Пример #1
0
z.SetSolve(
    6,  # surface number
    0,  # solve code for curvature
    11,  # solve type code for f/#
    3.5  # desired f/#
)

# Let's add an extra constraint. We'll make the curvatures on the
# faces of the central element equal.  We can insert a pickup solve
# like this:
central_front_face = model[3]
central_rear_face = model[4]
central_rear_face.curvature = -central_front_face.curvature.linked()

# Load a merit function from another zemax file
z.LoadMerit("C:\\Program Files\\ZEMAX\\Samples\\Short course\\sc_cooke2.zmx")

# Insert a flat, glass window in front of the lens
model.insert_new(1, surface.Standard, "Window", thickness=1.0, glass="BK7")
model.insert_new(2, surface.Standard, thickness=10.0)

print("Optimising ....")
print("Initial merit func = %g" % z.Optimize(-1))
print("Final merit func = %g" % z.Optimize())

# Push the lens from the Zemax server into the display.
# The option "allow extensions to push lenses" should be enabled in
# Zemax preferences.
z.GetUpdate()
z.PushLens()
Пример #2
0
class CoordinateReturn(unittest.TestCase):
    def setUp(self):
        self.z = Connection()
        self.z.NewLens()
        self.model = SurfaceSequence(self.z, empty=True)
        self.first, self.last = build_coord_break_sequence(self.model)

    def testZemaxCoordinateReturn(self):
        cb = self.model.append_new(surface.CoordinateBreak)
        return_surf = cb.get_surf_num()
        self.z.SetSurfaceData(return_surf, 81, self.first)
        self.z.SetSurfaceData(return_surf, 80, 3)  # orientation + offset
        self.z.GetUpdate()
        self.coord_return_common_tests(return_surf)

    def testLibraryCoordinateReturn(self):
        cb = self.model.append_new(surface.CoordinateBreak)
        cb.return_to(self.model[self.first])
        self.z.GetUpdate()
        self.coord_return_common_tests(cb.get_surf_num())
        # To unset the coordinate return, pass None (has no effect here)
        cb.return_to(None)  # unset coordinate return status

    def testFull(self):
        return_surf = return_to_coordinate_frame(self.model, self.first,
                                                 self.last)
        self.z.GetUpdate()
        self.coord_return_common_tests(return_surf)

    def testOmitZeroThicknesses(self):
        self.z.GetUpdate()
        return_surf = return_to_coordinate_frame(self.model,
                                                 self.first,
                                                 self.last,
                                                 include_null_transforms=False)
        self.z.GetUpdate()
        self.coord_return_common_tests(return_surf)

    def testWithCursor(self):
        insert_point = self.last
        insertion_point_sequence = count(insert_point+1)

        def factory():
            return self.model.insert_new(next(insertion_point_sequence),
                                         surface.CoordinateBreak)

        self.z.GetUpdate()
        return_surf = return_to_coordinate_frame(self.model,
                                                 self.first,
                                                 self.last,
                                                 include_null_transforms=False,
                                                 factory=factory)
        self.z.GetUpdate()
        self.coord_return_common_tests(return_surf)

    def testWithAppend(self):
        def factory():
            return self.model.append_new(surface.CoordinateBreak)
        self.z.GetUpdate()
        return_surf = return_to_coordinate_frame(self.model,
                                                 self.first,
                                                 self.last,
                                                 include_null_transforms=False,
                                                 factory=factory)
        self.z.GetUpdate()
        self.coord_return_common_tests(return_surf)

    def coord_return_common_tests(self, return_surf):
        first_rot, first_offset = self.z.GetGlobalMatrix(self.first)
        last_rot, last_offset = self.z.GetGlobalMatrix(self.last)
        return_rot, return_offset = self.z.GetGlobalMatrix(return_surf + 1)

        # check coordinate frames are identical
        self.assertAlmostEqual(abs(first_rot - return_rot).max(), 0)
        self.assertAlmostEqual(abs(first_offset - return_offset).max(), 0)

        # check we have finite rotation matrices
        self.assertNotAlmostEqual(abs(first_rot).max(), 0)

        # check that first and last frames differ
        self.assertNotAlmostEqual(abs(first_rot - last_rot).max(), 0)
        self.assertNotAlmostEqual(abs(first_offset - last_offset).max(), 0)
Пример #3
0
class RayCoordinates(unittest.TestCase):
    marginal_ray_solve_pupil_coordinate = 0.7
    tracing_accuracy = 4  # expected accuracy in decimal places

    def setUp(self):
        self.z = Connection()
        self.z.NewLens()
        self.model = SurfaceSequence(self.z)
        self.system = SystemConfig(self.z)
        self.system.rayaimingtype = 0

        self.model[0].thickness = 10.0

        # insert fold mirror
        self.model.append_new(surface.CoordinateBreak, rotate_y=40.0,
                              rotate_z=10.0)
        self.model.append_new(surface.Standard, glass="MIRROR")
        cb = self.model.append_new(surface.CoordinateBreak, thickness=-20.0)
        cb.rotate_x.align_to_chief_ray()
        cb.rotate_y.align_to_chief_ray()

        front = self.model.append_new(surface.Standard,
                                      curvature=-0.05, glass="BK7",
                                      thickness=-1.0)
        back = self.model.append_new(surface.Standard,
                                     curvature=-front.curvature.linked())

        self.z.SetSystemAper(3, front.get_surf_num(), 2.5)
        back.thickness.focus_on_next(self.marginal_ray_solve_pupil_coordinate)

        self.z.GetUpdate()

    def testFocus(self):
        image = self.model[-1]
        chief = image.get_ray_intersect()
        marginal = image.get_ray_intersect(
            (0, 0), (0, self.marginal_ray_solve_pupil_coordinate), 0)
        self.assertAlmostEqual(abs(marginal.intersect - chief.intersect).max(),
                               0.0)

    def testDirectTracing(self):
        """Verify that we can launch rays using normalised pupil coordinates and local
        surface cartesian coordinates, with consistent results."""

        pc = (0.3, 0.5)  # normalised pupil coordinate under test
        image = self.model[-1]
        # find ray intersection on image plane
        (status, vigcode, im_intersect, im_exit_cosines, normal,
         intensity) = image.get_ray_intersect((0, 0), pc)
        for surf in self.model:
            # get ray intersection on surface
            (status, vigcode, surf_intersect, exit_cosines, normal,
             intensity) = surf.get_ray_intersect((0, 0), pc)

            # Launch ray directly using the obtained origin and exit cosines.
            # GetTraceDirect launches a ray from startsurf coordinate
            # frame, but the ray does not interact with startsurf.

            (status, vigcode, intersect, cosines, normal,
             intensity) = self.z.GetTraceDirect(0, 0,
                                                surf.get_surf_num(),
                                                image.get_surf_num(),
                                                surf_intersect,
                                                exit_cosines)

            # verify that the ray is the same as obtained with
            # normalised pupil coordinates on the image plane
            self.assertAlmostEqual(abs(intersect - im_intersect).max(), 0.0,
                                   self.tracing_accuracy)
            self.assertAlmostEqual(abs(cosines - im_exit_cosines).max(), 0.0,
                                   self.tracing_accuracy)
            if surf.id != image.id:
                self.assertNotAlmostEqual(
                    abs(surf_intersect - im_intersect).max(),
                    0.0, self.tracing_accuracy)

    def testMatrixCoordinateTransforms(self):
        """Check we can acquire and use global transformation matrices.

        Make each surface the coordinate global reference in turn.
        For each iteration check we can recover the original global
        reference of each surface by applying the inverse of the new
        global reference."""

        def trans_mat(rotation, offset):
            m = numpy.zeros((4, 4), float)
            m[0:3, 0:3] = rotation
            m[0:3, 3] = offset
            m[3, 3] = 1.0
            return numpy.matrix(m)

        surf_ids = range(len(self.model))
        initial_global_ref = self.system.globalrefsurf
        initial_surface_coord_frames = [
            trans_mat(*self.z.GetGlobalMatrix(i)) for i in surf_ids]

        for i in surf_ids:
            if isinstance(self.model[i], surface.CoordinateBreak):
                # coordinate breaks as global reference surfaces give
                # unexpected results
                continue

            self.system.globalrefsurf = i
            # find inverse transformation
            trans = initial_surface_coord_frames[i].I

            self.z.GetUpdate()
            for j in surf_ids:
                new_frame = trans_mat(*self.z.GetGlobalMatrix(j))
                # calc_frame = numpy.dot(trans,
                #     initial_surface_coord_frames[j])
                calc_frame = trans * initial_surface_coord_frames[j]
                self.assertAlmostEqual(abs(new_frame - calc_frame).max(), 0)

    def testCheckRayTraceResults(self):
        pc = (0.3, 0.5)  # normalised pupil coordinate under test
        for surf in self.model:
            n = surf.get_surf_num()
            # get ray intersection on surface in local coordinates
            # (status, vigcode, intersect, exit_cosines, normal,
            # intensity) = surf.get_ray_intersect((0,0), pc)
            ray = surf.get_ray_intersect((0, 0), pc)
            # compare with values obtained from operands
            for val, op in zip(ray.intersect, ("REAX", "REAY", "REAZ")):
                opval = self.z.OperandValue(op, n, 0, 0.0, 0.0, pc[0], pc[1])
                self.assertAlmostEqual(opval, val, places=5)

            # get ray intersection on surface in global coordinates
            # (status, vigcode, intersect_gl, exit_cosines, normal,
            # intensity) = surf.get_ray_intersect((0,0), pc, _global=True)
            glray = surf.get_ray_intersect((0, 0), pc, _global=True)
            # compare with direct global coordinates from operands
            for val, op in zip(glray.intersect, ("RAGX", "RAGY", "RAGZ")):
                opval = self.z.OperandValue(op, n, 0, 0.0, 0.0, pc[0], pc[1])
                self.assertAlmostEqual(opval, val, self.tracing_accuracy)
Пример #4
0
class SurfaceSequenceManipulate(unittest.TestCase):
    """Check that semantics of SurfaceSequence are close to Python list type.

    """
    def setUp(self):
        self.z = Connection()
        self.z.NewLens()
        self.model = SurfaceSequence(self.z, empty=True)
        self.model[0].comment.value = "OBJ"
        self.model[-1].comment.value = "IMG"
        self._list = ["OBJ", "IMG"]

    def verifyIdentical(self):
        self.z.GetUpdate()
        self.assertEqual(len(self._list), len(self.model))
        for a, s in zip(self._list, self.model):
            self.assertEqual(a, s.comment.value)

    def testInit(self):
        self.verifyIdentical()

    def testInsert(self):
        self.model.insert_new(1, surface.Standard, "Inserted 1")
        self._list.insert(1, "Inserted 1")

        self.model.insert_new(-1, surface.Standard, "Inserted -1")
        self._list.insert(-1, "Inserted -1")

        self.verifyIdentical()

    def testDelete(self):
        self.model.insert_new(1, surface.Standard, "Inserted 1")
        self._list.insert(1, "Inserted 1")

        self.model.insert_new(-1, surface.Standard, "Inserted -1")
        self._list.insert(-1, "Inserted -1")

        self.verifyIdentical()

        del self.model[1]
        del self._list[1]

        self.verifyIdentical()

        del self.model[-2]
        del self._list[-2]

        self.verifyIdentical()

    def testGetItem(self):
        self.model.insert_new(1, surface.Standard, "Inserted 1")
        self._list.insert(1, "Inserted 1")

        for i in range(len(self.model)):
            self.assertEqual(self.model[i].comment.value, self._list[i])
            self.assertEqual(self.model[-i].comment.value, self._list[-i])

    def testAppendItem(self):
        # Here the behaviour differs. The surface is inserted before
        # the last (image) surface
        self.model.insert_new(1, surface.Standard, "Inserted 1")
        self._list.insert(1, "Inserted 1")

        self.model.append_new(surface.Standard, "Appended")
        self._list.insert(-1, "Appended")

        self.verifyIdentical()

    def testIndexing(self):
        new_surf = self.model.insert_new(1, surface.Grating, "Inserted 1")
        indexed_surf = self.model[1]

        self.assertEqual(new_surf.id, indexed_surf.id)
        # check that model retrieves surface object with correct class
        self.assertEqual(new_surf.__class__, indexed_surf.__class__)