work_params=work_params) print >> out, "" mtz_file, miller_array = scaler.finalize_and_save_data() loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result( miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % work_params.output.prefix, result) work_params.output.prefix = reserve_prefix # Output table with number of images contribution reflections per # resolution bin. from libtbx import table_utils miller_set_avg.setup_binner( d_max=100000, d_min=work_params.d_min, n_bins=work_params.output.n_bins) table_data = [["Bin", "Resolution Range", "# images", "%accept"]] if work_params.model is None:
work_params=work_params) print >> out, "" mtz_file, miller_array = scaler.finalize_and_save_data() loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result(miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % work_params.output.prefix, result) work_params.output.prefix = reserve_prefix # Output table with number of images contribution reflections per # resolution bin. from libtbx import table_utils miller_set_avg.setup_binner(d_max=100000, d_min=work_params.d_min, n_bins=work_params.output.n_bins) table_data = [["Bin", "Resolution Range", "# images", "%accept"]] if work_params.model is None:
def run(args): phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show() work_params = phil.work.extract() from xfel.merging.phil_validation import application application(work_params) if ("--help" in args): libtbx.phil.parse(master_phil.show()) return if ((work_params.d_min is None) or (work_params.data is None) or ((work_params.model is None) and work_params.scaling.algorithm != "mark1")): raise Usage("cxi.merge " "d_min=4.0 " "data=~/scratch/r0220/006/strong/ " "model=3bz1_3bz2_core.pdb") if ((work_params.rescale_with_average_cell) and (not work_params.set_average_unit_cell)): raise Usage( "If rescale_with_average_cell=True, you must also specify " + "set_average_unit_cell=True.") if work_params.raw_data.sdfac_auto and work_params.raw_data.sdfac_refine: raise Usage("Cannot specify both sdfac_auto and sdfac_refine") if not work_params.include_negatives_fix_27May2018: work_params.include_negatives = False # use old behavior log = open( "%s_%s.log" % (work_params.output.prefix, work_params.scaling.algorithm), "w") out = multi_out() out.register("log", log, atexit_send_to=None) out.register("stdout", sys.stdout) # Verify that the externally supplied isomorphous reference, if # present, defines a suitable column of intensities, and exit with # error if it does not. Then warn if it is necessary to generate # Bijvoet mates. Failure to catch these issues here would lead to # possibly obscure problems in cxi/cxi_cc.py later on. try: data_SR = mtz.object(work_params.scaling.mtz_file) except RuntimeError: pass else: array_SR = None obs_labels = [] for array in data_SR.as_miller_arrays(): this_label = array.info().label_string().lower() if array.observation_type() is not None: obs_labels.append(this_label.split(',')[0]) if this_label.find('fobs') >= 0: array_SR = array.as_intensity_array() break if this_label.find('imean') >= 0: array_SR = array.as_intensity_array() break if this_label.find(work_params.scaling.mtz_column_F) == 0: array_SR = array.as_intensity_array() break if array_SR is None: known_labels = ['fobs', 'imean', work_params.scaling.mtz_column_F] raise Usage(work_params.scaling.mtz_file + " does not contain any observations labelled [" + ", ".join(known_labels) + "]. Please set scaling.mtz_column_F to one of [" + ",".join(obs_labels) + "].") elif not work_params.merge_anomalous and not array_SR.anomalous_flag(): print("Warning: Preserving anomalous contributors, but %s " \ "has anomalous contributors merged. Generating identical Bijvoet " \ "mates." % work_params.scaling.mtz_file, file=out) # Read Nat's reference model from an MTZ file. XXX The observation # type is given as F, not I--should they be squared? Check with Nat! print("I model", file=out) if work_params.model is not None: from xfel.merging.general_fcalc import run i_model = run(work_params) work_params.target_unit_cell = i_model.unit_cell() work_params.target_space_group = i_model.space_group_info() i_model.show_summary() else: i_model = None print("Target unit cell and space group:", file=out) print(" ", work_params.target_unit_cell, file=out) print(" ", work_params.target_space_group, file=out) miller_set, i_model = consistent_set_and_model(work_params, i_model) # ---- Augment this code with any special procedures for x scaling scaler = xscaling_manager(miller_set=miller_set, i_model=i_model, params=work_params, log=out) scaler.scale_all() if scaler.n_accepted == 0: return None # --- End of x scaling scaler.uc_values = unit_cell_distribution() for icell in range(len(scaler.frames["unit_cell"])): if scaler.params.model is None: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell]) else: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell], rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr)) scaler.show_unit_cell_histograms() if (work_params.rescale_with_average_cell): average_cell_abc = scaler.uc_values.get_average_cell_dimensions() average_cell = uctbx.unit_cell( list(average_cell_abc) + list(work_params.target_unit_cell.parameters()[3:])) work_params.target_unit_cell = average_cell print("", file=out) print("#" * 80, file=out) print("RESCALING WITH NEW TARGET CELL", file=out) print(" average cell: %g %g %g %g %g %g" % \ work_params.target_unit_cell.parameters(), file=out) print("", file=out) scaler.reset() scaler = xscaling_manager(miller_set=miller_set, i_model=i_model, params=work_params, log=out) scaler.scale_all() scaler.uc_values = unit_cell_distribution() for icell in range(len(scaler.frames["unit_cell"])): if scaler.params.model is None: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell]) else: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell], rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr)) scaler.show_unit_cell_histograms() if False: #(work_params.output.show_plots) : try: plot_overall_completeness(completeness) except Exception as e: print("ERROR: can't show plots") print(" %s" % str(e)) print("\n", file=out) reserve_prefix = work_params.output.prefix for data_subset in [1, 2, 0]: work_params.data_subset = data_subset work_params.output.prefix = "%s_s%1d_%s" % ( reserve_prefix, data_subset, work_params.scaling.algorithm) if work_params.data_subset == 0: scaler.frames["data_subset"] = flex.bool( scaler.frames["frame_id"].size(), True) elif work_params.data_subset == 1: scaler.frames["data_subset"] = scaler.frames["odd_numbered"] elif work_params.data_subset == 2: scaler.frames["data_subset"] = scaler.frames[ "odd_numbered"] == False # --------- New code ------------------ #sanity check for mod, obs in zip(miller_set.indices(), scaler.millers["merged_asu_hkl"]): if mod != obs: raise Exception( "miller index lists inconsistent--check d_min are equal for merge and xmerge scripts" ) assert mod == obs """Sum the observations of I and I/sig(I) for each reflection. sum_I = flex.double(i_model.size(), 0.) sum_I_SIGI = flex.double(i_model.size(), 0.) scaler.completeness = flex.int(i_model.size(), 0) scaler.summed_N = flex.int(i_model.size(), 0) scaler.summed_wt_I = flex.double(i_model.size(), 0.) scaler.summed_weight = flex.double(i_model.size(), 0.) scaler.n_rejected = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.n_obs = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.d_min_values = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.ISIGI = {}""" from xfel import scaling_results, get_scaling_results, get_isigi_dict results = scaling_results(scaler._observations, scaler._frames, scaler.millers["merged_asu_hkl"], scaler.frames["data_subset"], work_params.include_negatives) results.__getattribute__(work_params.scaling.algorithm)( scaler.params.min_corr, scaler.params.target_unit_cell) sum_I, sum_I_SIGI, \ scaler.completeness, scaler.summed_N, \ scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, scaler.n_obs, \ scaler.d_min_values, hkl_ids, i_sigi_list = get_scaling_results(results) scaler.ISIGI = get_isigi_dict(results) if work_params.merging.refine_G_Imodel: from xfel.cxi.merging.refine import find_scale my_find_scale = find_scale(scaler, work_params) sum_I, sum_I_SIGI, \ scaler.completeness, scaler.summed_N, \ scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, \ scaler.n_obs, scaler.d_min_values, hkl_ids, i_sigi_list \ = my_find_scale.get_scaling_results(results, scaler) scaler.ISIGI = get_isigi_dict(results) scaler.wavelength = scaler.frames["wavelength"] scaler.corr_values = scaler.frames["cc"] scaler.rejected_fractions = flex.double( scaler.frames["frame_id"].size(), 0.) for irej in range(len(scaler.rejected_fractions)): if scaler.n_obs[irej] > 0: scaler.rejected_fractions = scaler.n_rejected[ irej] / scaler.n_obs[irej] # ---------- End of new code ---------------- if work_params.raw_data.sdfac_refine or work_params.raw_data.errors_from_sample_residuals: if work_params.raw_data.sdfac_refine: if work_params.raw_data.error_models.sdfac_refine.minimizer == 'simplex': from xfel.merging.algorithms.error_model.sdfac_refine import sdfac_refine as error_modeler elif work_params.raw_data.error_models.sdfac_refine.minimizer == 'lbfgs': from xfel.merging.algorithms.error_model.sdfac_refine_lbfgs import sdfac_refine_refltable_lbfgs as error_modeler elif self.params.raw_data.error_models.sdfac_refine.minimizer == 'LevMar': from xfel.merging.algorithms.error_model.sdfac_refine_levmar import sdfac_refine_refltable_levmar as error_modeler if work_params.raw_data.errors_from_sample_residuals: from xfel.merging.algorithms.error_model.errors_from_residuals import errors_from_residuals as error_modeler error_modeler(scaler).adjust_errors() if work_params.raw_data.reduced_chi_squared_correction: from xfel.merging.algorithms.error_model.reduced_chi_squared import reduced_chi_squared reduced_chi_squared(scaler).compute() miller_set_avg = miller_set.customized_copy( unit_cell=work_params.target_unit_cell) table1 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.completeness, redundancy_to_edge=None, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for all reflections", out=out, work_params=work_params) if table1 is None: raise Exception("table could not be constructed") print("", file=out) if work_params.scaling.algorithm == 'mark0': n_refl, corr = scaler.get_overall_correlation(sum_I) else: n_refl, corr = ((scaler.completeness > 0).count(True), 0) print("\n", file=out) table2 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.summed_N, redundancy_to_edge=None, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for reflections where I > 0", out=out, work_params=work_params) if table2 is None: raise Exception("table could not be constructed") print("", file=out) mtz_file, miller_array = scaler.finalize_and_save_data() loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result(miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % work_params.output.prefix, result) work_params.output.prefix = reserve_prefix # Output table with number of images contribution reflections per # resolution bin. from libtbx import table_utils miller_set_avg.setup_binner(d_max=100000, d_min=work_params.d_min, n_bins=work_params.output.n_bins) table_data = [["Bin", "Resolution Range", "# images", "%accept"]] if work_params.model is None: appropriate_min_corr = -1.1 # lowest possible c.c. else: appropriate_min_corr = work_params.min_corr n_frames = (scaler.frames['cc'] > appropriate_min_corr).count(True) iselect = 1 while iselect < work_params.output.n_bins: col_count1 = results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(iselect)) print("colcount1", col_count1) if col_count1 > 0: break iselect += 1 if col_count1 == 0: raise Exception("no reflections in any bins") for i_bin in miller_set_avg.binner().range_used(): col_count = '%8d' % results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(i_bin)) col_legend = '%-13s' % miller_set_avg.binner().bin_legend( i_bin=i_bin, show_bin_number=False, show_bin_range=False, show_d_range=True, show_counts=False) xpercent = results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(i_bin)) / float(n_frames) percent = '%5.2f' % (100. * xpercent) table_data.append(['%3d' % i_bin, col_legend, col_count, percent]) table_data.append([""] * len(table_data[0])) table_data.append(["All", "", '%8d' % n_frames]) print(file=out) print(table_utils.format(table_data, has_header=1, justify='center', delim=' '), file=out) reindexing_ops = { "h,k,l": 0 } # get a list of all reindexing ops for this dataset if work_params.merging.reverse_lookup is not None: for key in scaler.reverse_lookup: if reindexing_ops.get(scaler.reverse_lookup[key], None) is None: reindexing_ops[scaler.reverse_lookup[key]] = 0 reindexing_ops[scaler.reverse_lookup[key]] += 1 from xfel.cxi.cxi_cc import run_cc for key in reindexing_ops.keys(): run_cc(work_params, reindexing_op=key, output=out) if isinstance(scaler.ISIGI, dict): from xfel.merging import isigi_dict_to_reflection_table refls = isigi_dict_to_reflection_table(scaler.miller_set.indices(), scaler.ISIGI) else: refls = scaler.ISIGI easy_pickle.dump("%s.refl" % work_params.output.prefix, refls) return result
def other(self, scaler): out = self.out work_params = self.work_params miller_set = self.miller_set if scaler.n_accepted == 0: return None scaler.show_unit_cell_histograms() if (work_params.rescale_with_average_cell): average_cell_abc = scaler.uc_values.get_average_cell_dimensions() average_cell = uctbx.unit_cell( list(average_cell_abc) + list(work_params.target_unit_cell.parameters()[3:])) work_params.target_unit_cell = average_cell print >> out, "" print >> out, "#" * 80 print >> out, "RESCALING WITH NEW TARGET CELL" print >> out, " average cell: %g %g %g %g %g %g" % \ work_params.target_unit_cell.parameters() print >> out, "" assert False, "must do this step again with MPI" scaler.reset() scaler.scale_all(frame_files) scaler.show_unit_cell_histograms() print >> out, "\n" # Sum the observations of I and I/sig(I) for each reflection. sum_I = flex.double(miller_set.size(), 0.) sum_I_SIGI = flex.double(miller_set.size(), 0.) for i in xrange(miller_set.size()): index = miller_set.indices()[i] if index in scaler.ISIGI: for t in scaler.ISIGI[index]: sum_I[i] += t[0] sum_I_SIGI[i] += t[1] miller_set_avg = miller_set.customized_copy( unit_cell=work_params.target_unit_cell) table1 = cxi_merge.show_overall_observations( obs=miller_set_avg, redundancy=scaler.completeness, redundancy_to_edge=scaler.completeness_predictions, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for all reflections", out=out, work_params=work_params) print >> out, "" if work_params.model is not None: n_refl, corr = scaler.get_overall_correlation(sum_I) else: n_refl, corr = ((scaler.completeness > 0).count(True), 0) print >> out, "\n" table2 = cxi_merge.show_overall_observations( obs=miller_set_avg, redundancy=scaler.summed_N, redundancy_to_edge=scaler.completeness_predictions, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for reflections where I > 0", out=out, work_params=work_params) #from libtbx import easy_pickle #easy_pickle.dump(file_name="stats.pickle", obj=stats) #stats.report(plot=work_params.plot) #miller_counts = miller_set_p1.array(data=stats.counts.as_double()).select( # stats.counts != 0) #miller_counts.as_mtz_dataset(column_root_label="NOBS").mtz_object().write( # file_name="nobs.mtz") if work_params.data_subsubsets.subsubset is not None and work_params.data_subsubsets.subsubset_total is not None: easy_pickle.dump( "scaler_%d.pickle" % work_params.data_subsubsets.subsubset, scaler) explanation = """ Explanation: Completeness = # unique Miller indices present in data / # Miller indices theoretical in asymmetric unit Asu. Multiplicity = # measurements / # Miller indices theoretical in asymmetric unit Obs. Multiplicity = # measurements / # unique Miller indices present in data Pred. Multiplicity = # predictions on all accepted images / # Miller indices theoretical in asymmetric unit""" print >> out, explanation mtz_file, miller_array = scaler.finalize_and_save_data() #table_pickle_file = "%s_graphs.pkl" % work_params.output.prefix #easy_pickle.dump(table_pickle_file, [table1, table2]) loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = cxi_merge.scaling_result(miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % work_params.output.prefix, result) return result
def finalize(self, scaler): scaler.show_unit_cell_histograms() if (self.params.rescale_with_average_cell) : average_cell_abc = scaler.uc_values.get_average_cell_dimensions() average_cell = uctbx.unit_cell(list(average_cell_abc) + list(self.params.target_unit_cell.parameters()[3:])) self.params.target_unit_cell = average_cell print >> out, "" print >> out, "#" * 80 print >> out, "RESCALING WITH NEW TARGET CELL" print >> out, " average cell: %g %g %g %g %g %g" % \ self.params.target_unit_cell.parameters() print >> out, "" scaler.reset() scaler.scale_all(frame_files) scaler.show_unit_cell_histograms() if False : #(self.params.output.show_plots) : try : plot_overall_completeness(completeness) except Exception as e : print "ERROR: can't show plots" print " %s" % str(e) print >> self.out, "\n" sum_I, sum_I_SIGI = scaler.sum_intensities() miller_set_avg = self.miller_set.customized_copy( unit_cell=self.params.target_unit_cell) table1 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.completeness, redundancy_to_edge=scaler.completeness_predictions, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=self.params.output.n_bins, title="Statistics for all reflections", out=self.out, work_params=self.params) print >> self.out, "" if self.params.model is not None: n_refl, corr = scaler.get_overall_correlation(sum_I) else: n_refl, corr = ((scaler.completeness > 0).count(True), 0) print >> self.out, "\n" table2 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.summed_N, redundancy_to_edge=scaler.completeness_predictions, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=self.params.output.n_bins, title="Statistics for reflections where I > 0", out=self.out, work_params=self.params) #from libtbx import easy_pickle #easy_pickle.dump(file_name="stats.pickle", obj=stats) #stats.report(plot=self.params.plot) #miller_counts = miller_set_p1.array(data=stats.counts.as_double()).select( # stats.counts != 0) #miller_counts.as_mtz_dataset(column_root_label="NOBS").mtz_object().write( # file_name="nobs.mtz") if self.params.data_subsubsets.subsubset is not None and self.params.data_subsubsets.subsubset_total is not None: easy_pickle.dump("scaler_%d.pickle"%self.params.data_subsubsets.subsubset, scaler) explanation = """ Explanation: Completeness = # unique Miller indices present in data / # Miller indices theoretical in asymmetric unit Asu. Multiplicity = # measurements / # Miller indices theoretical in asymmetric unit Obs. Multiplicity = # measurements / # unique Miller indices present in data Pred. Multiplicity = # predictions on all accepted images / # Miller indices theoretical in asymmetric unit""" print >> self.out, explanation mtz_file, miller_array = scaler.finalize_and_save_data() #table_pickle_file = "%s_graphs.pkl" % self.params.output.prefix #easy_pickle.dump(table_pickle_file, [table1, table2]) loggraph_file = os.path.abspath("%s_graphs.log" % self.params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result( miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % self.params.output.prefix, result) return result
class Script(object): '''A class for running the script.''' def __init__(self, scaler_class): # The script usage import libtbx.load_env self.usage = "usage: %s [options] [param.phil] " % libtbx.env.dispatcher_name self.parser = None self.scaler_class = scaler_class def initialize(self): '''Initialise the script.''' from dials.util.options import OptionParser from iotbx.phil import parse phil_scope = parse(master_phil) # Create the parser self.parser = OptionParser(usage=self.usage, phil=phil_scope, epilog=help_message) self.parser.add_option('--plots', action='store_true', default=False, dest='show_plots', help='Show some plots.') # Parse the command line. quick_parse is required for MPI compatibility params, options = self.parser.parse_args(show_diff_phil=True, quick_parse=True) self.params = params self.options = options def validate(self): from xfel.merging.phil_validation import application application(self.params) if ((self.params.d_min is None) or (self.params.data is None) or ((self.params.model is None) and self.params.scaling.algorithm != "mark1")): command_name = os.environ["LIBTBX_DISPATCHER_NAME"] raise Usage(command_name + " " "d_min=4.0 " "data=~/scratch/r0220/006/strong/ " "model=3bz1_3bz2_core.pdb") if ((self.params.rescale_with_average_cell) and (not self.params.set_average_unit_cell)): raise Usage( "If rescale_with_average_cell=True, you must also specify " + "set_average_unit_cell=True.") if [ self.params.raw_data.sdfac_auto, self.params.raw_data.sdfac_refine, self.params.raw_data.errors_from_sample_residuals ].count(True) > 1: raise Usage( "Specify only one of sdfac_auto, sdfac_refine or errors_from_sample_residuals." ) def read_models(self): # Read Nat's reference model from an MTZ file. XXX The observation # type is given as F, not I--should they be squared? Check with Nat! log = open("%s.log" % self.params.output.prefix, "w") out = multi_out() out.register("log", log, atexit_send_to=None) out.register("stdout", sys.stdout) print >> out, "I model" if self.params.model is not None: from xfel.merging.general_fcalc import run as run_fmodel i_model = run_fmodel(self.params) self.params.target_unit_cell = i_model.unit_cell() self.params.target_space_group = i_model.space_group_info() i_model.show_summary() else: i_model = None print >> out, "Target unit cell and space group:" print >> out, " ", self.params.target_unit_cell print >> out, " ", self.params.target_space_group from xfel.command_line.cxi_merge import consistent_set_and_model self.miller_set, self.i_model = consistent_set_and_model( self.params, i_model) self.frame_files = get_observations(self.params) self.out = out def scale_all(self): scaler = self.scaler_class(miller_set=self.miller_set, i_model=self.i_model, params=self.params, log=self.out) scaler.scale_all(self.frame_files) return scaler def finalize(self, scaler): scaler.show_unit_cell_histograms() if (self.params.rescale_with_average_cell): average_cell_abc = scaler.uc_values.get_average_cell_dimensions() average_cell = uctbx.unit_cell( list(average_cell_abc) + list(self.params.target_unit_cell.parameters()[3:])) self.params.target_unit_cell = average_cell print >> out, "" print >> out, "#" * 80 print >> out, "RESCALING WITH NEW TARGET CELL" print >> out, " average cell: %g %g %g %g %g %g" % \ self.params.target_unit_cell.parameters() print >> out, "" scaler.reset() scaler.scale_all(frame_files) scaler.show_unit_cell_histograms() if False: #(self.params.output.show_plots) : try: plot_overall_completeness(completeness) except Exception, e: print "ERROR: can't show plots" print " %s" % str(e) print >> self.out, "\n" sum_I, sum_I_SIGI = scaler.sum_intensities() miller_set_avg = self.miller_set.customized_copy( unit_cell=self.params.target_unit_cell) table1 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.completeness, redundancy_to_edge=scaler.completeness_predictions, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=self.params.output.n_bins, title="Statistics for all reflections", out=self.out, work_params=self.params) print >> self.out, "" if self.params.model is not None: n_refl, corr = scaler.get_overall_correlation(sum_I) else: n_refl, corr = ((scaler.completeness > 0).count(True), 0) print >> self.out, "\n" table2 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.summed_N, redundancy_to_edge=scaler.completeness_predictions, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=self.params.output.n_bins, title="Statistics for reflections where I > 0", out=self.out, work_params=self.params) #from libtbx import easy_pickle #easy_pickle.dump(file_name="stats.pickle", obj=stats) #stats.report(plot=self.params.plot) #miller_counts = miller_set_p1.array(data=stats.counts.as_double()).select( # stats.counts != 0) #miller_counts.as_mtz_dataset(column_root_label="NOBS").mtz_object().write( # file_name="nobs.mtz") if self.params.data_subsubsets.subsubset is not None and self.params.data_subsubsets.subsubset_total is not None: easy_pickle.dump( "scaler_%d.pickle" % self.params.data_subsubsets.subsubset, scaler) explanation = """ Explanation: Completeness = # unique Miller indices present in data / # Miller indices theoretical in asymmetric unit Asu. Multiplicity = # measurements / # Miller indices theoretical in asymmetric unit Obs. Multiplicity = # measurements / # unique Miller indices present in data Pred. Multiplicity = # predictions on all accepted images / # Miller indices theoretical in asymmetric unit""" print >> self.out, explanation mtz_file, miller_array = scaler.finalize_and_save_data() #table_pickle_file = "%s_graphs.pkl" % self.params.output.prefix #easy_pickle.dump(table_pickle_file, [table1, table2]) loggraph_file = os.path.abspath("%s_graphs.log" % self.params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result(miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % self.params.output.prefix, result) return result