model_design_vars = {} data = utilities.read(gold_standard_file) data = utilities.add_unique_id(data, key, 'unique_id_for_join_by') files = os.listdir(est_dir) for file in files: file_key = parse_filename(file) path = est_dir + file new_data = utilities.read(path) # rename variable names = [] for name in new_data.dtype.names: if name == est_y: est_y_name = est_y + '_' + str(file_key['model']) + '_' + str(file_key['design']) + '_' + str(file_key['rep']) names.append(est_y_name) elif name == y: y_name = y + '_' + str(file_key['model']) + '_' + str(file_key['design']) + '_' + str(file_key['rep']) names.append(y_name) else: names.append(name) new_data.dtype.names = tuple(names) # collect up variables corresponding to a certain model and design if model_design_vars.has_key(file_key['model']) == False: model_design_vars[file_key['model']] = {} if model_design_vars[file_key['model']].has_key(file_key['design']) == False: model_design_vars[file_key['model']][file_key['design']] = [] model_design_vars[file_key['model']][file_key['design']].append(est_y_name) new_data = utilities.add_unique_id(new_data, key, 'unique_id_for_join_by') new_data = new_data[['unique_id_for_join_by', est_y_name, y_name]] # http://stackoverflow.com/questions/2774949/merging-indexed-array-in-python data = numpy.lib.recfunctions.join_by('unique_id_for_join_by', data, new_data) # this would write a file with the gold standard and all the predictions #utilities.write(out_predictions_file, data) data = numpy.lib.recfunctions.drop_fields(data, 'unique_id_for_join_by') model_design_errors = {} for model in model_design_vars.keys(): model_design_errors[model] = {} for design in model_design_vars[model].keys(): model_design_errors[model][design] = {} truth = [] obs = [] for var in model_design_vars[model][design]: y_var = var.replace(est_y, y) for i in range(0, len(data[y])): if utilities.is_nan(data[y_var][i]) == True: pdb.set_trace() truth.append(data[y][i]) obs.append(data[var][i]) truth = np.array(truth) obs = np.array(obs) model_design_errors[model][design] = {} errors = errormetrics.get_error_metrics() for error in errors: error_str = 'errormetrics.' + error + '()' error_class = eval(error_str) model_design_errors[model][design][error] = error_class.calc_error(truth, obs, True) errors = [] for model in model_design_errors.keys(): for design in model_design_errors[model].keys(): for error in model_design_errors[model][design].keys(): errors.append(error) errors = np.unique(errors) writer = csv.writer(open(out_file, 'wb')) fieldnames = ['model','design'] + errors.tolist() writer.writerow(fieldnames) for model in model_design_errors.keys(): for design in model_design_errors[model].keys(): row = [model, design] for error in errors: if model_design_errors[model][design].has_key(error) == True: row.append(model_design_errors[model][design][error]) else: row.append('') writer.writerow(row) writer = []
def knock_out_leaving_surveys(data, y, se, key, year, survey_span, num_surveys, prop, survey_date): """ Knock out values of y and se in data so that the remaining data simulates a set of surveys. More specifically, in each level of key multiple surveys are generated by randomly selecting a year to conduct each survey and then marking that year and a number of previous years determined by survey_span to leave in the dataset. Parameters ---------- data : ndarray A structured NumPy array. Should probably not have any missing values or else strange behavior will ensue y : string The label for the response variable in data se : string The label for the standard error variable in data key : string or list of strings The labels for the variables in data that will define separate levels for the knock out scheme. year : string The label for the year in data survey_span : int The number of years that each survey covers num_surveys : int The number of surveys in each country prop : float Proportion of countries to apply the knock out design. 0 <= prop <= 1 survey_date : string The name of a variable to be added to data that contains the year each survey was conducted so that surveys can be distinguished within a given level of the key. This comes in handy if you want to specify correlated noise among surveys in your noiser. Returns ------- ko_data : ndarray The same as data except with values of y and se knocked out Notes ----- In this framework, multiple observations of the same data points cannot be generated """ ko_data = copy.copy(data) ko_data = utilities.add_unique_id(ko_data, key, 'unique_id_for_ko') r = np.where(np.arange(1.,len(np.unique(ko_data['unique_id_for_ko']))+1.) <= len(np.unique(ko_data['unique_id_for_ko']))*prop, True, False) if type(r.tolist()) != type(True): random.shuffle(r) else: r = [r] should_be_kept = {} survey_date_dict = {} for i, id in enumerate(np.unique(ko_data['unique_id_for_ko'])): ko_data_i = utilities.subset(ko_data, 'unique_id_for_ko', id) should_be_kept[id] = [] survey_date_dict[id] = [] if r[i] == True: for s in range(0, num_surveys): survey_year_index = random.choice(range(0,len(ko_data_i[year]))) for j in range(survey_year_index-survey_span, survey_year_index): if (j in range(0, len(ko_data_i[year]))) == True: should_be_kept[id].append(ko_data_i[year][j]) survey_date_dict[id].append(ko_data_i[year][survey_year_index]) else: for j in range(0, len(ko_data_i[year])): should_be_kept[id].append(ko_data_i[year][j]) survey_date_dict[id].append(np.nan) survey_date_list = [np.nan]*len(ko_data[y]) for i in range(0, len(ko_data[y])): id = ko_data['unique_id_for_ko'][i] yr = ko_data[year][i] for j, kept_yr in enumerate(should_be_kept[id]): if kept_yr == yr: survey_date_list[i] = survey_date_dict[id][j] break if utilities.is_nan(survey_date_list[i]) == True: ko_data[y][i] = np.nan ko_data[se][i] = np.nan ko_data = numpy.lib.recfunctions.append_fields(ko_data, survey_date, np.array(survey_date_list)) ko_data = numpy.lib.recfunctions.drop_fields(ko_data, 'unique_id_for_ko') return ko_data
def add_mixture_bias(data, y, unit=['iso3','year'], bias=[1.,10.], mix_prob=[.1,.9]): """ Add different levels of bias to the data Parameters ---------- data : ndarray A structured NumPy array y : string A label in data corresponding to the variable to add noise to unit : string or list of strings Levels defined by the unit variabes will share the same draws from the noise distributions bias : list of floats The amount of bias to add mix_prob : list of floats A list of length len(sd) that gives the probability of using a standard deviation specified in sd. All values must be between 0 and 1 and together must sum up to 1. Returns ------- biased_data : ndarray Exactly the same as data except bias has been added to the y variable. Examples -------- >>> data = np.array([('north','USA',1,2),('north','CAN',2,4)],dtype=[('region','|S6'),('iso3','|S4'),('y','<f4'), ('se','<f4')]) >>> biased_data = add_mixture_bias(data, 'y', 'iso3', [10], [1]) >>> int(biased_data['y'][0]) 11 """ biased_data = copy.copy(data) prob_cut_offs = [] prob_cut_offs.append(mix_prob[0]) for i in range(1, len(mix_prob)): new_cut_off = 0. for j in range(0, i+1): new_cut_off = new_cut_off + mix_prob[j] prob_cut_offs.append(new_cut_off) biased_data = utilities.add_unique_id(biased_data, unit, 'unique_id_for_bias') bias_to_add = {} for i, id in enumerate(np.unique(biased_data['unique_id_for_bias'])): r = random.random() min_dist = np.inf index = 999 for j, prob in enumerate(prob_cut_offs): if abs(r - prob) < min_dist and prob - r > 0: min_dist = abs(r - prob) index = j bias_to_add[id] = bias[index] for i in range(0, len(data[y])): id = biased_data['unique_id_for_bias'][i] biased_data[y][i] = biased_data[y][i] + bias_to_add[id] biased_data = numpy.lib.recfunctions.drop_fields(biased_data, 'unique_id_for_bias') return biased_data
def knock_out_cluster_unit(data, y, se, cluster='iso3', unit='year', prop=.2, design='random'): """ Within levels defined by the cluster variable, knock out a proportion of units in data by replacing values of the variable y. Parameters ---------- data : ndarray A structured array. y : string A label of variable in data that corresponds to the response variable to be knocked out se : string A label of variable in data that corresponds to the standard error variable to be knocked out cluster : string or list of strings A field or list of fields in self.data (e.g. 'iso3' or \"['iso3','age']\"). The knock out scheme is applied separately to levels defined by cluster. unit : string A field in self.data. The unit of the data to knock out. Unit should not have multiple values with in levels of cluster. proportion : float The proportion of data to knock out. design : string If 'random', then a proportion of data is knocked out randomally. If 'first', then the first proportion of data is knocked out and analagously for last. Examples -------- >>> dtype = [('iso3','|S4'),('year','<i4'),('y','<f4'),('se','<f4')] >>> data = np.array([('USA',1990,1,.1),('USA',1991,2,.2),('CAN',1990,3,.3),('CAN',1991,4,.4)], dtype=dtype) >>> ko_data = knock_out_cluster_unit(data,'y','se','iso3','year',.5,'first') >>> utilities.is_nan(ko_data['y'][0]) True >>> utilities.is_nan(ko_data['y'][1]) False >>> utilities.is_nan(ko_data['y'][2]) True >>> utilities.is_nan(ko_data['y'][3]) False >>> utilities.is_nan(ko_data['se'][0]) True >>> utilities.is_nan(ko_data['se'][1]) False >>> utilities.is_nan(ko_data['se'][2]) True >>> utilities.is_nan(ko_data['se'][3]) False # Check to see that original data has not been changed >>> utilities.is_nan(data['y'][0]) False """ data = copy.copy(data) data_cluster = {} if cluster == '': data_cluster[''] = data else: if len(cluster[0]) >= 2: data = utilities.add_unique_id(data, cluster, 'knockerouters_unique_cluster_id') cluster = 'knockerouters_unique_cluster_id' for level in np.unique(data[cluster]): data_cluster[level] = utilities.subset(data, cluster, level) for key in data_cluster.keys(): candidates = [] for i, val in enumerate(data_cluster[key][y]): if utilities.is_nan(val) == False: candidates.append(i) should_be_knocked_out = {} r = np.where(np.arange(1.,len(candidates)+1.) <= len(candidates)*prop, True, False) if type(r.tolist()) != type(True): random.shuffle(r) else: r = [r] for index, i in enumerate(candidates): level = data_cluster[key][unit][i] if design == 'random': should_be_knocked_out[level] = r[index] elif design == 'first': should_be_knocked_out[level] = (float(i+1)/len(candidates)) <= prop elif design == 'last': should_be_knocked_out[level] = (float(i+1)/len(candidates)) >= (1-prop) for i, level in enumerate(data[unit]): if (level in should_be_knocked_out.keys()) == True: if cluster == '': if should_be_knocked_out[level] == True: data[y][i] = np.nan data[se][i] = np.nan else: if should_be_knocked_out[level] == True and data[cluster][i] == key: data[y][i] = np.nan data[se][i] = np.nan if cluster == 'knockerouters_unique_cluster_id': data = numpy.lib.recfunctions.drop_fields(data, 'knockerouters_unique_cluster_id') return data