Пример #1
0
      work_params=work_params)

    print >> out, ""
    mtz_file, miller_array = scaler.finalize_and_save_data()

    loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix)
    f = open(loggraph_file, "w")
    f.write(table1.format_loggraph())
    f.write("\n")
    f.write(table2.format_loggraph())
    f.close()
    result = scaling_result(
      miller_array=miller_array,
      plots=scaler.get_plot_statistics(),
      mtz_file=mtz_file,
      loggraph_file=loggraph_file,
      obs_table=table1,
      all_obs_table=table2,
      n_reflections=n_refl,
      overall_correlation=corr)
    easy_pickle.dump("%s.pkl" % work_params.output.prefix, result)
  work_params.output.prefix = reserve_prefix

  # Output table with number of images contribution reflections per
  # resolution bin.
  from libtbx import table_utils

  miller_set_avg.setup_binner(
    d_max=100000, d_min=work_params.d_min, n_bins=work_params.output.n_bins)
  table_data = [["Bin", "Resolution Range", "# images", "%accept"]]
  if work_params.model is None:
Пример #2
0
            work_params=work_params)

        print >> out, ""
        mtz_file, miller_array = scaler.finalize_and_save_data()

        loggraph_file = os.path.abspath("%s_graphs.log" %
                                        work_params.output.prefix)
        f = open(loggraph_file, "w")
        f.write(table1.format_loggraph())
        f.write("\n")
        f.write(table2.format_loggraph())
        f.close()
        result = scaling_result(miller_array=miller_array,
                                plots=scaler.get_plot_statistics(),
                                mtz_file=mtz_file,
                                loggraph_file=loggraph_file,
                                obs_table=table1,
                                all_obs_table=table2,
                                n_reflections=n_refl,
                                overall_correlation=corr)
        easy_pickle.dump("%s.pkl" % work_params.output.prefix, result)
    work_params.output.prefix = reserve_prefix

    # Output table with number of images contribution reflections per
    # resolution bin.
    from libtbx import table_utils

    miller_set_avg.setup_binner(d_max=100000,
                                d_min=work_params.d_min,
                                n_bins=work_params.output.n_bins)
    table_data = [["Bin", "Resolution Range", "# images", "%accept"]]
    if work_params.model is None:
Пример #3
0
def run(args):
    phil = iotbx.phil.process_command_line(args=args,
                                           master_string=master_phil).show()
    work_params = phil.work.extract()
    from xfel.merging.phil_validation import application
    application(work_params)
    if ("--help" in args):
        libtbx.phil.parse(master_phil.show())
        return

    if ((work_params.d_min is None) or (work_params.data is None)
            or ((work_params.model is None)
                and work_params.scaling.algorithm != "mark1")):
        raise Usage("cxi.merge "
                    "d_min=4.0 "
                    "data=~/scratch/r0220/006/strong/ "
                    "model=3bz1_3bz2_core.pdb")
    if ((work_params.rescale_with_average_cell)
            and (not work_params.set_average_unit_cell)):
        raise Usage(
            "If rescale_with_average_cell=True, you must also specify " +
            "set_average_unit_cell=True.")
    if work_params.raw_data.sdfac_auto and work_params.raw_data.sdfac_refine:
        raise Usage("Cannot specify both sdfac_auto and sdfac_refine")
    if not work_params.include_negatives_fix_27May2018:
        work_params.include_negatives = False  # use old behavior

    log = open(
        "%s_%s.log" %
        (work_params.output.prefix, work_params.scaling.algorithm), "w")
    out = multi_out()
    out.register("log", log, atexit_send_to=None)
    out.register("stdout", sys.stdout)

    # Verify that the externally supplied isomorphous reference, if
    # present, defines a suitable column of intensities, and exit with
    # error if it does not.  Then warn if it is necessary to generate
    # Bijvoet mates.  Failure to catch these issues here would lead to
    # possibly obscure problems in cxi/cxi_cc.py later on.
    try:
        data_SR = mtz.object(work_params.scaling.mtz_file)
    except RuntimeError:
        pass
    else:
        array_SR = None
        obs_labels = []
        for array in data_SR.as_miller_arrays():
            this_label = array.info().label_string().lower()
            if array.observation_type() is not None:
                obs_labels.append(this_label.split(',')[0])
            if this_label.find('fobs') >= 0:
                array_SR = array.as_intensity_array()
                break
            if this_label.find('imean') >= 0:
                array_SR = array.as_intensity_array()
                break
            if this_label.find(work_params.scaling.mtz_column_F) == 0:
                array_SR = array.as_intensity_array()
                break

        if array_SR is None:
            known_labels = ['fobs', 'imean', work_params.scaling.mtz_column_F]
            raise Usage(work_params.scaling.mtz_file +
                        " does not contain any observations labelled [" +
                        ", ".join(known_labels) +
                        "].  Please set scaling.mtz_column_F to one of [" +
                        ",".join(obs_labels) + "].")
        elif not work_params.merge_anomalous and not array_SR.anomalous_flag():
            print("Warning: Preserving anomalous contributors, but %s " \
              "has anomalous contributors merged.  Generating identical Bijvoet " \
              "mates." % work_params.scaling.mtz_file, file=out)

    # Read Nat's reference model from an MTZ file.  XXX The observation
    # type is given as F, not I--should they be squared?  Check with Nat!
    print("I model", file=out)
    if work_params.model is not None:
        from xfel.merging.general_fcalc import run
        i_model = run(work_params)
        work_params.target_unit_cell = i_model.unit_cell()
        work_params.target_space_group = i_model.space_group_info()
        i_model.show_summary()
    else:
        i_model = None

    print("Target unit cell and space group:", file=out)
    print("  ", work_params.target_unit_cell, file=out)
    print("  ", work_params.target_space_group, file=out)

    miller_set, i_model = consistent_set_and_model(work_params, i_model)

    # ---- Augment this code with any special procedures for x scaling
    scaler = xscaling_manager(miller_set=miller_set,
                              i_model=i_model,
                              params=work_params,
                              log=out)
    scaler.scale_all()
    if scaler.n_accepted == 0:
        return None


# --- End of x scaling
    scaler.uc_values = unit_cell_distribution()
    for icell in range(len(scaler.frames["unit_cell"])):
        if scaler.params.model is None:
            scaler.uc_values.add_cell(
                unit_cell=scaler.frames["unit_cell"][icell])
        else:
            scaler.uc_values.add_cell(
                unit_cell=scaler.frames["unit_cell"][icell],
                rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr))

    scaler.show_unit_cell_histograms()
    if (work_params.rescale_with_average_cell):
        average_cell_abc = scaler.uc_values.get_average_cell_dimensions()
        average_cell = uctbx.unit_cell(
            list(average_cell_abc) +
            list(work_params.target_unit_cell.parameters()[3:]))
        work_params.target_unit_cell = average_cell
        print("", file=out)
        print("#" * 80, file=out)
        print("RESCALING WITH NEW TARGET CELL", file=out)
        print("  average cell: %g %g %g %g %g %g" % \
          work_params.target_unit_cell.parameters(), file=out)
        print("", file=out)
        scaler.reset()
        scaler = xscaling_manager(miller_set=miller_set,
                                  i_model=i_model,
                                  params=work_params,
                                  log=out)
        scaler.scale_all()
        scaler.uc_values = unit_cell_distribution()
        for icell in range(len(scaler.frames["unit_cell"])):
            if scaler.params.model is None:
                scaler.uc_values.add_cell(
                    unit_cell=scaler.frames["unit_cell"][icell])
            else:
                scaler.uc_values.add_cell(
                    unit_cell=scaler.frames["unit_cell"][icell],
                    rejected=(scaler.frames["cc"][icell] <
                              scaler.params.min_corr))
        scaler.show_unit_cell_histograms()
    if False:  #(work_params.output.show_plots) :
        try:
            plot_overall_completeness(completeness)
        except Exception as e:
            print("ERROR: can't show plots")
            print("  %s" % str(e))
    print("\n", file=out)

    reserve_prefix = work_params.output.prefix
    for data_subset in [1, 2, 0]:
        work_params.data_subset = data_subset
        work_params.output.prefix = "%s_s%1d_%s" % (
            reserve_prefix, data_subset, work_params.scaling.algorithm)

        if work_params.data_subset == 0:
            scaler.frames["data_subset"] = flex.bool(
                scaler.frames["frame_id"].size(), True)
        elif work_params.data_subset == 1:
            scaler.frames["data_subset"] = scaler.frames["odd_numbered"]
        elif work_params.data_subset == 2:
            scaler.frames["data_subset"] = scaler.frames[
                "odd_numbered"] == False

    # --------- New code ------------------
    #sanity check
        for mod, obs in zip(miller_set.indices(),
                            scaler.millers["merged_asu_hkl"]):
            if mod != obs:
                raise Exception(
                    "miller index lists inconsistent--check d_min are equal for merge and xmerge scripts"
                )
            assert mod == obs
        """Sum the observations of I and I/sig(I) for each reflection.
    sum_I = flex.double(i_model.size(), 0.)
    sum_I_SIGI = flex.double(i_model.size(), 0.)
    scaler.completeness = flex.int(i_model.size(), 0)
    scaler.summed_N = flex.int(i_model.size(), 0)
    scaler.summed_wt_I = flex.double(i_model.size(), 0.)
    scaler.summed_weight = flex.double(i_model.size(), 0.)
    scaler.n_rejected = flex.double(scaler.frames["frame_id"].size(), 0.)
    scaler.n_obs = flex.double(scaler.frames["frame_id"].size(), 0.)
    scaler.d_min_values = flex.double(scaler.frames["frame_id"].size(), 0.)
    scaler.ISIGI = {}"""

        from xfel import scaling_results, get_scaling_results, get_isigi_dict
        results = scaling_results(scaler._observations, scaler._frames,
                                  scaler.millers["merged_asu_hkl"],
                                  scaler.frames["data_subset"],
                                  work_params.include_negatives)
        results.__getattribute__(work_params.scaling.algorithm)(
            scaler.params.min_corr, scaler.params.target_unit_cell)

        sum_I, sum_I_SIGI, \
        scaler.completeness, scaler.summed_N, \
        scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, scaler.n_obs, \
        scaler.d_min_values, hkl_ids, i_sigi_list = get_scaling_results(results)

        scaler.ISIGI = get_isigi_dict(results)

        if work_params.merging.refine_G_Imodel:
            from xfel.cxi.merging.refine import find_scale

            my_find_scale = find_scale(scaler, work_params)

            sum_I, sum_I_SIGI, \
              scaler.completeness, scaler.summed_N, \
              scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, \
              scaler.n_obs, scaler.d_min_values, hkl_ids, i_sigi_list \
              = my_find_scale.get_scaling_results(results, scaler)
            scaler.ISIGI = get_isigi_dict(results)

        scaler.wavelength = scaler.frames["wavelength"]
        scaler.corr_values = scaler.frames["cc"]

        scaler.rejected_fractions = flex.double(
            scaler.frames["frame_id"].size(), 0.)
        for irej in range(len(scaler.rejected_fractions)):
            if scaler.n_obs[irej] > 0:
                scaler.rejected_fractions = scaler.n_rejected[
                    irej] / scaler.n_obs[irej]
    # ---------- End of new code ----------------

        if work_params.raw_data.sdfac_refine or work_params.raw_data.errors_from_sample_residuals:
            if work_params.raw_data.sdfac_refine:
                if work_params.raw_data.error_models.sdfac_refine.minimizer == 'simplex':
                    from xfel.merging.algorithms.error_model.sdfac_refine import sdfac_refine as error_modeler
                elif work_params.raw_data.error_models.sdfac_refine.minimizer == 'lbfgs':
                    from xfel.merging.algorithms.error_model.sdfac_refine_lbfgs import sdfac_refine_refltable_lbfgs as error_modeler
                elif self.params.raw_data.error_models.sdfac_refine.minimizer == 'LevMar':
                    from xfel.merging.algorithms.error_model.sdfac_refine_levmar import sdfac_refine_refltable_levmar as error_modeler

            if work_params.raw_data.errors_from_sample_residuals:
                from xfel.merging.algorithms.error_model.errors_from_residuals import errors_from_residuals as error_modeler

            error_modeler(scaler).adjust_errors()

        if work_params.raw_data.reduced_chi_squared_correction:
            from xfel.merging.algorithms.error_model.reduced_chi_squared import reduced_chi_squared
            reduced_chi_squared(scaler).compute()

        miller_set_avg = miller_set.customized_copy(
            unit_cell=work_params.target_unit_cell)

        table1 = show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.completeness,
            redundancy_to_edge=None,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=work_params.output.n_bins,
            title="Statistics for all reflections",
            out=out,
            work_params=work_params)
        if table1 is None:
            raise Exception("table could not be constructed")
        print("", file=out)
        if work_params.scaling.algorithm == 'mark0':
            n_refl, corr = scaler.get_overall_correlation(sum_I)
        else:
            n_refl, corr = ((scaler.completeness > 0).count(True), 0)
        print("\n", file=out)
        table2 = show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.summed_N,
            redundancy_to_edge=None,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=work_params.output.n_bins,
            title="Statistics for reflections where I > 0",
            out=out,
            work_params=work_params)
        if table2 is None:
            raise Exception("table could not be constructed")

        print("", file=out)
        mtz_file, miller_array = scaler.finalize_and_save_data()

        loggraph_file = os.path.abspath("%s_graphs.log" %
                                        work_params.output.prefix)
        f = open(loggraph_file, "w")
        f.write(table1.format_loggraph())
        f.write("\n")
        f.write(table2.format_loggraph())
        f.close()
        result = scaling_result(miller_array=miller_array,
                                plots=scaler.get_plot_statistics(),
                                mtz_file=mtz_file,
                                loggraph_file=loggraph_file,
                                obs_table=table1,
                                all_obs_table=table2,
                                n_reflections=n_refl,
                                overall_correlation=corr)
        easy_pickle.dump("%s.pkl" % work_params.output.prefix, result)
    work_params.output.prefix = reserve_prefix

    # Output table with number of images contribution reflections per
    # resolution bin.
    from libtbx import table_utils

    miller_set_avg.setup_binner(d_max=100000,
                                d_min=work_params.d_min,
                                n_bins=work_params.output.n_bins)
    table_data = [["Bin", "Resolution Range", "# images", "%accept"]]
    if work_params.model is None:
        appropriate_min_corr = -1.1  # lowest possible c.c.
    else:
        appropriate_min_corr = work_params.min_corr
    n_frames = (scaler.frames['cc'] > appropriate_min_corr).count(True)
    iselect = 1
    while iselect < work_params.output.n_bins:
        col_count1 = results.count_frames(
            appropriate_min_corr,
            miller_set_avg.binner().selection(iselect))
        print("colcount1", col_count1)
        if col_count1 > 0: break
        iselect += 1
    if col_count1 == 0: raise Exception("no reflections in any bins")
    for i_bin in miller_set_avg.binner().range_used():
        col_count = '%8d' % results.count_frames(
            appropriate_min_corr,
            miller_set_avg.binner().selection(i_bin))
        col_legend = '%-13s' % miller_set_avg.binner().bin_legend(
            i_bin=i_bin,
            show_bin_number=False,
            show_bin_range=False,
            show_d_range=True,
            show_counts=False)
        xpercent = results.count_frames(
            appropriate_min_corr,
            miller_set_avg.binner().selection(i_bin)) / float(n_frames)
        percent = '%5.2f' % (100. * xpercent)
        table_data.append(['%3d' % i_bin, col_legend, col_count, percent])

    table_data.append([""] * len(table_data[0]))
    table_data.append(["All", "", '%8d' % n_frames])
    print(file=out)
    print(table_utils.format(table_data,
                             has_header=1,
                             justify='center',
                             delim=' '),
          file=out)

    reindexing_ops = {
        "h,k,l": 0
    }  # get a list of all reindexing ops for this dataset
    if work_params.merging.reverse_lookup is not None:
        for key in scaler.reverse_lookup:
            if reindexing_ops.get(scaler.reverse_lookup[key], None) is None:
                reindexing_ops[scaler.reverse_lookup[key]] = 0
            reindexing_ops[scaler.reverse_lookup[key]] += 1

    from xfel.cxi.cxi_cc import run_cc
    for key in reindexing_ops.keys():
        run_cc(work_params, reindexing_op=key, output=out)

    if isinstance(scaler.ISIGI, dict):
        from xfel.merging import isigi_dict_to_reflection_table
        refls = isigi_dict_to_reflection_table(scaler.miller_set.indices(),
                                               scaler.ISIGI)
    else:
        refls = scaler.ISIGI
    easy_pickle.dump("%s.refl" % work_params.output.prefix, refls)

    return result
    def other(self, scaler):
        out = self.out
        work_params = self.work_params
        miller_set = self.miller_set
        if scaler.n_accepted == 0:
            return None
        scaler.show_unit_cell_histograms()
        if (work_params.rescale_with_average_cell):
            average_cell_abc = scaler.uc_values.get_average_cell_dimensions()
            average_cell = uctbx.unit_cell(
                list(average_cell_abc) +
                list(work_params.target_unit_cell.parameters()[3:]))
            work_params.target_unit_cell = average_cell
            print >> out, ""
            print >> out, "#" * 80
            print >> out, "RESCALING WITH NEW TARGET CELL"
            print >> out, "  average cell: %g %g %g %g %g %g" % \
              work_params.target_unit_cell.parameters()
            print >> out, ""
            assert False, "must do this step again with MPI"
            scaler.reset()
            scaler.scale_all(frame_files)
            scaler.show_unit_cell_histograms()
        print >> out, "\n"

        # Sum the observations of I and I/sig(I) for each reflection.
        sum_I = flex.double(miller_set.size(), 0.)
        sum_I_SIGI = flex.double(miller_set.size(), 0.)
        for i in xrange(miller_set.size()):
            index = miller_set.indices()[i]
            if index in scaler.ISIGI:
                for t in scaler.ISIGI[index]:
                    sum_I[i] += t[0]
                    sum_I_SIGI[i] += t[1]

        miller_set_avg = miller_set.customized_copy(
            unit_cell=work_params.target_unit_cell)
        table1 = cxi_merge.show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.completeness,
            redundancy_to_edge=scaler.completeness_predictions,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=work_params.output.n_bins,
            title="Statistics for all reflections",
            out=out,
            work_params=work_params)
        print >> out, ""
        if work_params.model is not None:
            n_refl, corr = scaler.get_overall_correlation(sum_I)
        else:
            n_refl, corr = ((scaler.completeness > 0).count(True), 0)
        print >> out, "\n"
        table2 = cxi_merge.show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.summed_N,
            redundancy_to_edge=scaler.completeness_predictions,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=work_params.output.n_bins,
            title="Statistics for reflections where I > 0",
            out=out,
            work_params=work_params)
        #from libtbx import easy_pickle
        #easy_pickle.dump(file_name="stats.pickle", obj=stats)
        #stats.report(plot=work_params.plot)
        #miller_counts = miller_set_p1.array(data=stats.counts.as_double()).select(
        #  stats.counts != 0)
        #miller_counts.as_mtz_dataset(column_root_label="NOBS").mtz_object().write(
        #  file_name="nobs.mtz")
        if work_params.data_subsubsets.subsubset is not None and work_params.data_subsubsets.subsubset_total is not None:
            easy_pickle.dump(
                "scaler_%d.pickle" % work_params.data_subsubsets.subsubset,
                scaler)
        explanation = """
Explanation:
Completeness       = # unique Miller indices present in data / # Miller indices theoretical in asymmetric unit
Asu. Multiplicity  = # measurements / # Miller indices theoretical in asymmetric unit
Obs. Multiplicity  = # measurements / # unique Miller indices present in data
Pred. Multiplicity = # predictions on all accepted images / # Miller indices theoretical in asymmetric unit"""
        print >> out, explanation
        mtz_file, miller_array = scaler.finalize_and_save_data()
        #table_pickle_file = "%s_graphs.pkl" % work_params.output.prefix
        #easy_pickle.dump(table_pickle_file, [table1, table2])
        loggraph_file = os.path.abspath("%s_graphs.log" %
                                        work_params.output.prefix)
        f = open(loggraph_file, "w")
        f.write(table1.format_loggraph())
        f.write("\n")
        f.write(table2.format_loggraph())
        f.close()
        result = cxi_merge.scaling_result(miller_array=miller_array,
                                          plots=scaler.get_plot_statistics(),
                                          mtz_file=mtz_file,
                                          loggraph_file=loggraph_file,
                                          obs_table=table1,
                                          all_obs_table=table2,
                                          n_reflections=n_refl,
                                          overall_correlation=corr)
        easy_pickle.dump("%s.pkl" % work_params.output.prefix, result)
        return result
Пример #5
0
  def finalize(self, scaler):
    scaler.show_unit_cell_histograms()
    if (self.params.rescale_with_average_cell) :
      average_cell_abc = scaler.uc_values.get_average_cell_dimensions()
      average_cell = uctbx.unit_cell(list(average_cell_abc) +
        list(self.params.target_unit_cell.parameters()[3:]))
      self.params.target_unit_cell = average_cell
      print >> out, ""
      print >> out, "#" * 80
      print >> out, "RESCALING WITH NEW TARGET CELL"
      print >> out, "  average cell: %g %g %g %g %g %g" % \
        self.params.target_unit_cell.parameters()
      print >> out, ""
      scaler.reset()
      scaler.scale_all(frame_files)
      scaler.show_unit_cell_histograms()
    if False : #(self.params.output.show_plots) :
      try :
        plot_overall_completeness(completeness)
      except Exception as e :
        print "ERROR: can't show plots"
        print "  %s" % str(e)
    print >> self.out, "\n"

    sum_I, sum_I_SIGI = scaler.sum_intensities()

    miller_set_avg = self.miller_set.customized_copy(
      unit_cell=self.params.target_unit_cell)
    table1 = show_overall_observations(
      obs=miller_set_avg,
      redundancy=scaler.completeness,
      redundancy_to_edge=scaler.completeness_predictions,
      summed_wt_I=scaler.summed_wt_I,
      summed_weight=scaler.summed_weight,
      ISIGI=scaler.ISIGI,
      n_bins=self.params.output.n_bins,
      title="Statistics for all reflections",
      out=self.out,
      work_params=self.params)
    print >> self.out, ""
    if self.params.model is not None:
      n_refl, corr = scaler.get_overall_correlation(sum_I)
    else:
      n_refl, corr = ((scaler.completeness > 0).count(True), 0)
    print >> self.out, "\n"
    table2 = show_overall_observations(
      obs=miller_set_avg,
      redundancy=scaler.summed_N,
      redundancy_to_edge=scaler.completeness_predictions,
      summed_wt_I=scaler.summed_wt_I,
      summed_weight=scaler.summed_weight,
      ISIGI=scaler.ISIGI,
      n_bins=self.params.output.n_bins,
      title="Statistics for reflections where I > 0",
      out=self.out,
      work_params=self.params)
    #from libtbx import easy_pickle
    #easy_pickle.dump(file_name="stats.pickle", obj=stats)
    #stats.report(plot=self.params.plot)
    #miller_counts = miller_set_p1.array(data=stats.counts.as_double()).select(
    #  stats.counts != 0)
    #miller_counts.as_mtz_dataset(column_root_label="NOBS").mtz_object().write(
    #  file_name="nobs.mtz")
    if self.params.data_subsubsets.subsubset is not None and self.params.data_subsubsets.subsubset_total is not None:
      easy_pickle.dump("scaler_%d.pickle"%self.params.data_subsubsets.subsubset, scaler)
    explanation = """
  Explanation:
  Completeness       = # unique Miller indices present in data / # Miller indices theoretical in asymmetric unit
  Asu. Multiplicity  = # measurements / # Miller indices theoretical in asymmetric unit
  Obs. Multiplicity  = # measurements / # unique Miller indices present in data
  Pred. Multiplicity = # predictions on all accepted images / # Miller indices theoretical in asymmetric unit"""
    print >> self.out, explanation
    mtz_file, miller_array = scaler.finalize_and_save_data()
    #table_pickle_file = "%s_graphs.pkl" % self.params.output.prefix
    #easy_pickle.dump(table_pickle_file, [table1, table2])
    loggraph_file = os.path.abspath("%s_graphs.log" % self.params.output.prefix)
    f = open(loggraph_file, "w")
    f.write(table1.format_loggraph())
    f.write("\n")
    f.write(table2.format_loggraph())
    f.close()
    result = scaling_result(
      miller_array=miller_array,
      plots=scaler.get_plot_statistics(),
      mtz_file=mtz_file,
      loggraph_file=loggraph_file,
      obs_table=table1,
      all_obs_table=table2,
      n_reflections=n_refl,
      overall_correlation=corr)
    easy_pickle.dump("%s.pkl" % self.params.output.prefix, result)
    return result
Пример #6
0
class Script(object):
    '''A class for running the script.'''
    def __init__(self, scaler_class):
        # The script usage
        import libtbx.load_env
        self.usage = "usage: %s [options] [param.phil] " % libtbx.env.dispatcher_name
        self.parser = None
        self.scaler_class = scaler_class

    def initialize(self):
        '''Initialise the script.'''
        from dials.util.options import OptionParser
        from iotbx.phil import parse
        phil_scope = parse(master_phil)
        # Create the parser
        self.parser = OptionParser(usage=self.usage,
                                   phil=phil_scope,
                                   epilog=help_message)
        self.parser.add_option('--plots',
                               action='store_true',
                               default=False,
                               dest='show_plots',
                               help='Show some plots.')

        # Parse the command line. quick_parse is required for MPI compatibility
        params, options = self.parser.parse_args(show_diff_phil=True,
                                                 quick_parse=True)
        self.params = params
        self.options = options

    def validate(self):
        from xfel.merging.phil_validation import application
        application(self.params)
        if ((self.params.d_min is None) or (self.params.data is None)
                or ((self.params.model is None)
                    and self.params.scaling.algorithm != "mark1")):
            command_name = os.environ["LIBTBX_DISPATCHER_NAME"]
            raise Usage(command_name + " "
                        "d_min=4.0 "
                        "data=~/scratch/r0220/006/strong/ "
                        "model=3bz1_3bz2_core.pdb")
        if ((self.params.rescale_with_average_cell)
                and (not self.params.set_average_unit_cell)):
            raise Usage(
                "If rescale_with_average_cell=True, you must also specify " +
                "set_average_unit_cell=True.")
        if [
                self.params.raw_data.sdfac_auto,
                self.params.raw_data.sdfac_refine,
                self.params.raw_data.errors_from_sample_residuals
        ].count(True) > 1:
            raise Usage(
                "Specify only one of sdfac_auto, sdfac_refine or errors_from_sample_residuals."
            )

    def read_models(self):
        # Read Nat's reference model from an MTZ file.  XXX The observation
        # type is given as F, not I--should they be squared?  Check with Nat!
        log = open("%s.log" % self.params.output.prefix, "w")
        out = multi_out()
        out.register("log", log, atexit_send_to=None)
        out.register("stdout", sys.stdout)
        print >> out, "I model"
        if self.params.model is not None:
            from xfel.merging.general_fcalc import run as run_fmodel
            i_model = run_fmodel(self.params)
            self.params.target_unit_cell = i_model.unit_cell()
            self.params.target_space_group = i_model.space_group_info()
            i_model.show_summary()
        else:
            i_model = None

        print >> out, "Target unit cell and space group:"
        print >> out, "  ", self.params.target_unit_cell
        print >> out, "  ", self.params.target_space_group
        from xfel.command_line.cxi_merge import consistent_set_and_model
        self.miller_set, self.i_model = consistent_set_and_model(
            self.params, i_model)
        self.frame_files = get_observations(self.params)
        self.out = out

    def scale_all(self):
        scaler = self.scaler_class(miller_set=self.miller_set,
                                   i_model=self.i_model,
                                   params=self.params,
                                   log=self.out)
        scaler.scale_all(self.frame_files)
        return scaler

    def finalize(self, scaler):
        scaler.show_unit_cell_histograms()
        if (self.params.rescale_with_average_cell):
            average_cell_abc = scaler.uc_values.get_average_cell_dimensions()
            average_cell = uctbx.unit_cell(
                list(average_cell_abc) +
                list(self.params.target_unit_cell.parameters()[3:]))
            self.params.target_unit_cell = average_cell
            print >> out, ""
            print >> out, "#" * 80
            print >> out, "RESCALING WITH NEW TARGET CELL"
            print >> out, "  average cell: %g %g %g %g %g %g" % \
              self.params.target_unit_cell.parameters()
            print >> out, ""
            scaler.reset()
            scaler.scale_all(frame_files)
            scaler.show_unit_cell_histograms()
        if False:  #(self.params.output.show_plots) :
            try:
                plot_overall_completeness(completeness)
            except Exception, e:
                print "ERROR: can't show plots"
                print "  %s" % str(e)
        print >> self.out, "\n"

        sum_I, sum_I_SIGI = scaler.sum_intensities()

        miller_set_avg = self.miller_set.customized_copy(
            unit_cell=self.params.target_unit_cell)
        table1 = show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.completeness,
            redundancy_to_edge=scaler.completeness_predictions,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=self.params.output.n_bins,
            title="Statistics for all reflections",
            out=self.out,
            work_params=self.params)
        print >> self.out, ""
        if self.params.model is not None:
            n_refl, corr = scaler.get_overall_correlation(sum_I)
        else:
            n_refl, corr = ((scaler.completeness > 0).count(True), 0)
        print >> self.out, "\n"
        table2 = show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.summed_N,
            redundancy_to_edge=scaler.completeness_predictions,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=self.params.output.n_bins,
            title="Statistics for reflections where I > 0",
            out=self.out,
            work_params=self.params)
        #from libtbx import easy_pickle
        #easy_pickle.dump(file_name="stats.pickle", obj=stats)
        #stats.report(plot=self.params.plot)
        #miller_counts = miller_set_p1.array(data=stats.counts.as_double()).select(
        #  stats.counts != 0)
        #miller_counts.as_mtz_dataset(column_root_label="NOBS").mtz_object().write(
        #  file_name="nobs.mtz")
        if self.params.data_subsubsets.subsubset is not None and self.params.data_subsubsets.subsubset_total is not None:
            easy_pickle.dump(
                "scaler_%d.pickle" % self.params.data_subsubsets.subsubset,
                scaler)
        explanation = """
  Explanation:
  Completeness       = # unique Miller indices present in data / # Miller indices theoretical in asymmetric unit
  Asu. Multiplicity  = # measurements / # Miller indices theoretical in asymmetric unit
  Obs. Multiplicity  = # measurements / # unique Miller indices present in data
  Pred. Multiplicity = # predictions on all accepted images / # Miller indices theoretical in asymmetric unit"""
        print >> self.out, explanation
        mtz_file, miller_array = scaler.finalize_and_save_data()
        #table_pickle_file = "%s_graphs.pkl" % self.params.output.prefix
        #easy_pickle.dump(table_pickle_file, [table1, table2])
        loggraph_file = os.path.abspath("%s_graphs.log" %
                                        self.params.output.prefix)
        f = open(loggraph_file, "w")
        f.write(table1.format_loggraph())
        f.write("\n")
        f.write(table2.format_loggraph())
        f.close()
        result = scaling_result(miller_array=miller_array,
                                plots=scaler.get_plot_statistics(),
                                mtz_file=mtz_file,
                                loggraph_file=loggraph_file,
                                obs_table=table1,
                                all_obs_table=table2,
                                n_reflections=n_refl,
                                overall_correlation=corr)
        easy_pickle.dump("%s.pkl" % self.params.output.prefix, result)
        return result