def _check_dependency_version(name, version): from core.preferences import prefs from utils.logger import get_logger logger = get_logger(__name__) module = sys.modules[name] if not isinstance(module.__version__, basestring): # mocked module return if not StrictVersion(module.__version__) >= StrictVersion(version): message = '%s is outdated (got version %s, need version %s)' % (name, module.__version__, version) if prefs.core.outdated_dependency_error: raise ImportError(message) else: logger.warn(message, 'outdated_dependency')
import sys import os sys.path.append(os.path.abspath(".")) sys.dont_write_bytecode = True __author__ = "bigfatnoob" from store import base_store from utils import lib, logger, cache import properties LOGGER = logger.get_logger(os.path.basename(__file__.split(".")[0])) class InputStore(base_store.InputStore): def __init__(self, dataset, **kwargs): base_store.InputStore.__init__(self, dataset, **kwargs) def load_inputs(self, args_key): args_index = cache.load_json(lib.get_dataset_arg_index(self.dataset)) if args_key not in args_index: return None arg_files_name = os.path.join(lib.get_dataset_args_folder(self.dataset), "%s.json" % args_index[args_key]) arguments = cache.load_json(arg_files_name) assert len(arguments) == properties.FUZZ_ARGUMENT_SIZE if self.is_array(arguments): key_args = arguments else: key_args = [[] for _ in range(len(arguments[0]))] for i in range(len(arguments[0])):
from django.http.response import Http404 from django.shortcuts import get_object_or_404, redirect from django.core.exceptions import PermissionDenied from django.urls import reverse from core import models as core_models from review import models as review_models from production import models as production_models from submission import models from copyediting import models as copyediting_models from proofing import models as proofing_models from security.logic import can_edit_file, can_view_file_history, can_view_file, is_data_figure_file from utils import setting_handler from utils.logger import get_logger logger = get_logger(__name__) # General role-based security decorators def base_check(request): if request is None or request.user is None: return False if request.user.is_anonymous() or not request.user.is_active: return False return True def editor_is_not_author(func):
def __init__(self, args, queue=None, mode='train', elmo=None): self.logger = logger = get_logger(__name__) self.config = config = args.config self.elmo = elmo # Epoch variable and its update op self.epoch = tf.Variable(0, trainable=False) self.epoch_incr = self.epoch.assign(self.epoch + 1) self.queue = queue self.embedding_size = e_size = config.embedding_size self.num_classes = num_classes = config.num_classes # We can keep a larger batch size during evaluation to speed up computation if mode == 'train': self.batch_size = batch_size = config.batch_size else: self.batch_size = batch_size = config.eval_batch_size self.keep_prob = keep_prob = config.keep_prob self.clipped_norm = clipped_norm = config.clipped_norm # Learning rate variable and it's update op self.learning_rate = tf.get_variable( "lr", shape=[], dtype=tf.float32, trainable=False, initializer=tf.constant_initializer(config.lr) ) self.global_step = tf.Variable(0, trainable=False) # Feeding inputs for evaluation self.inputs = tf.placeholder(tf.int64, [batch_size, args.config.seq_len]) self.labels = tf.placeholder(tf.int64, [batch_size]) self.segment_id = tf.placeholder(tf.int64, [batch_size]) # Logic for embeddings self.w2v_embeddings = tf.placeholder(tf.float32, [args.vocab_size, e_size]) if config.cnn_mode == 'static': embeddings = tf.get_variable( "embedding", [args.vocab_size, e_size], initializer=random_uniform(0.25), trainable=False ) else: embeddings = tf.get_variable( "embedding", [args.vocab_size, e_size], initializer=random_uniform(0.25), trainable=True ) # Used in the static / non-static configurations self.load_embeddings = embeddings.assign(self.w2v_embeddings) # Looking up input embeddings self.embedding_lookup = tf.nn.embedding_lookup(embeddings, self.inputs) if config.elmo is True: # Load the embeddings from the feed_dict self.input_strings = tf.placeholder(tf.string, [batch_size]) self.embedding_lookup = elmo(self.input_strings, signature='default', as_dict=True)['elmo'] self.input_vectors = input_vectors = tf.expand_dims( self.embedding_lookup, axis=3 ) self.embedding_size = e_size = 1024 else: self.input_vectors = input_vectors = tf.expand_dims(self.embedding_lookup, axis=3) # Apply a convolutional layer conv_outputs = [] self.debug = [] for i, filter_specs in enumerate(config.conv_filters): size = filter_specs['size'] channels = filter_specs['channels'] debug = {} with tf.variable_scope("conv%d" % i): # Convolution Layer begins debug['filter'] = conv_filter = tf.get_variable( "conv_filter%d" % i, [size, e_size, 1, channels], initializer=random_uniform(0.01) ) debug['bias'] = bias = tf.get_variable( "conv_bias%d" % i, [channels], initializer=tf.zeros_initializer() ) debug['conv_out'] = output = tf.nn.conv2d(input_vectors, conv_filter, [1, 1, 1, 1], "VALID") + bias # Applying non-linearity output = tf.nn.relu(output) # Pooling layer, max over time for each channel debug['output'] = output = tf.reduce_max(output, axis=[1, 2]) conv_outputs.append(output) self.debug.append(debug) # Concatenate all different filter outputs before fully connected layers conv_outputs = tf.concat(conv_outputs, axis=1) total_channels = conv_outputs.get_shape()[-1] # Adding a dropout layer during training # tf.nn.dropout is an inverted dropout implementation if mode == 'train': conv_outputs = tf.nn.dropout(conv_outputs, keep_prob=keep_prob) # Apply a fully connected layer with tf.variable_scope("full_connected"): self.W = W = tf.get_variable( "fc_weight", [total_channels, num_classes], initializer=random_uniform(math.sqrt(6.0 / (total_channels.value + num_classes))) ) self.clipped_W = clipped_W = tf.clip_by_norm(W, clipped_norm) self.b = b = tf.get_variable( "fc_bias", [num_classes], initializer=tf.zeros_initializer() ) self.logits = tf.matmul(conv_outputs, W) + b # Declare the vanilla cross-entropy loss function self.softmax = tf.nn.softmax(self.logits) self.one_hot_labels = tf.one_hot(self.labels, num_classes) # TODO :- For compatiblity with future versions, stop gradient for label tensors self.loss1 = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=self.one_hot_labels ) self.cost1 = tf.reduce_sum(self.loss1) / batch_size # Declare the soft-label distillation loss function self.soft_labels = tf.placeholder(tf.float32, [batch_size, num_classes]) self.loss2 = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=self.soft_labels ) self.cost2 = tf.reduce_sum(self.loss2) / batch_size # Interpolate the loss functions self.l1_weight = tf.placeholder(tf.float32) if config.iterative is False: self.final_cost = self.cost1 else: self.final_cost = self.l1_weight * self.cost1 + (1.0 - self.l1_weight) * self.cost2 if config.optimizer == 'adadelta': opt = tf.train.AdadeltaOptimizer( learning_rate=self.learning_rate, rho=0.95, epsilon=1e-6 ) else: opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate ) if mode == 'train': for variable in tf.trainable_variables(): logger.info("%s - %s", variable.name, str(variable.get_shape())) # Apply optimizer to minimize loss self.updates = opt.minimize(self.final_cost, global_step=self.global_step) # Clip fully connected layer's norm with tf.control_dependencies([self.updates]): self.clip = W.assign(clipped_W) self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=1) self.best_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
# -*- coding: utf-8 -*- import torch from torch.nn.utils.convert_parameters import vector_to_parameters, parameters_to_vector from baselines import base from utils.logger import get_logger logger = get_logger() class Agent(base.Agent): # References: # [1] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. # arXiv preprint arXiv:1509.02971, 2015. def __init__(self, actor, target_actor, optimizer_actor, critic, target_critic, optimizer_critic, loss, replay_module, noise_generator, reward_gamma=0.99, tau=1e-3, warmup_size=100, explore_fraction=0.3): """ Just follow the `Algorithm 1` in [1], suppose any element of action in [-1, 1] Args: actor: actor network target_actor: target actor network
이 기능은 로그스테시를 이용하여 처리할 수 있다. """ import pymongo from elasticsearch import Elasticsearch from newscrapy import settings from utils.schedule import Scheduling from utils.logger import get_logger from utils.mongo import MongDAO es = Elasticsearch(host=settings.ELASTIC_SERVER, port=settings.ELASTIC_PORT, timeout=60) logger = get_logger('mig') mongdao = MongDAO(settings) def entries_to_remove(entries, the_dict): for key in entries: if key in the_dict: del the_dict[key] def all_unset(): mongdao.update_many('articles', {}, {"$set": {"elas": 0}}) cond = {'$or': [{'elas': None}, {'elas': {'$exists': False}}, {'elas': 0}]}
from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent from utils import logger log = logger.get_logger(__name__) player = QMediaPlayer(flags=QMediaPlayer.LowLatency) def play(mp3_data: QMediaContent, volume: int = 100): try: player.setMedia(mp3_data) player.setVolume(volume) player.play() except Exception as e: log.warning(f"Unable to play sound. {e}", exc_info=True)
from annotators.conf import TITLE_TO_ID, ENDPOINTS from utils.html import check_json_response, post_request from utils.text import remove_illegal_chars from utils.store import get_wiki_store from utils.logger import get_logger logger = get_logger() wiki_id_db = get_wiki_store(TITLE_TO_ID["spotlight"]) def get_entities(text, conf=0.45): """ A function to get annotations. :param text: str: text to annotate :param conf: float: confidence :return: list """ payload = {"text": remove_illegal_chars(text), "confidence": conf} spotlight_headers = {'accept': 'application/json', 'content-type': 'application/x-www-form-urlencoded'} response = post_request(ENDPOINTS["spotlight"], payload, spotlight_headers) return check_json_response(response) def format_data(json_response): """ A function for formatting output data in a dexter-eval format. :param text: str: text to annotate
import numpy as np from pyzbar.pyzbar import decode from pyzbar.pyzbar import ZBarSymbol import cv2 from utils.logger import get_logger logger = get_logger('JFA REST Server Gateway') import cv2 import multiprocessing as mp from qr_scanner import decoder import requests from utils.logger import get_logger logger = get_logger('JFA REST Server Gateway') import multiprocessing import time class QR_Scanner(multiprocessing.Process): def __init__(self, task_queue, result_queue, camera_id): multiprocessing.Process.__init__(self) self.camera_id = camera_id self.task_queue = task_queue self.result_queue = result_queue @staticmethod def decode(image): gray_img = cv2.cvtColor(image, 0) barcode = decode(gray_img, symbols=[ZBarSymbol.QRCODE])
import torch.nn as nn import torchvision.models as models from utils.paths import Paths from utils.logger import setup_logger, get_logger from dataloader import DataLoader from metric import Metric from executor.trainer import Trainer from .base_model import BaseModel from .common.device import setup_device, data_parallel from .common.criterion import make_criterion from .common.optimizer import make_optimizer from .common.ckpt import load_ckpt LOG = get_logger(__name__) class VGG(BaseModel): """VGG Model Class""" def __init__(self, config: Dict): super().__init__(config) self.model = None self.model_name = self.config.model.name self.n_classes = self.config.model.n_classes self.classes = self.config.data.classes self.batch_size = self.config.train.batch_size self.n_gpus = self.config.train.n_gpus self.resume = self.config.model.resume # dataloader
from .base_model import BaseModel import pandas as pd import numpy as np sys.path.append('.') # external # TODO: # get the model library for your project # internal from utils.logger import get_logger from utils.dataloader import DataLoader from executor.model_trainer import ModelTrainer from executor.model_evaluator import ModelEvaluator LOG = get_logger('modelname') class ModelName(BaseModel): """Model Class""" def __init__(self, config): super().__init__(config) self.model = None self.init_model = None self.dataset = None self.info = None self.model = None self.X_pipeline = [] self.y_pipeline = [] self.X_train = None
from django.shortcuts import render from rest_framework.response import Response from assessment.models import AssessSurveyRelation, AssessProject, AssessUser, AssessSurveyUserDistribute from front.models import PeopleSurveyRelation, SurveyInfo, UserQuestionAnswerInfo from front.serializers import PeopleSurveyResultSimpleSerializer from front.tasks import algorithm_task from front.views import people_login from survey.models import Survey from utils.logger import get_logger from utils.response import ErrorCode from utils.views import WdTemplateView, AuthenticationExceptView from wduser.models import People, AuthUser from wduser.user_utils import UserAccountUtils logger = get_logger("operation") class SurveyAnswerCheckView(AuthenticationExceptView, WdTemplateView): # 问卷答题检查页面 template_name = 'answer_check.html' class OperationIndexView(AuthenticationExceptView, WdTemplateView): # 问卷答题检查页面 template_name = 'ops_index.html' def answer_check_rst(request): ctx = [] if request.POST:
def __init__(self, node_name, *a, **kw): self.node_name = node_name self.log = logger.get_logger('http', node=self.node_name) super(BOSNetHTTPServerRequestHandler, self).__init__(*a, **kw)
import datetime from django.core.management import BaseCommand from django.db import transaction from assessment.models import AssessOrganization, AssessProject from front.models import PeopleSurveyRelation, UserQuestionAnswerInfo, SurveyInfo, SurveyQuestionInfo from front.serializers import PeopleSurveySerializer from front.tasks import algorithm_task, get_report from question.models import Question from research.models import ResearchDimension, ResearchSubstandard, ResearchModel from survey.models import SurveyQuestionRelation, Survey, SurveyQuestionResult from utils import time_format from utils.logger import get_logger from wduser.models import People, PeopleOrganization, EnterpriseInfo, Organization logger = get_logger("ops_etl") def utf8_more_info(more_info): mi = json.loads(more_info) nmi = [] for o in mi: nmi.append({"key_name": o["key_name"], "key_value": o["key_value"]}) return json.dumps(nmi, ensure_ascii=False) def etl_people_info(project_id, survey_id, enterprise_info, t, limit_num=None): if not project_id: return ename = enterprise_info.cn_name
import time import requests from utils.logger import get_logger # log api calls logger_api = get_logger('api') BASE_URL = 'https://api.helium.io/v1' headers = {'user-agent': 'python-requests/2.25.1'} def get_account(account_address): ''' gets information on an account to retrieve the current balance and the current height args: account_address: string of account address returns: account: dict of account, balance and height are inside ''' url = f'{BASE_URL}/accounts/{account_address}' i = 0 timeout = 0 while i < 10: # relax time.sleep(max(2**i - 1, timeout / 1000))
def __init__(self, *args, **kwargs): super(CommonHandler, self).__init__(*args, **kwargs) self.logger = get_logger('wineshop') self._session = None
# -*- coding: utf-8 -*- import argparse import os import pandas as pd import yaml from tqdm import tqdm from utils.db_connection import get_connection from utils.create_dir import create_dir from utils.logger import get_logger from utils.read_file import read_file logging = get_logger() def download_dataset(sql_file, conn, output_file): sql = read_file(sql_file) logging.info(sql) df = pd.read_sql_query(sql, con=conn, chunksize=100000) chunk = next(df) chunk.drop_duplicates().to_csv(output_file, mode='w', index=None) for chunk in tqdm(df): chunk.drop_duplicates().to_csv(output_file, mode='a', index=None, header=None) if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('--config_file', type=str, default='./etc/foo.cfg') args = parser.parse_args()
import sys CURRENTDIR = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) PARENTDIR = os.path.dirname(CURRENTDIR) sys.path.insert(0, PARENTDIR) import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") django.setup() from utils import utils from utils.logger import get_logger Logger = get_logger("workflow") def main(): """ Create worker event for workflow """ Logger.debug(unicode("Starting follow_the_sun")) utils.default_queue.enqueue("ticket.follow_the_sun") Logger.debug(unicode("Starting update_waiting")) utils.default_queue.enqueue("ticket.update_waiting") Logger.debug(unicode("Starting update_paused")) utils.default_queue.enqueue("ticket.update_paused") if __name__ == "__main__":
import sys CURRENTDIR = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) PARENTDIR = os.path.dirname(CURRENTDIR) sys.path.insert(0, PARENTDIR) import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") django.setup() import logutils from utils import utils from utils.logger import get_logger Logger = get_logger('threshold') def main(): """ Create worker event for report threshold """ Logger.debug(unicode('Starting report threshold checks')) utils.default_queue.enqueue('report.create_ticket_with_threshold') for handler in Logger.handlers: if isinstance(handler, logutils.queue.QueueHandler): handler.queue.join() if __name__ == "__main__": main()
self.__dict__.update(kwds) try: ### # workaround for solving the issue of multi-worker # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (10000, rlimit[1])) ### except: pass logger = get_logger('exp_logger') __all__ = ['GranRunner', 'compute_edge_ratio', 'get_graph', 'evaluate'] NPR = np.random.RandomState(seed=1234) def compute_edge_ratio(G_list): num_edges_max, num_edges = .0, .0 for gg in G_list: num_nodes = gg.number_of_nodes() num_edges += gg.number_of_edges() num_edges_max += num_nodes**2 ratio = (num_edges_max - num_edges) / num_edges return ratio
import torch from theconf import Config as C, ConfigArgumentParser from torch import nn, optim from torch.nn.parallel.data_parallel import DataParallel from tqdm import tqdm from warmup_scheduler import GradualWarmupScheduler from data.data import get_dataloaders from models.networks import get_model, num_class from utils.config import * from utils.logger import get_logger from utils.lr_scheduler import adjust_learning_rate_resnet from utils.metrics import accuracy, Accumulator logger = get_logger('Athena') logger.setLevel(logging.INFO) def run_epoch(model, loader, loss_fn, optimizer, desc_default='', epoch=0, writer=None, verbose=1, scheduler=None): tqdm_disable = bool(os.environ.get('TASK_NAME', '')) # KakaoBrain Environment if verbose:
project_dir = Path(__file__).resolve().parents[2] # find .env automagically by walking up directories until it's found, then # load up the .env entries as environment variables load_dotenv(find_dotenv()) sys.path.append(str(project_dir / "src")) from utils.path import get_suffix from utils.logger import create_logger, get_logger @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def raw2feather(input_filepath, output_filepath): if get_suffix(input_filepath) in [ 'csv', 'tsv', 'gzip', 'bz2', 'zip', 'xz' ]: assert ("Unsupported file format.") pd.read_csv(input_filepath).to_feather(output_filepath) def main(): raw2feather() if __name__ == '__main__': logfile = "raw2feather" create_logger(logfile) get_logger(logfile).info("Convert file") main() get_logger(logfile).info("Saved")
from django.http import HttpResponseRedirect from rest_framework.response import Response from WeiDuAdmin import settings from assessment.models import AssessSurveyRelation, AssessProject, AssessUser, AssessSurveyUserDistribute from front.models import PeopleSurveyRelation from front.tasks import send_one_user_survey from front.views import people_login from survey.models import Survey from utils.logger import get_logger from utils.response import ErrorCode from utils.views import WdTemplateView, AuthenticationExceptView from wduser.models import People, AuthUser from wduser.user_utils import UserAccountUtils logger = get_logger("front") def open_people_assess_survey_user_distribute(assess_id, survey_id, people_id): # 项目问卷分发数组 try: a = AssessSurveyUserDistribute.objects.get(assess_id=assess_id, survey_id=survey_id) a_list = json.loads(a.people_ids) if people_id not in a_list: a_list.append(people_id) a. people_ids = json.dumps(a_list) a.save() except: a = AssessSurveyUserDistribute.objects.create(assess_id=assess_id, survey_id=survey_id) a.people_ids = json.dumps([people_id]) a.save()
import functools import multiprocessing import pathlib import re from typing import Dict import requests from utils import downloader, logger from . import reader as flickr_reader logger = logger.get_logger('flickr.utils') def get_author_id(url): """Get flick author id from url. Parameters ---------- url : str Image url. Returns ------- str Flick author id """ regex = re.compile(r'(photos)(\/)([a-zA-Z0-9]+([@_ -]?[a-zA-Z0-9])*)(\/)') return regex.search(url).group(3) def get_author_info(url, api_url, api_key): """Get flick author info from url.
'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona' ], 'Rare') \ .replace(['Mlle', 'Ms', 'Mme'], ['Miss', 'Miss', 'Mrs']) self.test['Title'] = self.test['Title'].map(title_mapping).fillna(0) self.train['Title'] = self.train['Title'] self.test['Title'] = self.test['Title'] train = None test = None @click.command() @click.argument('train_file', type=click.Path(exists=True)) @click.argument('test_file', type=click.Path(exists=True)) @click.option('--force', is_flag=True) def main(train_file, test_file, force): global train global test train = pd.read_feather(train_file) test = pd.read_feather(test_file) features = list(get_features(globals())) generate_features(features, force) VERSION="0.0.1" if __name__ == '__main__': create_logger(VERSION) get_logger(VERSION).info("Start feature generation.") main()
def identity_loader(app): @identity_loaded.connect_via(app) def on_identity_loaded(sender, identity): # Set the identity user object identity.user = current_user # Add the UserNeed to the identity if hasattr(current_user, 'id'): identity.provides.add(UserNeed(current_user.id)) # Assuming the User model has a list of roles, update the # identity with the roles that the user provides if hasattr(current_user, 'role_id'): identity.provides.add( RoleNeed(Role.get(current_user.role_id, 'staff'))) record_logger = get_logger('record') def request_record(app): @app.before_request def record(): record_logger.info(request.path) def permission_check(app): @app.before_request def check_perm(): is_perm_required = Permission.query.filter_by( content_type=request.path).first() if is_perm_required: permissions = set()
def main(): args = parser.parse_args() config = get_config(args.config) # CUDA configuration cuda = config['cuda'] device_ids = config['gpu_ids'] if cuda: os.environ['CUDA_VISIBLE_DEVICES'] = ','.join( str(i) for i in device_ids) device_ids = list(range(len(device_ids))) config['gpu_ids'] = device_ids cudnn.benchmark = True # Configure checkpoint path checkpoint_path = os.path.join( 'checkpoints', config['dataset_name'], config['mask_type'] + '_' + config['expname']) if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path) shutil.copy(args.config, os.path.join(checkpoint_path, os.path.basename(args.config))) writer = SummaryWriter(logdir=checkpoint_path) logger = get_logger( checkpoint_path) # get logger and configure it at the first call logger.info("Arguments: {}".format(args)) # Set random seed if args.seed is None: args.seed = random.randint(1, 10000) logger.info("Random seed: {}".format(args.seed)) random.seed(args.seed) torch.manual_seed(args.seed) if cuda: torch.cuda.manual_seed_all(args.seed) # Log the configuration logger.info("Configuration: {}".format(config)) try: # for unexpected error logging # Load the dataset logger.info("Training on dataset: {}".format(config['dataset_name'])) train_dataset = Dataset(data_path=config['train_data_path'], with_subfolder=config['data_with_subfolder'], image_shape=config['image_shape'], random_crop=config['random_crop']) # val_dataset = Dataset(data_path=config['val_data_path'], # with_subfolder=config['data_with_subfolder'], # image_size=config['image_size'], # random_crop=config['random_crop']) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=config['batch_size'], shuffle=True, num_workers=config['num_workers']) # val_loader = torch.utils.data.DataLoader(dataset=val_dataset, # batch_size=config['batch_size'], # shuffle=False, # num_workers=config['num_workers']) # Define the trainer trainer = Trainer(config) logger.info("\n{}".format(trainer.netG)) logger.info("\n{}".format(trainer.localD)) logger.info("\n{}".format(trainer.globalD)) if cuda: trainer = nn.parallel.DataParallel(trainer, device_ids=device_ids) trainer_module = trainer.module else: trainer_module = trainer # Get the resume iteration to restart training start_iteration = trainer_module.resume( config['resume']) if config['resume'] else 1 iterable_train_loader = iter(train_loader) time_count = time.time() for iteration in range(start_iteration, config['niter'] + 1): try: ground_truth = next(iterable_train_loader) except StopIteration: iterable_train_loader = iter(train_loader) ground_truth = next(iterable_train_loader) # Prepare the inputs bboxes = random_bbox(config, batch_size=ground_truth.size(0)) x, mask = mask_image(ground_truth, bboxes, config) if cuda: x = x.cuda() mask = mask.cuda() ground_truth = ground_truth.cuda() ###### Forward pass ###### compute_g_loss = iteration % config['n_critic'] == 0 losses, inpainted_result, offset_flow = trainer( x, bboxes, mask, ground_truth, compute_g_loss) # Scalars from different devices are gathered into vectors for k in losses.keys(): if not losses[k].dim() == 0: losses[k] = torch.mean(losses[k]) ###### Backward pass ###### # Update D trainer_module.optimizer_d.zero_grad() losses['d'] = losses[ 'wgan_d'] + losses['wgan_gp'] * config['wgan_gp_lambda'] losses['d'].backward() trainer_module.optimizer_d.step() # Update G if compute_g_loss: trainer_module.optimizer_g.zero_grad() losses['g'] = losses['l1'] * config['l1_loss_alpha'] \ + losses['ae'] * config['ae_loss_alpha'] \ + losses['wgan_g'] * config['gan_loss_alpha'] losses['g'].backward() trainer_module.optimizer_g.step() # Log and visualization log_losses = ['l1', 'ae', 'wgan_g', 'wgan_d', 'wgan_gp', 'g', 'd'] if iteration % config['print_iter'] == 0: time_count = time.time() - time_count speed = config['print_iter'] / time_count speed_msg = 'speed: %.2f batches/s ' % speed time_count = time.time() message = 'Iter: [%d/%d] ' % (iteration, config['niter']) for k in log_losses: v = losses.get(k, 0.) writer.add_scalar(k, v, iteration) message += '%s: %.6f ' % (k, v) message += speed_msg logger.info(message) if iteration % (config['viz_iter']) == 0: viz_max_out = config['viz_max_out'] if x.size(0) > viz_max_out: viz_images = torch.stack([ x[:viz_max_out], inpainted_result[:viz_max_out], offset_flow[:viz_max_out] ], dim=1) else: viz_images = torch.stack( [x, inpainted_result, offset_flow], dim=1) viz_images = viz_images.view(-1, *list(x.size())[1:]) vutils.save_image(viz_images, '%s/niter_%03d.png' % (checkpoint_path, iteration), nrow=3 * 4, normalize=True) # Save the model if iteration % config['snapshot_save_iter'] == 0: trainer_module.save_model(checkpoint_path, iteration) except Exception as e: # for unexpected error logging logger.error("{}".format(e)) raise e
from builtins import map from builtins import object reload(sys) sys.setdefaultencoding('utf8') import requests import os import configparser import argparse import re from collections import OrderedDict from bs4 import BeautifulSoup import logging import utils.logger as log_manager logger = log_manager.get_logger(__name__) # downgrading logging level for requests logging.getLogger("requests").setLevel(logging.WARNING) #################################-MAIN CLASSES-########################################### class PacktAccountData(object): """Contains all needed urls, creates a http session and logs int your account""" def __init__(self, cfgFilePath): self.cfgFilePath = cfgFilePath self.configuration = configparser.ConfigParser() if not self.configuration.read(self.cfgFilePath): raise configparser.Error('{} file not found'.format( self.cfgFilePath)) self.bookInfoDataLogFile = self.__getEbookExtraInfoLogFilename() self.packtPubUrl = "https://www.packtpub.com"
def run(args): logger = get_logger() news_list_path = "./results/dataset/news_list_%s.json" % args.target if args.list_crawl_again and path.exists(news_list_path): os.remove(news_list_path) if not path.exists(news_list_path): logger.info("[Crawl::News List] Crawling news list.") list_parser = NewsListParser(logger) if args.list_start: start_date = datetime.strptime(args.list_start, "%Y%m%d") parsed_list = list_parser.parse_until(args.limit, start_date) else: parsed_list = list_parser.parse_until(args.limit) f = open(news_list_path, 'w') f.write(json.dumps(parsed_list)) f.close() else: logger.info( "[Crawl] Using existing news list. Please add --force flag to re-crawl" ) news_crawler = NewsParser(logger) f = open(news_list_path, 'r') news_list = json.loads(f.read()) f.close() start_index = 0 if args.info_start: start_index = news_list.index(args.info_start) total_amount = len(news_list) - start_index for news_index in range(start_index, len(news_list)): news = news_list[news_index] logger.info('[Crawl::News Info] Parsing info of %s (%d / %d)' % (news, news_index, total_amount)) file_location = "./results/dataset/%s/%s.json" % (args.target, news) if path.exists(file_location): logger.info( "[Crawl::News Info] Skipping already crawled news: %s" % news) continue news_info = news_crawler.parse(news) if news_info is None: continue file = open(file_location, "w") file.write(json.dumps(news_info)) file.close()
class ClipboardWriter(object): # Clipboard's timer countdown CLIP_TIMER = 1 logger = get_logger('ClipboardWriter') def __init__(self, filepath): self._filepath = filepath self._temp_clip = "" # clear clipboard self.root = tk.Tk() self.root.withdraw() self.root.selection_clear() def run(self): """Run clipboard writer. Read and write url from clipboard every CLIP_TIMER tick. """ try: while True: if self.is_has_new_clipboard(self._temp_clip): url = self.read_clipboard() self.logger.info("Has new url: %s", url) self.write_to_file(url) self.logger.info("Waiting...") time.sleep(self.CLIP_TIMER) except KeyboardInterrupt: pass def is_has_new_clipboard(self, temp_clip): """Detech new url from clipboard. Parameters ---------- temp_clip : str Url from clipboard. """ try: return temp_clip != self.root.selection_get() except tk.TclError: return False def read_clipboard(self): """Set new clipboard to temp Returns ------- _temp_clip : str Temporary clipboard """ self._temp_clip = self.root.selection_get() return self._temp_clip def write_to_file(self, url): """Write url to file Parameters ---------- url : str Url """ try: with open(self._filepath, 'a') as f: f.write(url + '\n') f.close() except Exception as ex: self.logger.error(ex)
CURRENTDIR = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) PARENTDIR = os.path.dirname(CURRENTDIR) sys.path.insert(0, PARENTDIR) import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") django.setup() from django.conf import settings from redis import StrictRedis from rq import Connection, Queue, Worker from utils.logger import get_logger Logger = get_logger(os.path.basename('worker')) def main(): """ Init workers """ parser = argparse.ArgumentParser() parser.add_argument('--queues', nargs='+', type=unicode, dest='queues', required=True) args = parser.parse_args() with Connection(connection=StrictRedis(**settings.REDIS)): qs = map(Queue, args.queues) or [Queue()] worker = Worker(qs) worker.work()
#!/usr/bin/env python import Command import batoceraFiles from generators.Generator import Generator from utils.logger import get_logger import controllersConfig import os eslog = get_logger(__name__) BIN_PATH = "/userdata/bios/pico-8/pico8" CONTROLLERS = "/userdata/system/.lexaloffle/pico-8/sdl_controllers.txt" # Generator for the official pico8 binary from Lexaloffle class LexaloffleGenerator(Generator): def generate(self, system, rom, playersControllers, gameResolution): if not os.path.exists(BIN_PATH): eslog.error( "Lexaloffle official pico-8 binary not found at {}".format( BIN_PATH)) return -1 if not os.access(BIN_PATH, os.X_OK): eslog.error("File {} is not set as executable".format(BIN_PATH)) return -1 # the command to run commandArray = [BIN_PATH] commandArray.extend(["-desktop", "/userdata/screenshots"]) # screenshots commandArray.extend(["-windowed", "0"]) # full screen # Display FPS
PARENTDIR = os.path.dirname(CURRENTDIR) sys.path.insert(0, PARENTDIR) import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") django.setup() from django.conf import settings from adapters.services.storage.abstract import StorageServiceException from factory.factory import ImplementationFactory from utils import utils from utils.logger import get_logger Logger = get_logger(os.path.basename(__file__)) CHARSETS = ('iso-8859-1', 'iso-8859-15', 'utf-8', 'ascii', 'utf-16', 'windows-1252', 'cp850', 'iso-8859-11') HOST = settings.EMAIL_FETCHER['host'] PORT = settings.EMAIL_FETCHER['port'] USER = settings.EMAIL_FETCHER['login'] PASS = settings.EMAIL_FETCHER['pass'] def push_email(uid, email, queue): """ Push to Storage Service Add a worker task """ filename = hashlib.sha256(email).hexdigest() Logger.debug(unicode('New mail - UID %s - HASH %s' % (uid, filename)), extra={'hash': filename})
with open(args.config) as fp: cfg = yaml.load(fp) if cfg['resume']: clean_dir(cfg['checkpoint_dir']) print(cfg) # Setup the log run_id = random.randint(1, 100000) logdir = os.path.join(cfg['checkpoint_dir'], os.path.basename(args.config)[:-4] + str(run_id)) ensure_dir(logdir) print("RUNDIR: {}".format(logdir)) shutil.copy(args.config, logdir) logger = get_logger(logdir) logger.info("Let the games begin") # Setup the Visualizer if cfg['vis']['use']: vis = Visualizer(cfg['vis']['env']) else: vis = None torch.multiprocessing.freeze_support() if cfg['model'] in ['rescan', 'did_mdn']: train(cfg, logger, vis) elif cfg['model'] in ['pix2pix']: train_gan(cfg, logger, vis)
from django.contrib.auth.models import User from django.core.exceptions import (FieldError, ObjectDoesNotExist, ValidationError) from django.core.validators import validate_ipv46_address from django.db import IntegrityError from django.db.models import Count, FieldDoesNotExist, Q from django.forms.models import model_to_dict from abuse.models import (AbusePermission, Category, MassContact, MassContactResult, Profile, Report, ReportItem, Resolution, Tag, Ticket, Operator, Role) from factory.factory import TicketSchedulingAlgorithmFactory from utils import logger, utils from worker import database Logger = logger.get_logger(__name__) CRYPTO = utils.Crypto() DASHBOARD_STATUS = { 'idle': ('Open', 'Reopened'), 'waiting': ('WaitingAnswer', 'Paused'), 'pending': ('Answered', 'Alarm'), } CHECK_PERM_DEFENDANT_LEVEL = ('Beginner', 'Advanced', 'Expert') MASS_CONTACT_REQUIRED = ('{{ service }}', '{{ publicId }}', '{% if lang ==') SEARCH_EXTRA_FIELDS = ['defendantTag', 'providerTag', 'defendant', 'defendantCountry', 'providerEmail', 'item', 'fulltext'] SEARCH_REPORT_FIELDS = list(set([f.name for f in Report._meta.fields] + SEARCH_EXTRA_FIELDS + ['reportTag'])) SEARCH_TICKET_FIELDS = list(set([f.name for f in Ticket._meta.fields] + SEARCH_EXTRA_FIELDS + ['ticketTag', 'attachedReportsCount', 'ticketIds']))
import time from console.models import CleanTask, SurveyOverview from console.tasks import etl_start # from console.ssh_linux import con_linux from utils.cache.cache_utils import NormalHashSet from survey.models import Survey, SurveyQuestionRelation from front.models import PeopleSurveyRelation, UserQuestionAnswerInfo from utils.logger import get_logger from wduser.models import People, Organization, EnterpriseAccount, EnterpriseInfo from assessment.models import AssessProject from research.models import ResearchModel, ResearchDimension, ResearchSubstandard from console.write_hive_utils import etl_people_info,etl_answer_question_info,etl_company_info,\ etl_dimension_substandard_info,etl_model_info,etl_org_info,etl_people_survey_result,\ etl_project_info,etl_survey_info,etl_write_file,utf8_more_info,etl_write_people_info_file,etl_write_sign_info_file logger = get_logger("etl") class EtlBase(object): u"""ETL基类""" STATUS_WAITING = u"waiting" STATUS_ONGOING = u"ongoing" STATUS_STOP = u"stop" STATUS_FINISHED = u"finished" STATUS_FAILED = u"failed" def __init__(self, etl_key, **kwargs): self.etl_key = etl_key self.kwargs = kwargs self.etl_store = NormalHashSet(etl_key)
# -*- coding: utf-8 -*- import cx_Oracle from pyhive import hive from utils.decorators import static_vars from utils.load_config import load_config from utils.logger import get_logger logging = get_logger() @static_vars(oracle_conn=None, hive_conn=None) def get_connection(db_type='oracle'): logging.info("Connecting to db.") config = load_config() if db_type == 'oracle': if get_connection.oracle_conn is None: config = config['oracle_db'] dsn_config = config['dsn'] dsn_tns = cx_Oracle.makedsn(**dsn_config) connection_config = config['connection'] connection_config['dsn'] = dsn_tns get_connection.oracle_conn = cx_Oracle.connect(**connection_config) return get_connection.oracle_conn elif db_type == 'hive': if get_connection.hive_conn is None: config = config['hive_db'] get_connection.hive_conn = hive.Connection(**config)
# -*- coding: utf-8 -*- # Time : 2019/10/30 10:44 下午 # Author : Eylaine # File : install.py from threading import Thread from utils.logger import get_logger from utils.adb import Adb from config import Config from setup.step import Step from setup import Android from utils.shell import Shell logger = get_logger("install") class Install(Thread): def __init__(self, device_id, apk_name, brand): super(Install, self).__init__() self.device_id = device_id self.apk_name = apk_name self.brand = brand self.package = Config.get_package_info()[0] def run(self) -> None: Adb.install(self.device_id, self.apk_name) Shell.start_appium() driver = Android(self.device_id).get_driver() Step.start_page(driver) Step.permission(driver)
else: logger.warn(message, 'outdated_dependency') def _check_dependency_versions(): for name, version in [('numpy', '1.10'), ('sympy', '0.7.6'), ('jinja2', '2.7')]: _check_dependency_version(name, version) _check_dependency_versions() # Initialize the logging system BrianLogger.initialize() logger = get_logger(__name__) # Check the caches def _get_size_recursively(dirname): import os total_size = 0 for dirpath, _, filenames in os.walk(dirname): for fname in filenames: total_size += os.path.getsize(os.path.join(dirpath, fname)) return total_size #: Stores the cache directory for code generation targets _cache_dirs_and_extensions = {} def check_cache(target): cache_dir, _ = _cache_dirs_and_extensions.get(target, (None, None))
def open_spider(self, spider): self.data = [] self.dbUtils = DbHelper() self.logger = get_logger(self.__class__.__name__)