print(np.polynomial.polynomial.polyfit(loopRange[1:], ts[1:], 1)) if (True): ts = [] for loop in loopRange: beads = [] for i in range(loop): beads.append(N.Bead(50, 50)) N.XY(beads, img) for i in range(20): N.Calibrate(beads, [imgc[i]], i) N.ComputeCalibration(beads) N.XYZ(beads, img) print(beads[0]) start = time.time() for i in range(100): N.XYZ(beads, img) ts.append(time.time() - start) plt.plot(loopRange, np.array(ts), marker="o", label="CPU - Numpy") print(np.polynomial.polynomial.polyfit(loopRange[1:], ts[1:], 1)) plt.title("Time to run 100 frames") plt.ylabel("Time(s)") plt.xlabel("Bead Number") plt.grid() plt.legend()
mm.SetZ(sz) T.ComputeCalibration(beads) plt.title('Calibration R') plt.imshow(np.flip(beads[0].Rc, axis=0), cmap="gray") plt.show() # test zts = np.arange(500, 4500, 50) z0s = [] for z in zts: mm.SetZ(sz + z) for t in range(100): img = mm.Get() T.XYZ(beads, img) z0s.append(beads[0].z) xs = [] ys = [] yerr = [] for i, z in enumerate(zts): x = sz + z data = z0s[i * 100:(i * 100 + 100)] xs.append(x) ys.append(np.mean(data) - x) yerr.append(np.std(data)) plt.plot(z0s, marker="o") plt.grid() plt.show()