Пример #1
0
def getMovieCast(dataF, movieID, indexF, keyF, attrIF, attrKF, offsList=[],
                charNF=None, doCast=0, doWriters=0):
    """Read the specified files and return a list of Person objects,
    one for every people in offsList."""
    resList = []
    _globoff = []
    for offset in offsList:
        # One round for person is enough.
        if offset not in _globoff: _globoff.append(offset)
        else: continue
        personID, movies = getRawData(dataF, offset, doCast, doWriters)
        # Consider only the current movie.
        movielist = [x for x in movies if x.get('movieID') == movieID]
        # XXX: a person can be listed more than one time for a single movie:
        #      think about directors of TV series.
        # XXX: here, 'movie' is a dictionary as returned by the getRawData
        #      function, not a Movie class instance.
        for movie in movielist:
            name = getLabel(personID, indexF, keyF)
            if not name: continue
            curRole = movie.get('currentRole', u'')
            roleID = None
            if curRole and charNF:
                curRole, roleID = getCharactersIDs(curRole, charNF)
            p = Person(name=name, personID=personID,
                        currentRole=curRole, roleID=roleID,
                        accessSystem='local')
            if movie.has_key('attributeID'):
                attr = getLabel(movie['attributeID'], attrIF, attrKF)
                if attr: p.notes = attr
            # Used to sort cast.
            if movie.has_key('position'):
                p.billingPos = movie['position'] or None
            resList.append(p)
    return resList
Пример #2
0
def getMovieCast(dataF, movieID, indexF, keyF, attrIF, attrKF, offsList=[],
                charNF=None, doCast=0, doWriters=0):
    """Read the specified files and return a list of Person objects,
    one for every people in offsList."""
    resList = []
    _globoff = []
    for offset in offsList:
        # One round for person is enough.
        if offset not in _globoff: _globoff.append(offset)
        else: continue
        personID, movies = getRawData(dataF, offset, doCast, doWriters)
        # Consider only the current movie.
        movielist = [x for x in movies if x.get('movieID') == movieID]
        # XXX: a person can be listed more than one time for a single movie:
        #      think about directors of TV series.
        # XXX: here, 'movie' is a dictionary as returned by the getRawData
        #      function, not a Movie class instance.
        for movie in movielist:
            name = getLabel(personID, indexF, keyF)
            if not name: continue
            curRole = movie.get('currentRole', u'')
            roleID = None
            if curRole and charNF:
                curRole, roleID = getCharactersIDs(curRole, charNF)
            p = Person(name=name, personID=personID,
                        currentRole=curRole, roleID=roleID,
                        accessSystem='local')
            if movie.has_key('attributeID'):
                attr = getLabel(movie['attributeID'], attrIF, attrKF)
                if attr: p.notes = attr
            # Used to sort cast.
            if movie.has_key('position'):
                p.billingPos = movie['position'] or None
            resList.append(p)
    return resList
Пример #3
0
def getFilmography(dataF,
                   indexF,
                   keyF,
                   attrIF,
                   attrKF,
                   offset,
                   charNF=None,
                   doCast=0,
                   doWriters=0):
    """Gather information from the given files about the
    person entry found at offset; return a list of Movie objects,
    with the relevant attributes."""
    name, res = getRawData(dataF, offset, doCast, doWriters)
    resList = []
    for movie in res:
        title = getLabel(movie['movieID'], indexF, keyF)
        if not title: continue
        curRole = movie.get('currentRole', u'')
        roleID = None
        if curRole and charNF:
            curRole, roleID = getCharactersIDs(curRole, charNF)
        m = Movie(title=title,
                  movieID=movie['movieID'],
                  currentRole=curRole,
                  roleID=roleID,
                  accessSystem='local')
        if movie.has_key('attributeID'):
            attr = getLabel(movie['attributeID'], attrIF, attrKF)
            if attr: m.notes = attr
        resList.append(m)
    return resList
Пример #4
0
def getAkaTitles(movieID, akaDF, titlesIF, titlesKF, attrIF , attrKF):
    """Return a list of aka titles."""
    entries = getFullIndex(akaDF, movieID, kind='akatdb',
                        rindex=None, multi=1, default=[])
    res = []
    for entry in entries:
        akaTitle = getLabel(entry[1], titlesIF, titlesKF)
        if not akaTitle: continue
        attr = getLabel(entry[2], attrIF, attrKF)
        if attr: akaTitle += '::%s' % attr
        if akaTitle: res.append(akaTitle)
    return res
Пример #5
0
def getAkaTitles(movieID, akaDF, titlesIF, titlesKF, attrIF , attrKF):
    """Return a list of aka titles."""
    entries = getFullIndex(akaDF, movieID, kind='akatdb',
                        rindex=None, multi=1, default=[])
    res = []
    for entry in entries:
        akaTitle = getLabel(entry[1], titlesIF, titlesKF)
        if not akaTitle: continue
        attr = getLabel(entry[2], attrIF, attrKF)
        if attr: akaTitle += '::%s' % attr
        if akaTitle: res.append(akaTitle)
    return res
Пример #6
0
def gen(batch_size=8, imglist=[]):
    k = 0
    imgCount = len(imglist)
    shuffle(imglist)

    def getLabel(imgname):
        vin = imgname.split('_')[0]
        label = np.zeros((17, len(vocabulary)))
        for i, char in enumerate(vin):
            label[i][vocabulary.index(char)] = 1
        return label

    while True:
        x = np.zeros((batch_size, im_heigth, im_width, 1), dtype='float32')
        y = np.zeros((batch_size, 17, len(vocabulary)))
        for i in range(0, batch_size):
            if k >= imgCount:
                shuffle(imglist)
                k = 0
            k = k % imgCount
            x[i] = cv2.imread(imglist[k])[:, :, :1] / 127.5 - 1
            y[i] = getLabel(imglist[k].split('/')[-1])
            k += 1

        yield (x, y)
Пример #7
0
def getAkaNames(personID, akaDF, namesIF, namesKF):
    """Return a list of aka names."""
    entries = getFullIndex(akaDF, personID, kind='akandb',
                        rindex=None, multi=1, default=[])
    res = []
    for entry in entries:
        akaName = getLabel(entry[1], namesIF, namesKF)
        if akaName: res.append(akaName)
    return res
Пример #8
0
def encodeRecord(fileName, ignoreDict, fromCell, toCell, minGrade):
    recordData = openpyxl.load_workbook(fileName)
    sheet = recordData.active
    cells = sheet[fromCell:toCell]
    sequences = [[]]
    studentIDs = []

    # Index:
    # [Student ID, Year, Semester, N/A, Course's name, Course's grade]

    curStudentID = cells[0][1].value
    curSemester = cells[0][3].value
    sequences[0] = []
    sequences[0].append("")
    studentIDs.append(curStudentID)

    for row in cells:
        studentID = row[1].value
        # year = row[2].value
        semester = row[3].value
        courseName = row[5].value
        courseGrade = row[6].value

        # if courseName in ignoreDict:
        # 	print("Ignore courseName {0}".format(courseName))
        # 	continue

        if courseGrade == "NULL" or courseGrade == None:  # Special case: user has no course's grade
            #print("Ignore unknow course {0} with grade: {1} of student {2}".format(courseName, courseGrade, studentID))
            continue

        if courseGrade < minGrade:
            #print("Ignore course \"{0}\" with grade: {1} of student {2}".format(courseName, courseGrade, studentID))
            continue

        if curStudentID != studentID:
            curStudentID = studentID
            sequences.append([])
            curSemester = semester
            sequences[-1].append("")
            studentIDs.append(curStudentID)

        elif curSemester != semester:
            curSemester = semester
            sequences[-1].append("")

        encodedKey = str(Util.getLabel(courseName))  # Remove unicode
        if len(sequences[-1][-1]) > 0:
            sequences[-1][-1] += "."
        sequences[-1][-1] += encodedKey

    Util.cacheLabel()
    sequences = [Helper.sortAdv(seq) for seq in sequences]
    return (sequences, studentIDs)
Пример #9
0
def test_one_batch(X):
    sorted_items = X[0].numpy()
    groundTrue = X[1]
    r = utils.getLabel(groundTrue, sorted_items)
    pre, recall, ndcg = [], [], []
    for k in world.topks:
        ret = utils.RecallPrecision_ATk(groundTrue, r, k)
        pre.append(ret['precision'])
        recall.append(ret['recall'])
        ndcg.append(utils.NDCGatK_r(groundTrue,r,k))
    return {'recall':np.array(recall), 
            'precision':np.array(pre), 
            'ndcg':np.array(ndcg)}
Пример #10
0
def getFilmography(dataF, indexF, keyF, attrIF, attrKF, offset,
                    charNF=None, doCast=0, doWriters=0):
    """Gather information from the given files about the
    person entry found at offset; return a list of Movie objects,
    with the relevant attributes."""
    name, res = getRawData(dataF, offset, doCast, doWriters)
    resList = []
    for movie in res:
        title = getLabel(movie['movieID'], indexF, keyF)
        if not title: continue
        curRole =  movie.get('currentRole', u'')
        roleID = None
        if curRole and charNF:
            curRole, roleID = getCharactersIDs(curRole, charNF)
        m = Movie(title=title, movieID=movie['movieID'],
                    currentRole=curRole, roleID=roleID,
                    accessSystem='local')
        if movie.has_key('attributeID'):
            attr = getLabel(movie['attributeID'], attrIF, attrKF)
            if attr: m.notes = attr
        resList.append(m)
    return resList
Пример #11
0
def getAkaNames(personID, akaDF, namesIF, namesKF):
    """Return a list of aka names."""
    entries = getFullIndex(akaDF,
                           personID,
                           kind='akandb',
                           rindex=None,
                           multi=1,
                           default=[])
    res = []
    for entry in entries:
        akaName = getLabel(entry[1], namesIF, namesKF)
        if akaName: res.append(akaName)
    return res
Пример #12
0
def getMovieLinks(movieID, dataF, movieTitlIF, movieTitlKF):
    """Return a dictionary with movie connections."""
    entries = getFullIndex(dataF, movieID, kind='mlinks',
                            rindex=None, multi=1, default=[])
    res = {}
    for entry in entries:
        title = getLabel(entry[2], movieTitlIF, movieTitlKF)
        if not title: continue
        m = Movie(title=title, movieID=entry[2],
                    accessSystem='local')
        sect = _links_sect.get(entry[1])
        if not sect: continue
        res.setdefault(sect, []).append(m)
    return res
Пример #13
0
def getMovieLinks(movieID, dataF, movieTitlIF, movieTitlKF):
    """Return a dictionary with movie connections."""
    entries = getFullIndex(dataF, movieID, kind='mlinks',
                            rindex=None, multi=1, default=[])
    res = {}
    for entry in entries:
        title = getLabel(entry[2], movieTitlIF, movieTitlKF)
        if not title: continue
        m = Movie(title=title, movieID=entry[2],
                    accessSystem='local')
        sect = _links_sect.get(entry[1])
        if not sect: continue
        res.setdefault(sect, []).append(m)
    return res
Пример #14
0
def joinVectors():
    allData = []
    allLabels = []
    for imgFeatures in featureVectorList:
        if imgFeatures.endswith('.swp'):
            continue
        featureVectors = np.load('./{0}/{1}'.format(folderPath, imgFeatures))
        data = featureVectors[:, 1:] # Get rid of None in first column
        
        currLabel = utils.getLabel(imgFeatures)
        labelArr = np.tile(currLabel, len(data))

        if allData == []:
            allData = data
            allLabels = labelArr
        else:
            allData = np.concatenate((allData, data), 0)
            allLabels = np.concatenate((allLabels, labelArr), 0)

        print(allLabels.shape)
        print(allData.shape)

    return allData, allLabels
Пример #15
0
def process(z):
    rot_coords = np.zeros((4, 2), dtype='float32')
    flips = [
        Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM, Image.ROTATE_90,
        Image.ROTATE_180, Image.ROTATE_270, Image.TRANSPOSE
    ]

    def getLabel(vin):
        label = np.zeros((17, len(vocabulary)))
        for i, char in enumerate(vin):
            label[i][vocabulary.index(char)] = 1
        return label

    while True:
        vin = generateVin(vin_length, max_spaces)
        if len(vin) < maxLength:
            for i in range(maxLength - len(vin)):
                vin += ' '
        ff = random.choice(fonts)

        font = ImageFont.truetype(ff, random.randint(32, 256))
        t_width, t_height_orig = font.getsize(vin)
        t_height = t_height_orig  #int(t_height_orig * (1 + height_padding))
        # t_width = int(t_width * (1 + width_padding))
        # text image is a square

        t_img_size = max(t_height, t_width)

        # rot_deg = random.uniform(0, 360)
        rot_deg = random.uniform(-max_angle, max_angle)

        # text image will have original text located horizontally in the middle
        # original coordinates will be (0, (s-h)/2) - top left and (s, (s+h)/2) - bottom right
        # here s denotes text image size (image width), h - text height
        # we rotate all four corners of text around the center of the image (s/2, s/2) on the chosen angle
        # and check if rotated text can be fitted in background image

        rot_coords[0] = rotate_coord(0, (t_img_size - t_height) / 2.,
                                     t_img_size / 2., t_img_size / 2., rot_deg)
        rot_coords[1] = rotate_coord(0, (t_img_size + t_height) / 2.,
                                     t_img_size / 2., t_img_size / 2., rot_deg)
        rot_coords[2] = rotate_coord(t_img_size, (t_img_size + t_height) / 2.,
                                     t_img_size / 2., t_img_size / 2., rot_deg)
        rot_coords[3] = rotate_coord(t_img_size, (t_img_size - t_height) / 2.,
                                     t_img_size / 2., t_img_size / 2., rot_deg)

        min_tx = round(np.min(rot_coords[:, 0]))
        max_tx = round(np.max(rot_coords[:, 0]))
        min_ty = round(np.min(rot_coords[:, 1]))
        max_ty = round(np.max(rot_coords[:, 1]))

        dx = max_tx - min_tx
        dy = max_ty - min_ty

        if dx < im_width and dy < im_heigth:
            try:
                bcg_img = Image.open(random.choice(bcgs)).convert('L')
            except:
                continue

            text_image = Image.new('L', (t_img_size, t_img_size))
            draw = ImageDraw.Draw(text_image)
            draw.text((t_width * width_padding / 2,
                       round(t_img_size / 2. - t_height_orig / 2.)),
                      vin,
                      font=font,
                      fill=255)
            text_image = text_image.rotate(rot_deg)

            x = random.randint(-min_tx, im_width -
                               max_tx)  # int((-min_tx + im_width-max_tx)/2)
            y = random.randint(-min_ty, im_heigth -
                               max_ty)  # int((-min_ty + im_heigth-max_ty)/2)

            color = random.randint(0, 255)

            if random.uniform(0, 1) > 0.5:
                bcg_img = bcg_img.transpose(random.choice(flips))
            bcg_img = bcg_img.resize((im_width, im_heigth))
            colorization = ImageOps.colorize(text_image, (0, 0, 0),
                                             (color, color, color))
            bcg_img.paste(colorization, (x, y), text_image)

            sigma = random.uniform(0, 2)
            bcg_img = gaussian_filter(bcg_img, sigma)

            totalmask = Image.new('L', (im_width, im_heigth))
            colorization = ImageOps.colorize(text_image, (0, 0, 0),
                                             (255, 255, 255))
            totalmask.paste(colorization, (x, y), text_image)
            totalmask = np.array(totalmask, dtype=np.float)
            totalmask[totalmask > 0] = 1
            totalmask = np.expand_dims(totalmask, axis=-1)

            # from scipy.misc import imsave
            # imsave('tmp/%s_%s_%s.jpg' % (vin, x, y), bcg_img)

            bcg_img = np.array(bcg_img, dtype='uint8')

            rot_coords[:] += [x, y]

            mask = Image.new('L', (t_width, t_height_orig))
            draw = ImageDraw.Draw(mask)
            draw.text((0, 0), vin, font=font, fill=255)

            mask = cv2.resize(np.array(mask, dtype=np.float), (32 * 16, 32))

            # from scipy.misc import imsave
            # imsave('res/%s_%s_%s.jpg' % (vin, x, y), mask.astype(np.uint8))

            mask[mask > 0] = 1
            mask = np.expand_dims(mask, axis=-1)

            # output endpoints and height to define rectangle
            c = [
                2 * (rot_coords[0, 0] / im_width) - 1,
                2 * (rot_coords[0, 1] / im_heigth) - 1,
                2 * (rot_coords[2, 0] / im_width) - 1,
                2 * (rot_coords[2, 1] / im_heigth) - 1,
                # m_point_a[0]/im_width,
                # m_point_a[1]/im_heigth,
                # m_point_b[0]/im_width,
                # m_point_b[1]/im_heigth,
                rot_deg / max_angle
                # t_height#/t_width
            ]

            # crop = crop_rotate(bcg_img, -rot_deg, rot_coords[0],rot_coords[2])
            #
            # from scipy.misc import imsave
            # try:
            #     imsave('tmp/%s_%s_%s.jpg' % (vin, x, y), crop)
            # except:
            #     print('trololo')

            label = getLabel(vin)
            matrix = getMatrix(rot_coords)

            # crop = cv2.warpAffine(bcg_img, matrix, (1000, 1000))
            # cv2.imwrite('temp_crop.png',crop)
            return np.reshape(bcg_img,
                              (im_heigth, im_width,
                               1)), label, mask, matrix.flatten(), totalmask
Пример #16
0
def patch_generator(folder,
                    all_patch_list,
                    det_patch_list,
                    batch_size=64,
                    detection_ratio=0.5,
                    levels=[0, 1, 2],
                    dims=(512, 512)):
    '''
    Returns (via yields) the sample image patch and corresponding ground truth mask, in given batch_size, using
    one level in levels list per patch with equal probability
    '''

    true_batch = int(detection_ratio * batch_size) + 1
    all_batch_size = batch_size - true_batch

    #print('true_batch_size: {} \t all_batch_size: {}'.format(true_batch, all_batch_size))

    while 1:
        all_patch_list = shuffle(all_patch_list)
        det_patch_list = shuffle(det_patch_list)

        det_patch_list_cycle = cycle(det_patch_list)

        for offset in range(0, len(all_patch_list), all_batch_size):

            ## Get file and coords list from each patch list and combine them
            all_samples = all_patch_list[offset:offset + all_batch_size]
            true_sample = []
            count = 0
            for sample in det_patch_list_cycle:
                true_sample.append(sample)
                count += 1
                if count >= true_batch:
                    break
            combined_sample_list = all_samples
            combined_sample_list.extend(true_sample)

            combined_sample_list = shuffle(combined_sample_list)

            patch = []
            ground_truth = []

            for sample in combined_sample_list:
                filename = folder + sample[0]
                coords = sample[1]
                level = levels[np.random.randint(0, len(levels),
                                                 dtype=np.int8)]
                patch.append(
                    getRegionFromSlide(getWSI(filename),
                                       level=level,
                                       start_coord=coords,
                                       dims=dims))

                ground_truth.append(getLabel(filename, level, coords, dims))

                #print('Level used: {}'.format(level))

            X_train = np.array(patch)
            y_train = np.array(ground_truth)

            yield shuffle(X_train, y_train)
Пример #17
0
def getMovieMisc(movieID, dataF, indexF, attrIF, attrKF):
    """Return information from files like production-companies.data,
    keywords.data and so on."""
    index = getFullIndex(indexF, movieID, kind='idx2idx')
    if index is None: return []
    result = []
    try:
        fdata = open(dataF, 'rb')
    except IOError, e:
        raise IMDbDataAccessError, str(e)
    fdata.seek(index)
    # Eat the first offset.
    if len(fdata.read(3)) != 3:
        fdata.close()
        return []
    while 1:
        length = convBin(fdata.read(1), 'length')
        strval = latin2utf(fdata.read(length))
        attrid = convBin(fdata.read(3), 'attrID')
        if attrid != 0xffffff:
            attr = getLabel(attrid, attrIF, attrKF)
            if attr: strval += ' %s' % attr
        result.append(strval)
        nextBin = fdata.read(3)
        # There can be multiple values.
        if not (len(nextBin) == 3 and \
                convBin(nextBin, 'movieID') == movieID):
            break
    fdata.close()
    return result
Пример #18
0
    length = convBin(dfptr.read(2), 'longlength')
    # Skip company name.
    latin2utf(dfptr.read(length))
    nrItems = convBin(dfptr.read(3), 'nrCompanyItems')
    filmography = {}
    # Yes: kindID values are hard-coded in the companies4local.py script.
    _kinds = {0: 'distributors', 1: 'production companies',
                2: 'special effect companies', 3: 'miscellaneous companies'}
    for i in xrange(nrItems):
        kind = _kinds.get(ord(dfptr.read(1)))
        if kind is None:
            import warnings
            warnings.warn('Unidentified kindID for a company.')
            break
        movieID = convBin(dfptr.read(3), 'movieID')
        title = getLabel(movieID, movieIF, movieKF)
        m = Movie(title=title, movieID=movieID, accessSystem='local')
        filmography.setdefault(kind, []).append(m)
    dfptr.close()
    return filmography


def _convChID(companyID):
    """Return a numeric value for the given string, or None."""
    if companyID is None:
        return None
    return convBin(companyID, 'companyID')


def getCompanyID(name, compNF):
    """Return a companyID for a name."""
Пример #19
0
    keywords.data and so on."""
    index = getFullIndex(indexF, movieID, kind='idx2idx')
    if index is None: return []
    result = []
    try:
        fdata = open(dataF, 'rb')
    except IOError, e:
        raise IMDbDataAccessError, str(e)
    fdata.seek(index)
    # Eat the first offset.
    if len(fdata.read(3)) != 3:
        fdata.close()
        return []
    while 1:
        length = convBin(fdata.read(1), 'length')
        strval = latin2utf(fdata.read(length))
        attrid = convBin(fdata.read(3), 'attrID')
        if attrid != 0xffffff:
            attr = getLabel(attrid, attrIF, attrKF)
            if attr: strval += ' %s' % attr
        result.append(strval)
        nextBin = fdata.read(3)
        # There can be multiple values.
        if not (len(nextBin) == 3 and \
                convBin(nextBin, 'movieID') == movieID):
            break
    fdata.close()
    return result


Пример #20
0
def process(z):

    rot_coords = np.zeros((4, 2), dtype='float32')
    flips = [
        Image.FLIP_LEFT_RIGHT,
        Image.FLIP_TOP_BOTTOM,
        Image.ROTATE_90,
        Image.ROTATE_180,
        Image.ROTATE_270,
        Image.TRANSPOSE
    ]

    while True:
        vin = generateVin(vin_length, max_spaces)
        if len(vin) < maxLength:
            for i in range(maxLength - len(vin)):
                vin +=' '
        ff = random.choice(fonts)

        font = ImageFont.truetype(ff, random.randint(32, 256))
        t_width, t_height = font.getsize(vin)

        # text image is a square
        t_img_size = max(t_height, t_width)

        # rot_deg = random.uniform(0, 360)
        rot_deg = random.uniform(-max_angle, max_angle)

        # text image will have original text located horizontally in the middle
        # original coordinates will be (0, (s-h)/2) - top left and (s, (s+h)/2) - bottom right
        # here s denotes text image size (image width), h - text height
        # we rotate all four corners of text around the center of the image (s/2, s/2) on the chosen angle
        # and check if rotated text can be fitted in background image

        rot_coords[0] = rotate_coord(0, (t_img_size - t_height)/2., t_img_size/2., t_img_size/2., rot_deg)
        rot_coords[1] = rotate_coord(0, (t_img_size + t_height)/2., t_img_size/2., t_img_size/2., rot_deg)
        rot_coords[2] = rotate_coord(t_img_size, (t_img_size + t_height)/2., t_img_size/2., t_img_size/2., rot_deg)
        rot_coords[3] = rotate_coord(t_img_size, (t_img_size - t_height)/2., t_img_size/2., t_img_size/2., rot_deg)

        min_tx = round(np.min(rot_coords[:, 0]))
        max_tx = round(np.max(rot_coords[:, 0]))
        min_ty = round(np.min(rot_coords[:, 1]))
        max_ty = round(np.max(rot_coords[:, 1]))

        dx = max_tx - min_tx
        dy = max_ty - min_ty
        
        if dx < im_width and dy < im_heigth:
            try:
                bcg_img = Image.open(random.choice(bcgs)).convert('L')
            except:
                continue

            text_image = Image.new('L', (t_img_size, t_img_size))
            draw = ImageDraw.Draw(text_image)
            draw.text((0, round(t_img_size/2. - t_height/2.)), vin, font=font, fill=255)
            text_image = text_image.rotate(rot_deg)

            x = random.randint(-min_tx, im_width - max_tx) #int((-min_tx + im_width-max_tx)/2)
            y = random.randint(-min_ty, im_heigth - max_ty) #int((-min_ty + im_heigth-max_ty)/2)

            color = random.randint(0, 255)

            if random.uniform(0, 1) > 0.5:
                bcg_img = bcg_img.transpose(random.choice(flips))
            bcg_img = bcg_img.resize((im_width, im_heigth))
            colorization = ImageOps.colorize(text_image, (0, 0, 0), (color, color, color))
            bcg_img.paste(colorization, (x, y), text_image)

            sigma = random.uniform(0, 2)
            bcg_img = gaussian_filter(bcg_img, sigma)

            from scipy.misc import imsave
            imsave('tmp/%s_%s_%s.jpg' % (vin, x, y), bcg_img)

            bcg_img = np.array(bcg_img, dtype='uint8')

            rot_coords[:] += [x, y]

            # bcg_img = cv2.polylines(bcg_img, np.int32([rot_coords]), 1, (255,255,255))

            # end points of center line going through text
            # m_point_a = (rot_coords[0] + rot_coords[1])/2
            # m_point_b = (rot_coords[2] + rot_coords[3])/2

            # output endpoints and height to define rectangle
            c = [
                2 * (rot_coords[0, 0]/im_width)-1,
                2 * (rot_coords[0, 1]/im_heigth)-1,
                2 * (rot_coords[2, 0]/im_width)-1,
                2 * (rot_coords[2, 1]/im_heigth)-1,
                # m_point_a[0]/im_width,
                # m_point_a[1]/im_heigth,
                # m_point_b[0]/im_width,
                # m_point_b[1]/im_heigth,
                rot_deg / max_angle
                #t_height#/t_width
            ]

            # crop = crop_rotate(bcg_img, -rot_deg, rot_coords[0],rot_coords[2])
            #
            # from scipy.misc import imsave
            # try:
            #     imsave('tmp/%s_%s_%s.jpg' % (vin, x, y), crop)
            # except:
            #     print('trololo')

            indexes, vinLen = getLabel(vin)
Пример #21
0
    filmography = {}
    # Yes: kindID values are hard-coded in the companies4local.py script.
    _kinds = {
        0: 'distributors',
        1: 'production companies',
        2: 'special effect companies',
        3: 'miscellaneous companies'
    }
    for i in xrange(nrItems):
        kind = _kinds.get(ord(dfptr.read(1)))
        if kind is None:
            import warnings
            warnings.warn('Unidentified kindID for a company.')
            break
        movieID = convBin(dfptr.read(3), 'movieID')
        title = getLabel(movieID, movieIF, movieKF)
        m = Movie(title=title, movieID=movieID, accessSystem='local')
        filmography.setdefault(kind, []).append(m)
    dfptr.close()
    return filmography


def _convChID(companyID):
    """Return a numeric value for the given string, or None."""
    if companyID is None:
        return None
    return convBin(companyID, 'companyID')


def getCompanyID(name, compNF):
    """Return a companyID for a name."""
Пример #22
0
#############################################################################################################
#############################################################################################################
if __name__ == '__main__':

    # FILENAME = args.file
    FOLDERPATH = args.folderPath
    #FILETYPE = args.fileType
    # img = cv2.imread('testImages/' + FILENAME)

    categoryFileList = os.listdir(FOLDERPATH)
    
    # The 'ground truths' for getting rid of background blobs
    rgbBackgroundFeatures = background.handleBackgroundBlobs()

    for folderName in categoryFileList:
        label = utils.getLabel(folderName)
        imgFileList = os.listdir("{0}{1}".format(FOLDERPATH, folderName))
        
        if folderName == 'assorted':
            continue

        for imgName in imgFileList:
            img = cv2.imread("{0}{1}/{2}".format(FOLDERPATH,folderName,imgName))

            # We need to iterate over all the files in the dir (we will split it 80/20 for training vs test)

            #segment the image
            blobs, markers,labels = utils.extractBlobs(img)

            rgbFeatureList = []
            #multiprocess the feature extraction
Пример #23
0
#!/usr/bin/python3

import utils
import numpy
import colors

imageWidth = 224

if __name__ == "__main__":

    # Load the model
    model = utils.loadModel("model/keras_model.h5")

    # Get an image from the webcam
    image = utils.getWebcam("/dev/video0")
    normalImage = utils.prepareImage(image, imageWidth)

    # Run the prediction
    prediction = model.predict(normalImage)

    # get the largest value
    largest = max(prediction[0])
    index = int(numpy.where(prediction[0] == largest)[0])

    # Get the labels
    labels = utils.openLabels("model/labels.txt")
    label = utils.getLabel(labels, index)

    # Run the user defined function
    colors.runColor(label, index, prediction)
Пример #24
0
def patch_generator(folder,
                    all_patch_list,
                    det_patch_list,
                    batch_size=64,
                    sample_factor=1,
                    levels=[0, 1, 2],
                    dims=(512, 512),
                    save_labels=False,
                    labels_list=None):
    '''
    Returns (via yields) the sample image patch and corresponding ground truth mask, in given batch_size, using
    one level in levels list per patch with equal probability

    if save_labels is True then the function appends the labels generated to labels_list and yields
    only the image patches - used for inference purposes (metrics)

    folder: location of the image slides

    sample_factor = det_list_size / mix_list_size
        if sample_factor = 1 then all patch sample size is same as detections patch sample size
        if sample_factor = 2 then all patch sample size is *half* as detections patch sample size
        if sample_factor = 0.5 then all patch sample size is *double* as detections patch sample size

    #detection_ratio = det_list_size / combined_list_size
    #cls = dls + mls = dls + dls/sf = dls(1+1/sf) = dls (sf+1)/sf
    #detection_ratio = dls/cls = dls/(dls * (sf+1)/sf) = sf/(sf+1)
    '''

    #detection_ratio = sample_factor / (sample_factor + 1)
    #true_batch = math.ceil(detection_ratio * batch_size)
    #all_batch_size = batch_size - true_batch

    #print('true_batch_size: {} \t all_batch_size: {}'.format(true_batch, all_batch_size))

    IDG = ImageDataGenerator()

    while 1:
        all_patch_list = shuffle(all_patch_list)
        #det_patch_list = shuffle(det_patch_list)

        all_patch_list_size = math.ceil(len(det_patch_list) / sample_factor)
        all_patch_list_sub = all_patch_list[:all_patch_list_size]

        sampleset_size = len(all_patch_list_sub) + len(det_patch_list)

        ## Create a combined sample list and shuffle
        all_patch_list_sub.extend(det_patch_list)
        combined_sample_list = shuffle(all_patch_list_sub)

        for offset in range(0, sampleset_size, batch_size):

            sample_batch = combined_sample_list[offset:offset + batch_size]

            patch = []
            ground_truth = []

            for sample in sample_batch:
                filename = folder + sample[0]
                coords = sample[1]
                level = levels[np.random.randint(0, len(levels),
                                                 dtype=np.int8)]

                brightness = (0.95 + np.random.rand() *
                              (1.05 - 0.95)) if np.random.rand() > 0.5 else 1

                dims_factor = (0.9 + np.random.rand() *
                               (1. - 0.9)) if np.random.rand() > 0.5 else 1
                zoom_dims = int(dims[0] / dims_factor)

                flip_v = np.random.rand() > 0.5
                flip_h = np.random.rand() > 0.5

                transformation = {
                    'brightness': brightness,
                    'flip_horizontal': flip_h,
                    'flip_vertical': flip_v
                }

                patch_img = getRegionFromSlide(
                    getWSI(filename),
                    level=level,
                    start_coord=coords,
                    dims=(zoom_dims, zoom_dims)).astype(np.float)
                if zoom_dims != dims[0]:
                    patch_img = cv2.resize(patch_img, dims)
                patch_img = IDG.apply_transform(patch_img, transformation)

                patch_img = (patch_img - 128) / 128
                patch.append(patch_img)

                if len(sample) == 3:
                    ground_truth.append(np.array(sample[2]))
                else:
                    ground_truth.append(
                        getLabel(filename, level, coords,
                                 (zoom_dims, zoom_dims)))

                #print('Level used: {}'.format(level))

            X_train = np.array(patch)

            if save_labels:
                labels_list.extend(ground_truth)
                #print('||----------------------------------------------||')
                #print('len(patch): {}'.format(len(patch)))
                #print('len(ground_truth): {}'.format(len(ground_truth)))
                #print('len(labels_list): {}'.format(len(labels_list)))
                yield X_train
            else:
                y_train = np.array(ground_truth)
                yield X_train, y_train
Пример #25
0
    dfptr.seek(idx)
    # Check characterID.
    chID = dfptr.read(3)
    if characterID != convBin(chID, 'characterID'):
        dfptr.close()
        return None
    length = convBin(dfptr.read(2), 'longlength')
    # Skip character name.
    latin2utf(dfptr.read(length))
    nrItems = convBin(dfptr.read(3), 'nrCharacterItems')
    if limit is not None and nrItems/2 > limit:
        nrItems = limit*2
    filmography = []
    for i in xrange(nrItems/2):
        personID = convBin(dfptr.read(3), 'personID')
        name = getLabel(personID, personIF, personKF)
        movieID = convBin(dfptr.read(3), 'movieID')
        title = getLabel(movieID, movieIF, movieKF)
        # XXX: notes are not retrieved: they can be found scanning
        # actors.list and acresses.list, but it will slow down everything.
        m = Movie(title=title, movieID=movieID, currentRole=name,
                    roleID=personID, roleIsPerson=True, accessSystem='local')
        filmography.append(m)
    dfptr.close()
    return filmography


def _convChID(characterID):
    """Return a numeric value for the given string, or None."""
    if characterID is None:
        return None