def test_dynamic_link(self):
        link = LinkItem()
        anchor1 = AnchorPoint()
        anchor2 = AnchorPoint()

        self.scene.addItem(link)
        self.scene.addItem(anchor1)
        self.scene.addItem(anchor2)

        link.setSourceItem(None, anchor1)
        link.setSinkItem(None, anchor2)

        anchor2.setPos(100, 100)

        link.setSourceName("1")
        link.setSinkName("2")

        link.setDynamic(True)
        self.assertTrue(link.isDynamic())

        link.setDynamicEnabled(True)
        self.assertTrue(link.isDynamicEnabled())

        def advance():
            clock = time.process_time()
            link.setDynamic(clock > 1)
            link.setDynamicEnabled(int(clock) % 2 == 0)

        timer = QTimer(link, interval=0)
        timer.timeout.connect(advance)
        timer.start()
        self.app.exec_()
示例#2
0
class QCoreAppTestCase(unittest.TestCase):
    _AppClass = QCoreApplication

    @classmethod
    def setUpClass(cls):
        super(QCoreAppTestCase, cls).setUpClass()
        app = cls._AppClass.instance()
        if app is None:
            app = cls._AppClass([])
        cls.app = app

    def setUp(self):
        super(QCoreAppTestCase, self).setUp()
        self._quittimer = QTimer(interval=1000)
        self._quittimer.timeout.connect(self.app.quit)
        self._quittimer.start()

    def tearDown(self):
        self._quittimer.stop()
        self._quittimer.timeout.disconnect(self.app.quit)
        self._quittimer = None
        super(QCoreAppTestCase, self).tearDown()

    @classmethod
    def tearDownClass(cls):
        gc.collect()
        cls.app = None
        super(QCoreAppTestCase, cls).tearDownClass()
    def test_outputview(self):
        output = OutputView()
        output.show()

        line1 = "A line \n"
        line2 = "A different line\n"
        output.write(line1)
        self.assertEqual(output.toPlainText(), line1)

        output.write(line2)
        self.assertEqual(output.toPlainText(), line1 + line2)

        output.clear()
        self.assertEqual(output.toPlainText(), "")

        output.writelines([line1, line2])
        self.assertEqual(output.toPlainText(), line1 + line2)

        output.setMaximumLines(5)

        def advance():
            now = datetime.now().strftime("%c\n")
            output.write(now)

            text = output.toPlainText()
            self.assertLessEqual(len(text.splitlines()), 5)

        timer = QTimer(output, interval=500)
        timer.timeout.connect(advance)
        timer.start()
        self.app.exec_()
    def test_arrowannotation(self):
        item = ArrowItem()
        self.scene.addItem(item)
        item.setLine(QLineF(100, 100, 100, 200))
        item.setLineWidth(5)

        item = ArrowItem()
        item.setLine(QLineF(150, 100, 150, 200))
        item.setLineWidth(10)
        item.setArrowStyle(ArrowItem.Concave)
        self.scene.addItem(item)

        item = ArrowAnnotation()
        item.setPos(10, 10)
        item.setLine(QLineF(10, 10, 200, 200))

        self.scene.addItem(item)
        item.setLineWidth(5)

        def advance():
            clock = time.process_time() * 10
            item.setLineWidth(5 + math.sin(clock) * 5)
            item.setColor(QColor(Qt.red).lighter(100 + 30 * math.cos(clock)))

        timer = QTimer(item, interval=10)
        timer.timeout.connect(advance)
        timer.start()
        self.app.exec_()
    def test_framelesswindow(self):
        window = FramelessWindow()
        window.show()

        def cycle():
            window.setRadius((window.radius() + 3) % 30)

        timer = QTimer(window, interval=250)
        timer.timeout.connect(cycle)
        timer.start()
        self.app.exec_()
示例#6
0
    def test_layout(self):
        one_desc, negate_desc, cons_desc = self.widget_desc()
        one_item = NodeItem()
        one_item.setWidgetDescription(one_desc)
        one_item.setPos(0, 150)
        self.scene.add_node_item(one_item)

        cons_item = NodeItem()
        cons_item.setWidgetDescription(cons_desc)
        cons_item.setPos(200, 0)
        self.scene.add_node_item(cons_item)

        negate_item = NodeItem()
        negate_item.setWidgetDescription(negate_desc)
        negate_item.setPos(200, 300)
        self.scene.add_node_item(negate_item)

        link = LinkItem()
        link.setSourceItem(one_item)
        link.setSinkItem(negate_item)
        self.scene.add_link_item(link)

        link = LinkItem()
        link.setSourceItem(one_item)
        link.setSinkItem(cons_item)
        self.scene.add_link_item(link)

        layout = AnchorLayout()
        self.scene.addItem(layout)
        self.scene.set_anchor_layout(layout)

        layout.invalidateNode(one_item)
        layout.activate()

        p1, p2 = one_item.outputAnchorItem.anchorPositions()
        self.assertTrue(p1 > p2)

        self.scene.node_item_position_changed.connect(layout.invalidateNode)

        path = QPainterPath()
        path.addEllipse(125, 0, 50, 300)

        def advance():
            t = time.process_time()
            cons_item.setPos(path.pointAtPercent(t % 1.0))
            negate_item.setPos(path.pointAtPercent((t + 0.5) % 1.0))

        timer = QTimer(negate_item, interval=20)
        timer.start()
        timer.timeout.connect(advance)
        self.app.exec_()
示例#7
0
    def test_dock_mainwinow(self):
        mw = QMainWindow()
        dock = CollapsibleDockWidget()
        w1 = QTextEdit()

        w2 = QToolButton()
        w2.setFixedSize(38, 200)

        dock.setExpandedWidget(w1)
        dock.setCollapsedWidget(w2)

        mw.addDockWidget(Qt.LeftDockWidgetArea, dock)
        mw.setCentralWidget(QTextEdit())
        mw.show()

        timer = QTimer(dock, interval=200)
        timer.timeout.connect(lambda: dock.setExpanded(not dock.expanded()))
        timer.start()
    def test_anchoritem(self):
        anchoritem = NodeAnchorItem(None)
        self.scene.addItem(anchoritem)

        path = QPainterPath()
        path.addEllipse(0, 0, 100, 100)

        anchoritem.setAnchorPath(path)

        anchor = AnchorPoint()
        anchoritem.addAnchor(anchor)

        ellipse1 = QGraphicsEllipseItem(-3, -3, 6, 6)
        ellipse2 = QGraphicsEllipseItem(-3, -3, 6, 6)
        self.scene.addItem(ellipse1)
        self.scene.addItem(ellipse2)

        anchor.scenePositionChanged.connect(ellipse1.setPos)

        with self.assertRaises(ValueError):
            anchoritem.addAnchor(anchor)

        anchor1 = AnchorPoint()
        anchoritem.addAnchor(anchor1)

        anchor1.scenePositionChanged.connect(ellipse2.setPos)

        self.assertSequenceEqual(anchoritem.anchorPoints(), [anchor, anchor1])

        self.assertSequenceEqual(anchoritem.anchorPositions(), [0.5, 0.5])
        anchoritem.setAnchorPositions([0.5, 0.0])

        self.assertSequenceEqual(anchoritem.anchorPositions(), [0.5, 0.0])

        def advance():
            t = anchoritem.anchorPositions()
            t = [(t + 0.05) % 1.0 for t in t]
            anchoritem.setAnchorPositions(t)

        timer = QTimer(anchoritem, interval=20)
        timer.start()
        timer.timeout.connect(advance)

        self.app.exec_()
    def test_splitter_resizer(self):
        w = QSplitter(orientation=Qt.Vertical)
        w.addWidget(QWidget())
        text = QTextEdit()
        w.addWidget(text)
        resizer = SplitterResizer(parent=None)
        resizer.setSplitterAndWidget(w, text)

        def toogle():
            if resizer.size() == 0:
                resizer.open()
            else:
                resizer.close()

        w.show()
        timer = QTimer(resizer, interval=1000)
        timer.timeout.connect(toogle)
        timer.start()
        self.app.exec_()
示例#10
0
class JitterTool(DataTool):
    """
    Jitter points around the mouse position.
    """
    def __init__(self, parent, plot):
        super().__init__(parent, plot)
        self.__timer = QTimer(self, interval=50)
        self.__timer.timeout.connect(self._do)
        self._pos = None
        self._radius = 20.0
        self._intensity = 5.0
        self.__count = itertools.count()

    def mousePressEvent(self, event):
        if event.button() == Qt.LeftButton:
            self.editingStarted.emit()
            self._pos = self.mapToPlot(event.pos())
            self.__timer.start()
            return True
        else:
            return super().mousePressEvent(event)

    def mouseMoveEvent(self, event):
        if event.buttons() & Qt.LeftButton:
            self._pos = self.mapToPlot(event.pos())
            return True
        else:
            return super().mouseMoveEvent(event)

    def mouseReleaseEvent(self, event):
        if event.button() == Qt.LeftButton:
            self.__timer.stop()
            self.editingFinished.emit()
            return True
        else:
            return super().mouseReleaseEvent(event)

    def _do(self):
        self.issueCommand.emit(
            Jitter(self._pos, self._radius, self._intensity,
                   next(self.__count))
        )
示例#11
0
class AirBrushTool(DataTool):
    """
    Add points with an 'air brush'.
    """
    only2d = False

    def __init__(self, parent, plot):
        super().__init__(parent, plot)
        self.__timer = QTimer(self, interval=50)
        self.__timer.timeout.connect(self.__timout)
        self.__count = itertools.count()
        self.__pos = None

    def mousePressEvent(self, event):
        if event.button() == Qt.LeftButton:
            self.editingStarted.emit()
            self.__pos = self.mapToPlot(event.pos())
            self.__timer.start()
            return True
        else:
            return super().mousePressEvent(event)

    def mouseMoveEvent(self, event):
        if event.buttons() & Qt.LeftButton:
            self.__pos = self.mapToPlot(event.pos())
            return True
        else:
            return super().mouseMoveEvent(event)

    def mouseReleaseEvent(self, event):
        if event.button() == Qt.LeftButton:
            self.__timer.stop()
            self.editingFinished.emit()
            return True
        else:
            return super().mouseReleaseEvent(event)

    def __timout(self):
        self.issueCommand.emit(
            AirBrush(self.__pos, None, None, next(self.__count))
        )
示例#12
0
class MagnetTool(DataTool):
    """
    Draw points closer to the mouse position.
    """
    def __init__(self, parent, plot):
        super().__init__(parent, plot)
        self.__timer = QTimer(self, interval=50)
        self.__timer.timeout.connect(self.__timeout)
        self._radius = 20.0
        self._density = 4.0
        self._pos = None

    def mousePressEvent(self, event):
        if event.button() == Qt.LeftButton:
            self.editingStarted.emit()
            self._pos = self.mapToPlot(event.pos())
            self.__timer.start()
            return True
        else:
            return super().mousePressEvent(event)

    def mouseMoveEvent(self, event):
        if event.buttons() & Qt.LeftButton:
            self._pos = self.mapToPlot(event.pos())
            return True
        else:
            return super().mouseMoveEvent(event)

    def mouseReleaseEvent(self, event):
        if event.button() == Qt.LeftButton:
            self.__timer.stop()
            self.editingFinished.emit()
            return True
        else:
            return super().mouseReleaseEvent(event)

    def __timeout(self):
        self.issueCommand.emit(
            Magnet(self._pos, self._radius, self._density)
        )
示例#13
0
class PreviewModel(QStandardItemModel):
    """A model for preview items.
    """

    def __init__(self, parent=None, items=None):
        QStandardItemModel.__init__(self, parent)

        if items is not None:
            self.insertColumn(0, items)

        self.__timer = QTimer(self)

    def delayedScanUpdate(self, delay=10):
        """Run a delayed preview item scan update.
        """
        def iter_update(items):
            for item in items:
                try:
                    scanner.scan_update(item)
                except Exception:
                    log.error("An unexpected error occurred while "
                              "scanning %r.", str(item.text()),
                              exc_info=True)
                    item.setEnabled(False)
                yield

        items = [self.item(i) for i in range(self.rowCount())]

        iter_scan = iter_update(items)

        def process_one():
            try:
                next(iter_scan)
            except StopIteration:
                self.__timer.timeout.disconnect(process_one)
                self.__timer.stop()

        self.__timer.timeout.connect(process_one)
        self.__timer.start(delay)
    def test_splashscreen(self):
        splash = pkg_resources.resource_filename(
            config.__package__, "icons/orange-canvas-core-splash.svg"
        )
        w = SplashScreen()
        w.setPixmap(QPixmap(splash))
        w.setTextRect(QRect(100, 100, 400, 50))
        w.show()

        def advance_time():
            now = datetime.now()
            time = now.strftime("%c : %f")
            w.showMessage(time, alignment=Qt.AlignCenter)
            i = now.second % 3
            rect = QRect(100, 100 + i * 20, 400, 50)
            w.setTextRect(rect)
            self.assertEqual(w.textRect(), rect)

        timer = QTimer(w, interval=1)
        timer.timeout.connect(advance_time)
        timer.start()

        self.app.exec_()
示例#15
0
    def test_dock_standalone(self):
        widget = QWidget()
        layout = QHBoxLayout()
        widget.setLayout(layout)
        layout.addStretch(1)
        widget.show()

        dock = CollapsibleDockWidget()
        layout.addWidget(dock)
        list_view = QListView()
        list_view.setModel(QStringListModel(["a", "b"], list_view))

        label = QLabel("A label. ")
        label.setWordWrap(True)

        dock.setExpandedWidget(label)
        dock.setCollapsedWidget(list_view)
        dock.setExpanded(True)
        dock.setExpanded(False)

        timer = QTimer(dock, interval=200)
        timer.timeout.connect(lambda: dock.setExpanded(not dock.expanded()))
        timer.start()
示例#16
0
    def test_nodeitem(self):
        one_item = NodeItem()
        one_item.setWidgetDescription(self.one_desc)
        one_item.setWidgetCategory(self.const_desc)

        one_item.setTitle("Neo")
        self.assertEqual(one_item.title(), "Neo")

        one_item.setProcessingState(True)
        self.assertEqual(one_item.processingState(), True)

        one_item.setProgress(50)
        self.assertEqual(one_item.progress(), 50)

        one_item.setProgress(100)
        self.assertEqual(one_item.progress(), 100)

        one_item.setProgress(101)
        self.assertEqual(one_item.progress(), 100, "Progress overshots")

        one_item.setProcessingState(False)
        self.assertEqual(one_item.processingState(), False)
        self.assertEqual(one_item.progress(), -1,
                         "setProcessingState does not clear the progress.")

        self.scene.addItem(one_item)
        one_item.setPos(100, 100)

        negate_item = NodeItem()
        negate_item.setWidgetDescription(self.negate_desc)
        negate_item.setWidgetCategory(self.const_desc)

        self.scene.addItem(negate_item)
        negate_item.setPos(300, 100)

        nb_item = NodeItem()
        nb_item.setWidgetDescription(self.add_desc)
        nb_item.setWidgetCategory(self.operator_desc)

        self.scene.addItem(nb_item)
        nb_item.setPos(500, 100)

        positions = []
        anchor = one_item.newOutputAnchor()
        anchor.scenePositionChanged.connect(positions.append)

        one_item.setPos(110, 100)
        self.assertTrue(len(positions) > 0)

        one_item.setErrorMessage("message")
        one_item.setWarningMessage("message")
        one_item.setInfoMessage("I am alive")

        one_item.setErrorMessage(None)
        one_item.setWarningMessage(None)
        one_item.setInfoMessage(None)

        one_item.setInfoMessage("I am back.")
        nb_item.setProcessingState(1)

        def progress():
            p = (nb_item.progress() + 1) % 100
            nb_item.setProgress(p)

            if p > 50:
                nb_item.setInfoMessage("Over 50%")
                one_item.setWarningMessage("Second")
            else:
                nb_item.setInfoMessage(None)
                one_item.setWarningMessage(None)

            negate_item.setAnchorRotation(50 - p)

        timer = QTimer(nb_item, interval=10)
        timer.start()
        timer.timeout.connect(progress)

        self.app.exec_()
示例#17
0
class OWPCA(widget.OWWidget):
    name = "PCA"
    description = "Principal component analysis with a scree-diagram."
    icon = "icons/PCA.svg"
    priority = 3050

    inputs = [("Data", Table, "set_data")]
    outputs = [("Transformed data", Table),
               ("Components", Table),
               ("PCA", PCA)]

    ncomponents = settings.Setting(2)
    variance_covered = settings.Setting(100)
    batch_size = settings.Setting(100)
    address = settings.Setting('')
    auto_update = settings.Setting(True)
    auto_commit = settings.Setting(True)
    normalize = settings.Setting(True)
    maxp = settings.Setting(20)
    axis_labels = settings.Setting(10)

    graph_name = "plot.plotItem"

    def __init__(self):
        super().__init__()
        self.data = None

        self._pca = None
        self._transformed = None
        self._variance_ratio = None
        self._cumulative = None
        self._line = False
        self._pca_projector = PCA()
        self._pca_projector.component = self.ncomponents
        self._pca_preprocessors = PCA.preprocessors

        # Components Selection
        box = gui.vBox(self.controlArea, "Components Selection")
        form = QFormLayout()
        box.layout().addLayout(form)

        self.components_spin = gui.spin(
            box, self, "ncomponents", 0, 1000,
            callback=self._update_selection_component_spin,
            keyboardTracking=False
        )
        self.components_spin.setSpecialValueText("All")

        self.variance_spin = gui.spin(
            box, self, "variance_covered", 1, 100,
            callback=self._update_selection_variance_spin,
            keyboardTracking=False
        )
        self.variance_spin.setSuffix("%")

        form.addRow("Components:", self.components_spin)
        form.addRow("Variance covered:", self.variance_spin)

        # Incremental learning
        self.sampling_box = gui.vBox(self.controlArea, "Incremental learning")
        self.addresstext = QLineEdit(box)
        self.addresstext.setPlaceholderText('Remote server')
        if self.address:
            self.addresstext.setText(self.address)
        self.sampling_box.layout().addWidget(self.addresstext)

        form = QFormLayout()
        self.sampling_box.layout().addLayout(form)
        self.batch_spin = gui.spin(
            self.sampling_box, self, "batch_size", 50, 100000, step=50,
            keyboardTracking=False)
        form.addRow("Batch size ~ ", self.batch_spin)

        self.start_button = gui.button(
            self.sampling_box, self, "Start remote computation",
            callback=self.start, autoDefault=False,
            tooltip="Start/abort computation on the server")
        self.start_button.setEnabled(False)

        gui.checkBox(self.sampling_box, self, "auto_update",
                     "Periodically fetch model", callback=self.update_model)
        self.__timer = QTimer(self, interval=2000)
        self.__timer.timeout.connect(self.get_model)

        self.sampling_box.setVisible(remotely)

        # Options
        self.options_box = gui.vBox(self.controlArea, "Options")
        gui.checkBox(self.options_box, self, "normalize", "Normalize data",
                     callback=self._update_normalize)
        self.maxp_spin = gui.spin(
            self.options_box, self, "maxp", 1, 100,
            label="Show only first", callback=self._setup_plot,
            keyboardTracking=False
        )

        self.controlArea.layout().addStretch()

        gui.auto_commit(self.controlArea, self, "auto_commit", "Apply",
                        checkbox_label="Apply automatically")

        self.plot = pg.PlotWidget(background="w")

        axis = self.plot.getAxis("bottom")
        axis.setLabel("Principal Components")
        axis = self.plot.getAxis("left")
        axis.setLabel("Proportion of variance")
        self.plot_horlabels = []
        self.plot_horlines = []

        self.plot.getViewBox().setMenuEnabled(False)
        self.plot.getViewBox().setMouseEnabled(False, False)
        self.plot.showGrid(True, True, alpha=0.5)
        self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0))

        self.mainArea.layout().addWidget(self.plot)
        self._update_normalize()

    def update_model(self):
        self.get_model()
        if self.auto_update and self.rpca and not self.rpca.ready():
            self.__timer.start(2000)
        else:
            self.__timer.stop()

    def start(self):
        if 'Abort' in self.start_button.text():
            self.rpca.abort()
            self.__timer.stop()
            self.start_button.setText("Start remote computation")
        else:
            self.address = self.addresstext.text()
            with remote.server(self.address):
                from Orange.projection.pca import RemotePCA
                maxiter = (1e5 + self.data.approx_len()) / self.batch_size * 3
                self.rpca = RemotePCA(self.data, self.batch_size, int(maxiter))
            self.update_model()
            self.start_button.setText("Abort remote computation")

    def set_data(self, data):
        self.information()
        if isinstance(data, SqlTable):
            if data.approx_len() < AUTO_DL_LIMIT:
                data = Table(data)
            elif not remotely:
                self.information("Data has been sampled")
                data_sample = data.sample_time(1, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
        self.data = data
        self.fit()

    def fit(self):
        self.clear()
        self.start_button.setEnabled(False)
        if self.data is None:
            return
        data = self.data
        self._transformed = None
        if isinstance(data, SqlTable): # data was big and remote available
            self.sampling_box.setVisible(True)
            self.start_button.setText("Start remote computation")
            self.start_button.setEnabled(True)
        else:
            self.sampling_box.setVisible(False)
            pca = self._pca_projector(data)
            variance_ratio = pca.explained_variance_ratio_
            cumulative = numpy.cumsum(variance_ratio)
            self.components_spin.setRange(0, len(cumulative))

            self._pca = pca
            self._variance_ratio = variance_ratio
            self._cumulative = cumulative
            self._setup_plot()

            self.unconditional_commit()

    def clear(self):
        self._pca = None
        self._transformed = None
        self._variance_ratio = None
        self._cumulative = None
        self._line = None
        self.plot_horlabels = []
        self.plot_horlines = []
        self.plot.clear()

    def get_model(self):
        if self.rpca is None:
            return
        if self.rpca.ready():
            self.__timer.stop()
            self.start_button.setText("Restart (finished)")
        self._pca = self.rpca.get_state()
        if self._pca is None:
            return
        self._variance_ratio = self._pca.explained_variance_ratio_
        self._cumulative = numpy.cumsum(self._variance_ratio)
        self._setup_plot()
        self._transformed = None
        self.commit()

    def _setup_plot(self):
        self.plot.clear()
        explained_ratio = self._variance_ratio
        explained = self._cumulative
        p = min(len(self._variance_ratio), self.maxp)

        self.plot.plot(numpy.arange(p), explained_ratio[:p],
                       pen=pg.mkPen(QColor(Qt.red), width=2),
                       antialias=True,
                       name="Variance")
        self.plot.plot(numpy.arange(p), explained[:p],
                       pen=pg.mkPen(QColor(Qt.darkYellow), width=2),
                       antialias=True,
                       name="Cumulative Variance")

        cutpos = self._nselected_components() - 1
        self._line = pg.InfiniteLine(
            angle=90, pos=cutpos, movable=True, bounds=(0, p - 1))
        self._line.setCursor(Qt.SizeHorCursor)
        self._line.setPen(pg.mkPen(QColor(Qt.black), width=2))
        self._line.sigPositionChanged.connect(self._on_cut_changed)
        self.plot.addItem(self._line)

        self.plot_horlines = (
            pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)),
            pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)))
        self.plot_horlabels = (
            pg.TextItem(color=QColor(Qt.black), anchor=(1, 0)),
            pg.TextItem(color=QColor(Qt.black), anchor=(1, 1)))
        for item in self.plot_horlabels + self.plot_horlines:
            self.plot.addItem(item)
        self._set_horline_pos()

        self.plot.setRange(xRange=(0.0, p - 1), yRange=(0.0, 1.0))
        self._update_axis()

    def _set_horline_pos(self):
        cutidx = self.ncomponents - 1
        for line, label, curve in zip(self.plot_horlines, self.plot_horlabels,
                                      (self._variance_ratio, self._cumulative)):
            y = curve[cutidx]
            line.setData([-1, cutidx], 2 * [y])
            label.setPos(cutidx, y)
            label.setPlainText("{:.3f}".format(y))

    def _on_cut_changed(self, line):
        # cut changed by means of a cut line over the scree plot.
        value = int(round(line.value()))
        self._line.setValue(value)
        current = self._nselected_components()
        components = value + 1

        if not (self.ncomponents == 0 and
                components == len(self._variance_ratio)):
            self.ncomponents = components

        self._set_horline_pos()

        if self._pca is not None:
            self.variance_covered = self._cumulative[components - 1] * 100

        if current != self._nselected_components():
            self._invalidate_selection()

    def _update_selection_component_spin(self):
        # cut changed by "ncomponents" spin.
        if self._pca is None:
            self._invalidate_selection()
            return

        if self.ncomponents == 0:
            # Special "All" value
            cut = len(self._variance_ratio)
        else:
            cut = self.ncomponents
        self.variance_covered = self._cumulative[cut - 1] * 100

        if numpy.floor(self._line.value()) + 1 != cut:
            self._line.setValue(cut - 1)

        self._invalidate_selection()

    def _update_selection_variance_spin(self):
        # cut changed by "max variance" spin.
        if self._pca is None:
            return

        cut = numpy.searchsorted(self._cumulative,
                                 self.variance_covered / 100.0) + 1
        cut = min(cut, len(self._cumulative))
        self.ncomponents = cut
        if numpy.floor(self._line.value()) + 1 != cut:
            self._line.setValue(cut - 1)
        self._invalidate_selection()

    def _update_normalize(self):
        if self.normalize:
            pp = self._pca_preprocessors + [Normalize()]
        else:
            pp = self._pca_preprocessors
        self._pca_projector.preprocessors = pp
        self.fit()
        if self.data is None:
            self._invalidate_selection()

    def _nselected_components(self):
        """Return the number of selected components."""
        if self._pca is None:
            return 0

        if self.ncomponents == 0:
            # Special "All" value
            max_comp = len(self._variance_ratio)
        else:
            max_comp = self.ncomponents

        var_max = self._cumulative[max_comp - 1]
        if var_max != numpy.floor(self.variance_covered / 100.0):
            cut = max_comp
            self.variance_covered = var_max * 100
        else:
            self.ncomponents = cut = numpy.searchsorted(
                self._cumulative, self.variance_covered / 100.0) + 1
        return cut

    def _invalidate_selection(self):
        self.commit()

    def _update_axis(self):
        p = min(len(self._variance_ratio), self.maxp)
        axis = self.plot.getAxis("bottom")
        d = max((p-1)//(self.axis_labels-1), 1)
        axis.setTicks([[(i, str(i+1)) for i in range(0, p, d)]])

    def commit(self):
        transformed = components = None
        if self._pca is not None:
            if self._transformed is None:
                # Compute the full transform (all components) only once.
                self._transformed = self._pca(self.data)
            transformed = self._transformed

            domain = Domain(
                transformed.domain.attributes[:self.ncomponents],
                self.data.domain.class_vars,
                self.data.domain.metas
            )
            transformed = transformed.from_table(domain, transformed)
            dom = Domain(self._pca.orig_domain.attributes,
                         metas=[StringVariable(name='component')])
            metas = numpy.array([['PC{}'.format(i + 1)
                                  for i in range(self.ncomponents)]],
                                dtype=object).T
            components = Table(dom, self._pca.components_[:self.ncomponents],
                               metas=metas)
            components.name = 'components'

        self._pca_projector.component = self.ncomponents
        self.send("Transformed data", transformed)
        self.send("Components", components)
        self.send("PCA", self._pca_projector)

    def send_report(self):
        if self.data is None:
            return
        self.report_items((
            ("Selected components", self.ncomponents),
            ("Explained variance", "{:.3f} %".format(self.variance_covered))
        ))
        self.report_plot()
示例#18
0
class OWPCA(widget.OWWidget):
    name = "PCA"
    description = "Principal component analysis with a scree-diagram."
    icon = "icons/PCA.svg"
    priority = 3050

    inputs = [("Data", Table, "set_data")]
    outputs = [("Transformed data", Table), ("Components", Table),
               ("PCA", PCA)]

    ncomponents = settings.Setting(2)
    variance_covered = settings.Setting(100)
    batch_size = settings.Setting(100)
    address = settings.Setting('')
    auto_update = settings.Setting(True)
    auto_commit = settings.Setting(True)
    normalize = settings.Setting(True)
    maxp = settings.Setting(20)
    axis_labels = settings.Setting(10)

    graph_name = "plot.plotItem"

    class Warning(widget.OWWidget.Warning):
        trivial_components = widget.Msg(
            "All components of the PCA are trivial (explain 0 variance). "
            "Input data is constant (or near constant).")

    class Error(widget.OWWidget.Error):
        no_features = widget.Msg("At least 1 feature is required")
        no_instances = widget.Msg("At least 1 data instance is required")
        sparse_data = widget.Msg("Sparse data is not supported")

    def __init__(self):
        super().__init__()
        self.data = None

        self._pca = None
        self._transformed = None
        self._variance_ratio = None
        self._cumulative = None
        self._line = False
        # max_components limit allows scikit-learn to select a faster method for big data
        self._pca_projector = PCA(max_components=MAX_COMPONENTS)
        self._pca_projector.component = self.ncomponents
        self._pca_preprocessors = PCA.preprocessors

        # Components Selection
        box = gui.vBox(self.controlArea, "Components Selection")
        form = QFormLayout()
        box.layout().addLayout(form)

        self.components_spin = gui.spin(
            box,
            self,
            "ncomponents",
            1,
            MAX_COMPONENTS,
            callback=self._update_selection_component_spin,
            keyboardTracking=False)
        self.components_spin.setSpecialValueText("All")

        self.variance_spin = gui.spin(
            box,
            self,
            "variance_covered",
            1,
            100,
            callback=self._update_selection_variance_spin,
            keyboardTracking=False)
        self.variance_spin.setSuffix("%")

        form.addRow("Components:", self.components_spin)
        form.addRow("Variance covered:", self.variance_spin)

        # Incremental learning
        self.sampling_box = gui.vBox(self.controlArea, "Incremental learning")
        self.addresstext = QLineEdit(box)
        self.addresstext.setPlaceholderText('Remote server')
        if self.address:
            self.addresstext.setText(self.address)
        self.sampling_box.layout().addWidget(self.addresstext)

        form = QFormLayout()
        self.sampling_box.layout().addLayout(form)
        self.batch_spin = gui.spin(self.sampling_box,
                                   self,
                                   "batch_size",
                                   50,
                                   100000,
                                   step=50,
                                   keyboardTracking=False)
        form.addRow("Batch size ~ ", self.batch_spin)

        self.start_button = gui.button(
            self.sampling_box,
            self,
            "Start remote computation",
            callback=self.start,
            autoDefault=False,
            tooltip="Start/abort computation on the server")
        self.start_button.setEnabled(False)

        gui.checkBox(self.sampling_box,
                     self,
                     "auto_update",
                     "Periodically fetch model",
                     callback=self.update_model)
        self.__timer = QTimer(self, interval=2000)
        self.__timer.timeout.connect(self.get_model)

        self.sampling_box.setVisible(remotely)

        # Options
        self.options_box = gui.vBox(self.controlArea, "Options")
        gui.checkBox(self.options_box,
                     self,
                     "normalize",
                     "Normalize data",
                     callback=self._update_normalize)
        self.maxp_spin = gui.spin(self.options_box,
                                  self,
                                  "maxp",
                                  1,
                                  MAX_COMPONENTS,
                                  label="Show only first",
                                  callback=self._setup_plot,
                                  keyboardTracking=False)

        self.controlArea.layout().addStretch()

        gui.auto_commit(self.controlArea,
                        self,
                        "auto_commit",
                        "Apply",
                        checkbox_label="Apply automatically")

        self.plot = pg.PlotWidget(background="w")

        axis = self.plot.getAxis("bottom")
        axis.setLabel("Principal Components")
        axis = self.plot.getAxis("left")
        axis.setLabel("Proportion of variance")
        self.plot_horlabels = []
        self.plot_horlines = []

        self.plot.getViewBox().setMenuEnabled(False)
        self.plot.getViewBox().setMouseEnabled(False, False)
        self.plot.showGrid(True, True, alpha=0.5)
        self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0))

        self.mainArea.layout().addWidget(self.plot)
        self._update_normalize()

    def update_model(self):
        self.get_model()
        if self.auto_update and self.rpca and not self.rpca.ready():
            self.__timer.start(2000)
        else:
            self.__timer.stop()

    def start(self):
        if 'Abort' in self.start_button.text():
            self.rpca.abort()
            self.__timer.stop()
            self.start_button.setText("Start remote computation")
        else:
            self.address = self.addresstext.text()
            with remote.server(self.address):
                from Orange.projection.pca import RemotePCA
                maxiter = (1e5 + self.data.approx_len()) / self.batch_size * 3
                self.rpca = RemotePCA(self.data, self.batch_size, int(maxiter))
            self.update_model()
            self.start_button.setText("Abort remote computation")

    def set_data(self, data):
        self.clear_messages()
        self.clear()
        self.start_button.setEnabled(False)
        self.information()
        self.data = None
        if isinstance(data, SqlTable):
            if data.approx_len() < AUTO_DL_LIMIT:
                data = Table(data)
            elif not remotely:
                self.information("Data has been sampled")
                data_sample = data.sample_time(1, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
            else:  # data was big and remote available
                self.sampling_box.setVisible(True)
                self.start_button.setText("Start remote computation")
                self.start_button.setEnabled(True)
        if not isinstance(data, SqlTable):
            self.sampling_box.setVisible(False)
        if isinstance(data, Table):
            if data.is_sparse():
                self.Error.sparse_data()
                self.clear_outputs()
                return
            if len(data.domain.attributes) == 0:
                self.Error.no_features()
                self.clear_outputs()
                return
            if len(data) == 0:
                self.Error.no_instances()
                self.clear_outputs()
                return
        self.data = data
        self.fit()

    def fit(self):
        self.clear()
        self.Warning.trivial_components.clear()
        if self.data is None:
            return
        data = self.data
        if not isinstance(data, SqlTable):
            pca = self._pca_projector(data)
            variance_ratio = pca.explained_variance_ratio_
            cumulative = numpy.cumsum(variance_ratio)

            if numpy.isfinite(cumulative[-1]):
                self.components_spin.setRange(0, len(cumulative))
                self._pca = pca
                self._variance_ratio = variance_ratio
                self._cumulative = cumulative
                self._setup_plot()
            else:
                self.Warning.trivial_components()

            self.unconditional_commit()

    def clear(self):
        self._pca = None
        self._transformed = None
        self._variance_ratio = None
        self._cumulative = None
        self._line = None
        self.plot_horlabels = []
        self.plot_horlines = []
        self.plot.clear()

    def clear_outputs(self):
        self.send("Transformed data", None)
        self.send("Components", None)
        self.send("PCA", self._pca_projector)

    def get_model(self):
        if self.rpca is None:
            return
        if self.rpca.ready():
            self.__timer.stop()
            self.start_button.setText("Restart (finished)")
        self._pca = self.rpca.get_state()
        if self._pca is None:
            return
        self._variance_ratio = self._pca.explained_variance_ratio_
        self._cumulative = numpy.cumsum(self._variance_ratio)
        self._setup_plot()
        self._transformed = None
        self.commit()

    def _setup_plot(self):
        self.plot.clear()
        if self._pca is None:
            return

        explained_ratio = self._variance_ratio
        explained = self._cumulative
        p = min(len(self._variance_ratio), self.maxp)

        self.plot.plot(numpy.arange(p),
                       explained_ratio[:p],
                       pen=pg.mkPen(QColor(Qt.red), width=2),
                       antialias=True,
                       name="Variance")
        self.plot.plot(numpy.arange(p),
                       explained[:p],
                       pen=pg.mkPen(QColor(Qt.darkYellow), width=2),
                       antialias=True,
                       name="Cumulative Variance")

        cutpos = self._nselected_components() - 1
        self._line = pg.InfiniteLine(angle=90,
                                     pos=cutpos,
                                     movable=True,
                                     bounds=(0, p - 1))
        self._line.setCursor(Qt.SizeHorCursor)
        self._line.setPen(pg.mkPen(QColor(Qt.black), width=2))
        self._line.sigPositionChanged.connect(self._on_cut_changed)
        self.plot.addItem(self._line)

        self.plot_horlines = (
            pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)),
            pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)))
        self.plot_horlabels = (pg.TextItem(color=QColor(Qt.black),
                                           anchor=(1, 0)),
                               pg.TextItem(color=QColor(Qt.black),
                                           anchor=(1, 1)))
        for item in self.plot_horlabels + self.plot_horlines:
            self.plot.addItem(item)
        self._set_horline_pos()

        self.plot.setRange(xRange=(0.0, p - 1), yRange=(0.0, 1.0))
        self._update_axis()

    def _set_horline_pos(self):
        cutidx = self.ncomponents - 1
        for line, label, curve in zip(
                self.plot_horlines, self.plot_horlabels,
            (self._variance_ratio, self._cumulative)):
            y = curve[cutidx]
            line.setData([-1, cutidx], 2 * [y])
            label.setPos(cutidx, y)
            label.setPlainText("{:.3f}".format(y))

    def _on_cut_changed(self, line):
        # cut changed by means of a cut line over the scree plot.
        value = int(round(line.value()))
        self._line.setValue(value)
        current = self._nselected_components()
        components = value + 1

        if not (self.ncomponents == 0
                and components == len(self._variance_ratio)):
            self.ncomponents = components

        self._set_horline_pos()

        if self._pca is not None:
            var = self._cumulative[components - 1]
            if numpy.isfinite(var):
                self.variance_covered = int(var * 100)

        if current != self._nselected_components():
            self._invalidate_selection()

    def _update_selection_component_spin(self):
        # cut changed by "ncomponents" spin.
        if self._pca is None:
            self._invalidate_selection()
            return

        if self.ncomponents == 0:
            # Special "All" value
            cut = len(self._variance_ratio)
        else:
            cut = self.ncomponents

        var = self._cumulative[cut - 1]
        if numpy.isfinite(var):
            self.variance_covered = int(var * 100)

        if numpy.floor(self._line.value()) + 1 != cut:
            self._line.setValue(cut - 1)

        self._invalidate_selection()

    def _update_selection_variance_spin(self):
        # cut changed by "max variance" spin.
        if self._pca is None:
            return

        cut = numpy.searchsorted(self._cumulative,
                                 self.variance_covered / 100.0) + 1
        cut = min(cut, len(self._cumulative))
        self.ncomponents = cut
        if numpy.floor(self._line.value()) + 1 != cut:
            self._line.setValue(cut - 1)
        self._invalidate_selection()

    def _update_normalize(self):
        if self.normalize:
            pp = self._pca_preprocessors + [Normalize()]
        else:
            pp = self._pca_preprocessors
        self._pca_projector.preprocessors = pp
        self.fit()
        if self.data is None:
            self._invalidate_selection()

    def _nselected_components(self):
        """Return the number of selected components."""
        if self._pca is None:
            return 0

        if self.ncomponents == 0:
            # Special "All" value
            max_comp = len(self._variance_ratio)
        else:
            max_comp = self.ncomponents

        var_max = self._cumulative[max_comp - 1]
        if var_max != numpy.floor(self.variance_covered / 100.0):
            cut = max_comp
            assert numpy.isfinite(var_max)
            self.variance_covered = int(var_max * 100)
        else:
            self.ncomponents = cut = numpy.searchsorted(
                self._cumulative, self.variance_covered / 100.0) + 1
        return cut

    def _invalidate_selection(self):
        self.commit()

    def _update_axis(self):
        p = min(len(self._variance_ratio), self.maxp)
        axis = self.plot.getAxis("bottom")
        d = max((p - 1) // (self.axis_labels - 1), 1)
        axis.setTicks([[(i, str(i + 1)) for i in range(0, p, d)]])

    def commit(self):
        transformed = components = None
        if self._pca is not None:
            if self._transformed is None:
                # Compute the full transform (MAX_COMPONENTS components) only once.
                self._transformed = self._pca(self.data)
            transformed = self._transformed

            domain = Domain(transformed.domain.attributes[:self.ncomponents],
                            self.data.domain.class_vars,
                            self.data.domain.metas)
            transformed = transformed.from_table(domain, transformed)
            dom = Domain(self._pca.orig_domain.attributes,
                         metas=[StringVariable(name='component')])
            metas = numpy.array(
                [['PC{}'.format(i + 1) for i in range(self.ncomponents)]],
                dtype=object).T
            components = Table(dom,
                               self._pca.components_[:self.ncomponents],
                               metas=metas)
            components.name = 'components'

        self._pca_projector.component = self.ncomponents
        self.send("Transformed data", transformed)
        self.send("Components", components)
        self.send("PCA", self._pca_projector)

    def send_report(self):
        if self.data is None:
            return
        self.report_items(
            (("Selected components", self.ncomponents),
             ("Explained variance", "{:.3f} %".format(self.variance_covered))))
        self.report_plot()

    @classmethod
    def migrate_settings(cls, settings, version):
        if "variance_covered" in settings:
            # Due to the error in gh-1896 the variance_covered was persisted
            # as a NaN value, causing a TypeError in the widgets `__init__`.
            vc = settings["variance_covered"]
            if isinstance(vc, numbers.Real):
                if numpy.isfinite(vc):
                    vc = int(vc)
                else:
                    vc = 100
                settings["variance_covered"] = vc
        if settings["ncomponents"] > MAX_COMPONENTS:
            settings["ncomponents"] = MAX_COMPONENTS
示例#19
0
class OWtSNE(OWDataProjectionWidget):
    name = "t-SNE"
    description = "Two-dimensional data projection with t-SNE."
    icon = "icons/TSNE.svg"
    priority = 920
    keywords = ["tsne"]

    settings_version = 3
    max_iter = Setting(300)
    perplexity = Setting(30)
    multiscale = Setting(False)
    exaggeration = Setting(1)
    pca_components = Setting(20)
    normalize = Setting(True)

    GRAPH_CLASS = OWtSNEGraph
    graph = SettingProvider(OWtSNEGraph)
    embedding_variables_names = ("t-SNE-x", "t-SNE-y")

    #: Runtime state
    Running, Finished, Waiting, Paused = 1, 2, 3, 4

    class Error(OWDataProjectionWidget.Error):
        not_enough_rows = Msg("Input data needs at least 2 rows")
        constant_data = Msg("Input data is constant")
        no_attributes = Msg("Data has no attributes")
        out_of_memory = Msg("Out of memory")
        optimization_error = Msg("Error during optimization\n{}")
        no_valid_data = Msg("No projection due to no valid data")

    def __init__(self):
        super().__init__()
        self.pca_data = None
        self.projection = None
        self.tsne_runner = None
        self.tsne_iterator = None
        self.__update_loop = None
        # timer for scheduling updates
        self.__timer = QTimer(self, singleShot=True, interval=1,
                              timeout=self.__next_step)
        self.__state = OWtSNE.Waiting
        self.__in_next_step = False
        self.__draw_similar_pairs = False

        def reset_needs_to_draw():
            self.needs_to_draw = True

        self.needs_to_draw = True
        self.__timer_draw = QTimer(self, interval=2000,
                                   timeout=reset_needs_to_draw)

    def _add_controls(self):
        self._add_controls_start_box()
        super()._add_controls()

    def _add_controls_start_box(self):
        box = gui.vBox(self.controlArea, True)
        form = QFormLayout(
            labelAlignment=Qt.AlignLeft,
            formAlignment=Qt.AlignLeft,
            fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow,
            verticalSpacing=10,
        )

        self.perplexity_spin = gui.spin(
            box, self, "perplexity", 1, 500, step=1, alignment=Qt.AlignRight,
            callback=self._params_changed
        )
        form.addRow("Perplexity:", self.perplexity_spin)
        self.perplexity_spin.setEnabled(not self.multiscale)
        form.addRow(gui.checkBox(
            box, self, "multiscale", label="Preserve global structure",
            callback=self._multiscale_changed
        ))

        sbe = gui.hBox(self.controlArea, False, addToLayout=False)
        gui.hSlider(
            sbe, self, "exaggeration", minValue=1, maxValue=4, step=1,
            callback=self._params_changed
        )
        form.addRow("Exaggeration:", sbe)

        sbp = gui.hBox(self.controlArea, False, addToLayout=False)
        gui.hSlider(
            sbp, self, "pca_components", minValue=2, maxValue=50, step=1,
            callback=self._invalidate_pca_projection
        )
        form.addRow("PCA components:", sbp)

        self.normalize_cbx = gui.checkBox(
            box, self, "normalize", "Normalize data",
            callback=self._invalidate_pca_projection,
        )
        form.addRow(self.normalize_cbx)

        box.layout().addLayout(form)

        gui.separator(box, 10)
        self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run)

    def _invalidate_pca_projection(self):
        self.pca_data = None
        self._params_changed()

    def _params_changed(self):
        self.__state = OWtSNE.Finished
        self.__set_update_loop(None)

    def _multiscale_changed(self):
        self.perplexity_spin.setEnabled(not self.multiscale)
        self._params_changed()

    def check_data(self):
        def error(err):
            err()
            self.data = None

        super().check_data()
        if self.data is not None:
            if len(self.data) < 2:
                error(self.Error.not_enough_rows)
            elif not self.data.domain.attributes:
                error(self.Error.no_attributes)
            elif not self.data.is_sparse():
                if np.all(~np.isfinite(self.data.X)):
                    error(self.Error.no_valid_data)
                else:
                    with warnings.catch_warnings():
                        warnings.filterwarnings(
                            "ignore", "Degrees of freedom .*", RuntimeWarning)
                        if np.nan_to_num(np.nanstd(self.data.X, axis=0)).sum() \
                                == 0:
                            error(self.Error.constant_data)

    def get_embedding(self):
        if self.data is None:
            self.valid_data = None
            return None
        elif self.projection is None:
            embedding = np.random.normal(size=(len(self.data), 2))
        else:
            embedding = self.projection.embedding.X
        self.valid_data = np.ones(len(embedding), dtype=bool)
        return embedding

    def _toggle_run(self):
        if self.__state == OWtSNE.Running:
            self.stop()
            self.commit()
        elif self.__state == OWtSNE.Paused:
            self.resume()
        else:
            self.start()

    def start(self):
        if not self.data or self.__state == OWtSNE.Running:
            self.graph.update_coordinates()
        elif self.__state in (OWtSNE.Finished, OWtSNE.Waiting):
            self.__start()

    def stop(self):
        self.__state = OWtSNE.Paused
        self.__set_update_loop(None)

    def resume(self):
        self.__set_update_loop(self.tsne_iterator)

    def set_data(self, data: Table):
        super().set_data(data)

        if data is not None:
            # PCA doesn't support normalization on sparse data, as this would
            # require centering and normalizing the matrix
            self.normalize_cbx.setDisabled(data.is_sparse())
            if data.is_sparse():
                self.normalize = False
                self.normalize_cbx.setToolTip(
                    "Data normalization is not supported on sparse matrices."
                )
            else:
                self.normalize_cbx.setToolTip("")

    def pca_preprocessing(self):
        """Perform PCA preprocessing before passing off the data to t-SNE."""
        if self.pca_data is not None:
            return

        projector = PCA(n_components=self.pca_components, random_state=0)
        # If the normalization box is ticked, we'll add the `Normalize`
        # preprocessor to PCA
        if self.normalize:
            projector.preprocessors += (preprocess.Normalize(),)

        model = projector(self.data)
        self.pca_data = model(self.data)

    def __start(self):
        self.pca_preprocessing()

        self.needs_to_draw = True

        # We call PCA through fastTSNE because it involves scaling. Instead of
        # worrying about this ourselves, we'll let the library worry for us.
        initialization = TSNE.default_initialization(
            self.pca_data.X, n_components=2, random_state=0)

        # Compute perplexity settings for multiscale
        n_samples = self.pca_data.X.shape[0]
        if self.multiscale:
            perplexity = min((n_samples - 1) / 3, 50), min((n_samples - 1) / 3, 500)
        else:
            perplexity = self.perplexity

        # Determine whether to use settings for large data sets
        if n_samples > 10_000:
            neighbor_method, gradient_method = "approx", "fft"
        else:
            neighbor_method, gradient_method = "exact", "bh"

        # Set number of iterations to 0 - these will be run subsequently
        self.projection = TSNE(
            n_components=2, perplexity=perplexity, multiscale=self.multiscale,
            early_exaggeration_iter=0, n_iter=0, initialization=initialization,
            exaggeration=self.exaggeration, neighbors=neighbor_method,
            negative_gradient_method=gradient_method, random_state=0,
            theta=0.8,
        )(self.pca_data)

        self.tsne_runner = TSNERunner(
            self.projection, step_size=20, exaggeration=self.exaggeration
        )
        self.tsne_iterator = self.tsne_runner.run_optimization()
        self.__set_update_loop(self.tsne_iterator)
        self.progressBarInit(processEvents=None)

    def __set_update_loop(self, loop):
        if self.__update_loop is not None:
            if self.__state in (OWtSNE.Finished, OWtSNE.Waiting):
                self.__update_loop.close()
            self.__update_loop = None
            self.progressBarFinished(processEvents=None)

        self.__update_loop = loop

        if loop is not None:
            self.setBlocking(True)
            self.progressBarInit(processEvents=None)
            self.setStatusMessage("Running")
            self.runbutton.setText("Stop")
            self.__state = OWtSNE.Running
            self.__timer.start()
            self.__timer_draw.start()
        else:
            self.setBlocking(False)
            self.setStatusMessage("")
            if self.__state in (OWtSNE.Finished, OWtSNE.Waiting):
                self.runbutton.setText("Start")
            if self.__state == OWtSNE.Paused:
                self.runbutton.setText("Resume")
            self.__timer.stop()
            self.__timer_draw.stop()

    def __next_step(self):
        if self.__update_loop is None:
            return

        assert not self.__in_next_step
        self.__in_next_step = True

        loop = self.__update_loop
        self.Error.out_of_memory.clear()
        self.Error.optimization_error.clear()
        try:
            projection, progress = next(self.__update_loop)
            assert self.__update_loop is loop
        except StopIteration:
            self.__state = OWtSNE.Finished
            self.__set_update_loop(None)
            self.unconditional_commit()
        except MemoryError:
            self.Error.out_of_memory()
            self.__state = OWtSNE.Finished
            self.__set_update_loop(None)
        except Exception as exc:
            self.Error.optimization_error(str(exc))
            self.__state = OWtSNE.Finished
            self.__set_update_loop(None)
        else:
            self.progressBarSet(100.0 * progress, processEvents=None)
            self.projection = projection
            if progress == 1 or self.needs_to_draw:
                self.graph.update_coordinates()
                self.graph.update_density()
                self.needs_to_draw = False
            # schedule next update
            self.__timer.start()

        self.__in_next_step = False

    def setup_plot(self):
        super().setup_plot()
        self.start()

    def _get_projection_data(self):
        if self.data is None:
            return None
        data = self.data.transform(
            Domain(self.data.domain.attributes,
                   self.data.domain.class_vars,
                   self.data.domain.metas + self._get_projection_variables()))
        data.metas[:, -2:] = self.get_embedding()
        if self.projection is not None:
            data.domain = Domain(
                self.data.domain.attributes,
                self.data.domain.class_vars,
                self.data.domain.metas + self.projection.domain.attributes)
        return data

    def clear(self):
        super().clear()
        self.__state = OWtSNE.Waiting
        self.__set_update_loop(None)
        self.pca_data = None
        self.projection = None

    @classmethod
    def migrate_settings(cls, settings, version):
        if version < 3:
            if "selection_indices" in settings:
                settings["selection"] = settings["selection_indices"]

    @classmethod
    def migrate_context(cls, context, version):
        if version < 3:
            values = context.values
            values["attr_color"] = values["graph"]["attr_color"]
            values["attr_size"] = values["graph"]["attr_size"]
            values["attr_shape"] = values["graph"]["attr_shape"]
            values["attr_label"] = values["graph"]["attr_label"]
示例#20
0
class OWScatterPlot(OWDataProjectionWidget):
    """Scatterplot visualization with explorative analysis and intelligent
    data visualization enhancements."""

    name = 'Scatter Plot'
    description = "Interactive scatter plot visualization with " \
                  "intelligent data visualization enhancements."
    icon = "icons/ScatterPlot.svg"
    priority = 140
    keywords = []

    class Inputs(OWDataProjectionWidget.Inputs):
        features = Input("Features", AttributeList)

    class Outputs(OWDataProjectionWidget.Outputs):
        features = Output("Features", AttributeList, dynamic=False)

    settings_version = 3
    auto_sample = Setting(True)
    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)
    tooltip_shows_all = Setting(True)

    GRAPH_CLASS = OWScatterPlotGraph
    graph = SettingProvider(OWScatterPlotGraph)
    embedding_variables_names = None

    class Warning(OWDataProjectionWidget.Warning):
        missing_coords = Msg("Plot cannot be displayed because '{}' or '{}' "
                             "is missing for all data points")

    class Information(OWDataProjectionWidget.Information):
        sampled_sql = Msg("Large SQL table; showing a sample.")
        missing_coords = Msg(
            "Points with missing '{}' or '{}' are not displayed")

    def __init__(self):
        self.sql_data = None  # Orange.data.sql.table.SqlTable
        self.attribute_selection_list = None  # list of Orange.data.Variable
        self.__timer = QTimer(self, interval=1200)
        self.__timer.timeout.connect(self.add_data)
        super().__init__()

        # manually register Matplotlib file writers
        self.graph_writers = self.graph_writers.copy()
        for w in [MatplotlibFormat, MatplotlibPDFFormat]:
            for ext in w.EXTENSIONS:
                self.graph_writers[ext] = w

    def _add_controls(self):
        self._add_controls_axis()
        self._add_controls_sampling()
        super()._add_controls()
        self.graph.gui.add_widget(self.graph.gui.JitterNumericValues,
                                  self._effects_box)
        self.graph.gui.add_widgets([
            self.graph.gui.ShowGridLines, self.graph.gui.ToolTipShowsAll,
            self.graph.gui.RegressionLine
        ], self._plot_box)

    def _add_controls_axis(self):
        common_options = dict(labelWidth=50,
                              orientation=Qt.Horizontal,
                              sendSelectedValue=True,
                              valueType=str,
                              contentsLength=14)
        box = gui.vBox(self.controlArea, True)
        dmod = DomainModel
        self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE)
        self.cb_attr_x = gui.comboBox(box,
                                      self,
                                      "attr_x",
                                      label="Axis x:",
                                      callback=self.attr_changed,
                                      model=self.xy_model,
                                      **common_options)
        self.cb_attr_y = gui.comboBox(box,
                                      self,
                                      "attr_y",
                                      label="Axis y:",
                                      callback=self.attr_changed,
                                      model=self.xy_model,
                                      **common_options)
        vizrank_box = gui.hBox(box)
        self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank(
            vizrank_box, self, "Find Informative Projections", self.set_attr)

    def _add_controls_sampling(self):
        self.sampling = gui.auto_commit(self.controlArea,
                                        self,
                                        "auto_sample",
                                        "Sample",
                                        box="Sampling",
                                        callback=self.switch_sampling,
                                        commit=lambda: self.add_data(1))
        self.sampling.setVisible(False)

    def _vizrank_color_change(self):
        self.vizrank.initialize()
        is_enabled = self.data is not None and not self.data.is_sparse() and \
            len(self.xy_model) > 2 and len(self.data[self.valid_data]) > 1 \
            and np.all(np.nan_to_num(np.nanstd(self.data.X, 0)) != 0)
        self.vizrank_button.setEnabled(
            is_enabled and self.attr_color is not None and not np.isnan(
                self.data.get_column_view(
                    self.attr_color)[0].astype(float)).all())
        text = "Color variable has to be selected." \
            if is_enabled and self.attr_color is None else ""
        self.vizrank_button.setToolTip(text)

    def set_data(self, data):
        if self.data and data and self.data.checksum() == data.checksum():
            return
        super().set_data(data)

        def findvar(name, iterable):
            """Find a Orange.data.Variable in `iterable` by name"""
            for el in iterable:
                if isinstance(el, Variable) and el.name == name:
                    return el
            return None

        # handle restored settings from  < 3.3.9 when attr_* were stored
        # by name
        if isinstance(self.attr_x, str):
            self.attr_x = findvar(self.attr_x, self.xy_model)
        if isinstance(self.attr_y, str):
            self.attr_y = findvar(self.attr_y, self.xy_model)
        if isinstance(self.attr_label, str):
            self.attr_label = findvar(self.attr_label,
                                      self.graph.gui.label_model)
        if isinstance(self.attr_color, str):
            self.attr_color = findvar(self.attr_color,
                                      self.graph.gui.color_model)
        if isinstance(self.attr_shape, str):
            self.attr_shape = findvar(self.attr_shape,
                                      self.graph.gui.shape_model)
        if isinstance(self.attr_size, str):
            self.attr_size = findvar(self.attr_size, self.graph.gui.size_model)

    def check_data(self):
        self.clear_messages()
        self.__timer.stop()
        self.sampling.setVisible(False)
        self.sql_data = None
        if isinstance(self.data, SqlTable):
            if self.data.approx_len() < 4000:
                self.data = Table(self.data)
            else:
                self.Information.sampled_sql()
                self.sql_data = self.data
                data_sample = self.data.sample_time(0.8, no_cache=True)
                data_sample.download_data(2000, partial=True)
                self.data = Table(data_sample)
                self.sampling.setVisible(True)
                if self.auto_sample:
                    self.__timer.start()

        if self.data is not None and (len(self.data) == 0
                                      or len(self.data.domain) == 0):
            self.data = None

    def get_embedding(self):
        self.valid_data = None
        if self.data is None:
            return None

        x_data = self.get_column(self.attr_x, filter_valid=False)
        y_data = self.get_column(self.attr_y, filter_valid=False)
        if x_data is None or y_data is None:
            return None

        self.Warning.missing_coords.clear()
        self.Information.missing_coords.clear()
        self.valid_data = np.isfinite(x_data) & np.isfinite(y_data)
        if self.valid_data is not None and not np.all(self.valid_data):
            msg = self.Information if np.any(self.valid_data) else self.Warning
            msg.missing_coords(self.attr_x.name, self.attr_y.name)
        return np.vstack((x_data, y_data)).T

    # Tooltip
    def _point_tooltip(self, point_id, skip_attrs=()):
        point_data = self.data[point_id]
        xy_attrs = (self.attr_x, self.attr_y)
        text = "<br/>".join(
            escape('{} = {}'.format(var.name, point_data[var]))
            for var in xy_attrs)
        if self.tooltip_shows_all:
            others = super()._point_tooltip(point_id, skip_attrs=xy_attrs)
            if others:
                text = "<b>{}</b><br/><br/>{}".format(text, others)
        return text

    def can_draw_regresssion_line(self):
        return self.data is not None and\
               self.data.domain is not None and \
               self.attr_x.is_continuous and \
               self.attr_y.is_continuous

    def add_data(self, time=0.4):
        if self.data and len(self.data) > 2000:
            self.__timer.stop()
            return
        data_sample = self.sql_data.sample_time(time, no_cache=True)
        if data_sample:
            data_sample.download_data(2000, partial=True)
            data = Table(data_sample)
            self.data = Table.concatenate((self.data, data), axis=0)
            self.handleNewSignals()

    def init_attr_values(self):
        super().init_attr_values()
        data = self.data
        domain = data.domain if data and len(data) else None
        self.xy_model.set_domain(domain)
        self.attr_x = self.xy_model[0] if self.xy_model else None
        self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \
            else self.attr_x

    def switch_sampling(self):
        self.__timer.stop()
        if self.auto_sample and self.sql_data:
            self.add_data()
            self.__timer.start()

    def set_subset_data(self, subset_data):
        self.warning()
        if isinstance(subset_data, SqlTable):
            if subset_data.approx_len() < AUTO_DL_LIMIT:
                subset_data = Table(subset_data)
            else:
                self.warning("Data subset does not support large Sql tables")
                subset_data = None
        super().set_subset_data(subset_data)

    # called when all signals are received, so the graph is updated only once
    def handleNewSignals(self):
        if self.attribute_selection_list and self.data is not None and \
                self.data.domain is not None and \
                all(attr in self.data.domain for attr
                        in self.attribute_selection_list):
            self.attr_x = self.attribute_selection_list[0]
            self.attr_y = self.attribute_selection_list[1]
        self.attribute_selection_list = None
        super().handleNewSignals()
        self._vizrank_color_change()
        self.cb_reg_line.setEnabled(self.can_draw_regresssion_line())

    @Inputs.features
    def set_shown_attributes(self, attributes):
        if attributes and len(attributes) >= 2:
            self.attribute_selection_list = attributes[:2]
        else:
            self.attribute_selection_list = None

    def set_attr(self, attr_x, attr_y):
        self.attr_x, self.attr_y = attr_x, attr_y
        self.attr_changed()

    def attr_changed(self):
        self.cb_reg_line.setEnabled(self.can_draw_regresssion_line())
        self.setup_plot()
        self.commit()

    def setup_plot(self):
        super().setup_plot()
        for axis, var in (("bottom", self.attr_x), ("left", self.attr_y)):
            self.graph.set_axis_title(axis, var)
            if var and var.is_discrete:
                self.graph.set_axis_labels(axis,
                                           get_variable_values_sorted(var))
            else:
                self.graph.set_axis_labels(axis, None)

    def colors_changed(self):
        super().colors_changed()
        self._vizrank_color_change()

    def commit(self):
        super().commit()
        self.send_features()

    def send_features(self):
        features = [attr for attr in [self.attr_x, self.attr_y] if attr]
        self.Outputs.features.send(features or None)

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)
        return None

    def _get_send_report_caption(self):
        return report.render_items_vert(
            (("Color", self._get_caption_var_name(self.attr_color)),
             ("Label", self._get_caption_var_name(self.attr_label)),
             ("Shape", self._get_caption_var_name(self.attr_shape)),
             ("Size", self._get_caption_var_name(self.attr_size)),
             ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete
                            or self.graph.jitter_continuous)
              and self.graph.jitter_size)))

    @classmethod
    def migrate_settings(cls, settings, version):
        if version < 2 and "selection" in settings and settings["selection"]:
            settings["selection_group"] = [(a, 1)
                                           for a in settings["selection"]]
        if version < 3:
            if "auto_send_selection" in settings:
                settings["auto_commit"] = settings["auto_send_selection"]
            if "selection_group" in settings:
                settings["selection"] = settings["selection_group"]

    @classmethod
    def migrate_context(cls, context, version):
        if version < 3:
            values = context.values
            values["attr_color"] = values["graph"]["attr_color"]
            values["attr_size"] = values["graph"]["attr_size"]
            values["attr_shape"] = values["graph"]["attr_shape"]
            values["attr_label"] = values["graph"]["attr_label"]
示例#21
0
class WidgetManager(QObject):
    """
    WidgetManager class is responsible for creation, tracking and deletion
    of UI elements constituting an interactive workflow.

    It does so by reacting to changes in the underlying workflow model,
    creating and destroying the components when needed.

    This is an abstract class, subclassed MUST reimplement at least
    :func:`create_widget_for_node` and :func:`delete_widget_for_node`.

    The widgets created with :func:`create_widget_for_node` will automatically
    receive dispatched events:

        * :attr:`.WorkflowEvent.InputLinkAdded` - when a new input link is
          added to the workflow.
        * :attr:`.WorkflowEvent.InputLinkRemoved` - when a input link is
          removed.
        * :attr:`.WorkflowEvent.OutputLinkAdded` - when a new output link is
          added to the workflow.
        * :attr:`.WorkflowEvent.OutputLinkRemoved` - when a output link is
          removed.
        * :attr:`.WorkflowEvent.InputLinkStateChange` - when the input link's
          runtime state changes.
        * :attr:`.WorkflowEvent.OutputLinkStateChange` - when the output link's
          runtime state changes.
        * :attr:`.WorkflowEvent.NodeStateChange` - when the node's runtime
          state changes.
        * :attr:`.WorkflowEvent.WorkflowEnvironmentChange` - when the
          workflow environment changes.

    .. seealso:: :func:`.Scheme.add_link()`, :func:`Scheme.remove_link`,
                 :func:`.Scheme.runtime_env`, :class:`NodeEvent`,
                 :class:`LinkEvent`
    """
    #: A new QWidget was created and added by the manager.
    widget_for_node_added = Signal(SchemeNode, QWidget)

    #: A QWidget was removed, hidden and will be deleted when appropriate.
    widget_for_node_removed = Signal(SchemeNode, QWidget)

    __init_queue = None  # type: Deque[SchemeNode]

    class CreationPolicy(enum.Enum):
        """
        Widget Creation Policy.
        """
        #: Widgets are scheduled to be created from the event loop, or when
        #: first accessed with `widget_for_node`
        Normal = "Normal"
        #: Widgets are created immediately when a node is added to the
        #: workflow model.
        Immediate = "Immediate"
        #: Widgets are created only when first accessed with `widget_for_node`
        #: (e.g. when activated in the view).
        OnDemand = "OnDemand"

    Normal = CreationPolicy.Normal
    Immediate = CreationPolicy.Immediate
    OnDemand = CreationPolicy.OnDemand

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.__workflow = None  # type: Optional[Scheme]
        self.__creation_policy = WidgetManager.OnDemand
        self.__float_widgets_on_top = False

        self.__item_for_node = {}  # type: Dict[SchemeNode, Item]
        self.__item_for_widget = {}  # type: Dict[QWidget, Item]

        self.__init_queue = deque()

        self.__init_timer = QTimer(self, singleShot=True)
        self.__init_timer.timeout.connect(self.__process_init_queue)

        self.__activation_monitor = ActivationMonitor(self)
        self.__activation_counter = itertools.count()
        self.__activation_monitor.activated.connect(self.__mark_activated)

    def set_workflow(self, workflow):
        # type: (Scheme) -> None
        """
        Set the workflow.
        """
        if workflow is self.__workflow:
            return

        if self.__workflow is not None:
            # cleanup
            for node in self.__workflow.nodes:
                self.__remove_node(node)
            self.__workflow.node_added.disconnect(self.__on_node_added)
            self.__workflow.node_removed.disconnect(self.__on_node_removed)
            self.__workflow.removeEventFilter(self)

        self.__workflow = workflow

        workflow.node_added.connect(self.__on_node_added, Qt.UniqueConnection)
        workflow.node_removed.connect(self.__on_node_removed,
                                      Qt.UniqueConnection)
        workflow.installEventFilter(self)
        for node in workflow.nodes:
            self.__add_node(node)

    def workflow(self):
        # type: () -> Optional[Workflow]
        return self.__workflow

    scheme = workflow
    set_scheme = set_workflow

    def set_creation_policy(self, policy):
        # type: (CreationPolicy) -> None
        """
        Set the widget creation policy.
        """
        if self.__creation_policy != policy:
            self.__creation_policy = policy
            if self.__creation_policy == WidgetManager.Immediate:
                self.__init_timer.stop()
                # create all
                if self.__workflow is not None:
                    for node in self.__workflow.nodes:
                        self.ensure_created(node)
            elif self.__creation_policy == WidgetManager.Normal:
                if not self.__init_timer.isActive() and self.__init_queue:
                    self.__init_timer.start()
            elif self.__creation_policy == WidgetManager.OnDemand:
                self.__init_timer.stop()
            else:
                assert False

    def creation_policy(self):
        """
        Return the current widget creation policy.
        """
        return self.__creation_policy

    def create_widget_for_node(self, node):
        # type: (SchemeNode) -> QWidget
        """
        Create and initialize a widget for node.

        This is an abstract method. Subclasses must reimplemented it.
        """
        raise NotImplementedError()

    def delete_widget_for_node(self, node, widget):
        # type: (SchemeNode, QWidget) -> None
        """
        Remove and delete widget for node.

        This is an abstract method. Subclasses must reimplemented it.
        """
        raise NotImplementedError()

    def node_for_widget(self, widget):
        # type: (QWidget) -> Optional[SchemeNode]
        """
        Return the node for widget.
        """
        item = self.__item_for_widget.get(widget)
        if item is not None:
            return item.node
        else:
            return None

    def widget_for_node(self, node):
        # type: (SchemeNode) -> Optional[QWidget]
        """
        Return the widget for node.
        """
        self.ensure_created(node)
        item = self.__item_for_node.get(node)
        return item.widget if item is not None else None

    def __add_widget_for_node(self, node):
        # type: (SchemeNode) -> None
        item = self.__item_for_node.get(node)
        if item is not None:
            return
        if self.__workflow is None:
            return

        if node not in self.__workflow.nodes:
            return

        if node in self.__init_queue:
            self.__init_queue.remove(node)

        item = Item(node, None, -1)
        # Insert on the node -> item mapping.
        self.__item_for_node[node] = item
        log.debug("Creating widget for node %s", node)
        try:
            w = self.create_widget_for_node(node)
        except Exception:  # pylint: disable=broad-except
            log.critical("", exc_info=True)
            lines = traceback.format_exception(*sys.exc_info())
            text = "".join(lines)
            errorwidget = QLabel(textInteractionFlags=Qt.TextSelectableByMouse,
                                 wordWrap=True,
                                 objectName="widgetmanager-error-placeholder",
                                 text="<pre>" + escape(text) + "</pre>")
            item.errorwidget = errorwidget
            node.set_state_message(UserMessage(text, UserMessage.Error, ""))
            raise
        else:
            item.widget = w
            self.__item_for_widget[w] = item

        self.__set_float_on_top_flag(w)

        if w.windowIcon().isNull():
            desc = node.description
            w.setWindowIcon(icon_loader.from_description(desc).get(desc.icon))
        if not w.windowTitle():
            w.setWindowTitle(node.title)

        w.installEventFilter(self.__activation_monitor)
        raise_canvas = QAction(
            self.tr("Raise Canvas to Front"),
            w,
            objectName="action-canvas-raise-canvas",
            toolTip=self.tr("Raise containing canvas workflow window"),
            shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_Up))
        raise_canvas.triggered.connect(self.__on_activate_parent)
        raise_descendants = QAction(
            self.tr("Raise Descendants"),
            w,
            objectName="action-canvas-raise-descendants",
            toolTip=self.tr("Raise all immediate descendants of this node"),
            shortcut=QKeySequence(Qt.ControlModifier | Qt.ShiftModifier
                                  | Qt.Key_Right))
        raise_descendants.triggered.connect(
            partial(self.__on_raise_descendants, node))
        raise_ancestors = QAction(
            self.tr("Raise Ancestors"),
            w,
            objectName="action-canvas-raise-ancestors",
            toolTip=self.tr("Raise all immediate ancestors of this node"),
            shortcut=QKeySequence(Qt.ControlModifier | Qt.ShiftModifier
                                  | Qt.Key_Left))
        raise_ancestors.triggered.connect(
            partial(self.__on_raise_ancestors, node))
        w.addActions([raise_canvas, raise_descendants, raise_ancestors])

        # send all the post creation notification events
        workflow = self.__workflow
        assert workflow is not None
        inputs = workflow.find_links(sink_node=node)
        for i, link in enumerate(inputs):
            ev = LinkEvent(LinkEvent.InputLinkAdded, link, i)
            QCoreApplication.sendEvent(w, ev)
        outputs = workflow.find_links(source_node=node)
        for i, link in enumerate(outputs):
            ev = LinkEvent(LinkEvent.OutputLinkAdded, link, i)
            QCoreApplication.sendEvent(w, ev)

        self.widget_for_node_added.emit(node, w)

    def ensure_created(self, node):
        # type: (SchemeNode) -> None
        """
        Ensure that the widget for node is created.
        """
        if self.__workflow is None:
            return
        if node not in self.__workflow.nodes:
            return
        item = self.__item_for_node.get(node)
        if item is None:
            self.__add_widget_for_node(node)

    def __on_node_added(self, node):
        # type: (SchemeNode) -> None
        assert self.__workflow is not None
        assert node in self.__workflow.nodes
        assert node not in self.__item_for_node
        self.__add_node(node)

    def __add_node(self, node):
        # type: (SchemeNode) -> None
        # add node for tracking
        node.installEventFilter(self)
        if self.__creation_policy == WidgetManager.Immediate:
            self.ensure_created(node)
        else:
            self.__init_queue.append(node)
            if self.__creation_policy == WidgetManager.Normal:
                self.__init_timer.start()

    def __on_node_removed(self, node):  # type: (SchemeNode) -> None
        assert self.__workflow is not None
        assert node not in self.__workflow.nodes
        self.__remove_node(node)

    def __remove_node(self, node):  # type: (SchemeNode) -> None
        # remove the node and its widget from tracking.
        node.removeEventFilter(self)
        if node in self.__init_queue:
            self.__init_queue.remove(node)
        item = self.__item_for_node.get(node)

        if item is not None and item.widget is not None:
            widget = item.widget
            assert widget in self.__item_for_widget
            del self.__item_for_widget[widget]
            widget.removeEventFilter(self.__activation_monitor)
            item.widget = None
            self.widget_for_node_removed.emit(node, widget)
            self.delete_widget_for_node(node, widget)

        if item is not None:
            del self.__item_for_node[node]

    @Slot()
    def __process_init_queue(self):
        if self.__init_queue:
            node = self.__init_queue.popleft()
            assert self.__workflow is not None
            assert node in self.__workflow.nodes
            log.debug("__process_init_queue: '%s'", node.title)
            try:
                self.ensure_created(node)
            finally:
                if self.__init_queue:
                    self.__init_timer.start()

    def __mark_activated(self, widget):  # type: (QWidget) ->  None
        # Update the tracked stacking order for `widget`
        item = self.__item_for_widget.get(widget)
        if item is not None:
            item.activation_order = next(self.__activation_counter)

    def activate_widget_for_node(self, node, widget):
        # type: (SchemeNode, QWidget) -> None
        """
        Activate the widget for node (show and raise above other)
        """
        if widget.windowState() == Qt.WindowMinimized:
            widget.showNormal()
        widget.setVisible(True)
        widget.raise_()
        widget.activateWindow()

    def activate_window_group(self, group):
        # type: (Scheme.WindowGroup) -> None
        self.restore_window_state(group.state)

    def raise_widgets_to_front(self):
        """
        Raise all current visible widgets to the front.

        The widgets will be stacked by activation order.
        """
        workflow = self.__workflow
        if workflow is None:
            return

        items = filter(
            lambda item:
            (item.widget.isVisible()
             if item is not None and item.widget is not None else False),
            map(self.__item_for_node.get, workflow.nodes))
        self.__raise_and_activate(items)

    def set_float_widgets_on_top(self, float_on_top):
        """
        Set `Float Widgets on Top` flag on all widgets.
        """
        self.__float_widgets_on_top = float_on_top
        for item in self.__item_for_node.values():
            if item.widget is not None:
                self.__set_float_on_top_flag(item.widget)

    def save_window_state(self):
        # type: () -> List[Tuple[SchemeNode, bytes]]
        """
        Save current open window arrangement.
        """
        if self.__workflow is None:
            return []

        workflow = self.__workflow  # type: Scheme
        state = []
        for node in workflow.nodes:  # type: SchemeNode
            item = self.__item_for_node.get(node, None)
            if item is None:
                continue
            stackorder = item.activation_order
            if item.widget is not None and not item.widget.isHidden():
                data = self.save_widget_geometry(node, item.widget)
                state.append((stackorder, node, data))

        return [(node, data)
                for _, node, data in sorted(state, key=lambda t: t[0])]

    def restore_window_state(self, state):
        # type: (List[Tuple[Node, bytes]]) -> None
        """
        Restore the window state.
        """
        assert self.__workflow is not None
        workflow = self.__workflow  # type: Scheme
        visible = {node for node, _ in state}
        # first hide all other widgets
        for node in workflow.nodes:
            if node not in visible:
                # avoid creating widgets if not needed
                item = self.__item_for_node.get(node, None)
                if item is not None and item.widget is not None:
                    item.widget.hide()
        allnodes = set(workflow.nodes)
        # restore state for visible group; windows are stacked as they appear
        # in the state list.
        w = None
        for node, node_state in filter(lambda t: t[0] in allnodes, state):
            w = self.widget_for_node(node)  # also create it if needed
            if w is not None:
                w.show()
                self.restore_widget_geometry(node, w, node_state)
                w.raise_()
                self.__mark_activated(w)

        # activate (give focus to) the last window
        if w is not None:
            w.activateWindow()

    def save_widget_geometry(self, node, widget):
        # type: (SchemeNode, QWidget) -> bytes
        """
        Save and return the current geometry and state for node.
        """
        return b''

    def restore_widget_geometry(self, node, widget, state):
        # type: (SchemeNode, QWidget, bytes) -> bool
        """
        Restore the widget geometry and state for node.

        Return True if the geometry was restored successfully.

        The default implementation does nothing.
        """
        return False

    @Slot(SchemeNode)
    def __on_raise_ancestors(self, node):
        # type: (SchemeNode) -> None
        """
        Raise all the ancestor widgets of `widget`.
        """
        item = self.__item_for_node.get(node)
        if item is not None:
            scheme = self.scheme()
            assert scheme is not None
            ancestors = [
                self.__item_for_node.get(p) for p in scheme.parents(item.node)
            ]
            self.__raise_and_activate(filter(None, reversed(ancestors)))

    @Slot(SchemeNode)
    def __on_raise_descendants(self, node):
        # type: (SchemeNode) -> None
        """
        Raise all the descendants widgets of `widget`.
        """
        item = self.__item_for_node.get(node)
        if item is not None:
            scheme = self.scheme()
            assert scheme is not None
            descendants = [
                self.__item_for_node.get(p) for p in scheme.children(item.node)
            ]
            self.__raise_and_activate(filter(None, reversed(descendants)))

    def __raise_and_activate(self, items):
        # type: (Iterable[Item]) -> None
        """Show and raise a set of widgets."""
        # preserve the tracked stacking order
        items = sorted(items, key=lambda item: item.activation_order)
        w = None
        for item in items:
            if item.widget is not None:
                w = item.widget
            elif item.errorwidget is not None:
                w = item.errorwidget
            else:
                continue
            w.show()
            w.raise_()
        if w is not None:
            # give focus to the last activated top window
            w.activateWindow()

    def __activate_widget_for_node(self, node):  # type: (SchemeNode) -> None
        # activate the widget for the node.
        self.ensure_created(node)
        item = self.__item_for_node.get(node)
        if item is None:
            return
        if item.widget is not None:
            self.activate_widget_for_node(node, item.widget)
        elif item.errorwidget is not None:
            item.errorwidget.show()
            item.errorwidget.raise_()
            item.errorwidget.activateWindow()

    def __on_activate_parent(self):
        event = WorkflowEvent(WorkflowEvent.ActivateParentRequest)
        QCoreApplication.sendEvent(self.scheme(), event)

    def eventFilter(self, recv, event):
        # type: (QObject, QEvent) -> bool
        if isinstance(recv, SchemeNode):
            if event.type() == NodeEvent.NodeActivateRequest:
                self.__activate_widget_for_node(recv)
            self.__dispatch_events(recv, event)
        elif event.type() == WorkflowEvent.WorkflowEnvironmentChange \
                and recv is self.__workflow:
            for node in self.__item_for_node:
                self.__dispatch_events(node, event)
        return False

    def __dispatch_events(self, node: Node, event: QEvent) -> None:
        """
        Dispatch relevant workflow events to the GUI widget
        """
        if event.type() in (
                WorkflowEvent.InputLinkAdded,
                WorkflowEvent.InputLinkRemoved,
                WorkflowEvent.InputLinkStateChange,
                WorkflowEvent.OutputLinkAdded,
                WorkflowEvent.OutputLinkRemoved,
                WorkflowEvent.OutputLinkStateChange,
                WorkflowEvent.NodeStateChange,
                WorkflowEvent.WorkflowEnvironmentChange,
        ):
            item = self.__item_for_node.get(node)
            if item is not None and item.widget is not None:
                QCoreApplication.sendEvent(item.widget, event)

    def __set_float_on_top_flag(self, widget):
        # type: (QWidget) -> None
        """Set or unset widget's float on top flag"""
        should_float_on_top = self.__float_widgets_on_top
        float_on_top = bool(widget.windowFlags() & Qt.WindowStaysOnTopHint)

        if float_on_top == should_float_on_top:
            return

        widget_was_visible = widget.isVisible()
        if should_float_on_top:
            widget.setWindowFlags(widget.windowFlags()
                                  | Qt.WindowStaysOnTopHint)
        else:
            widget.setWindowFlags(widget.windowFlags()
                                  & ~Qt.WindowStaysOnTopHint)

        # Changing window flags hid the widget
        if widget_was_visible:
            widget.show()

    def actions_for_context_menu(self, node):
        # type: (SchemeNode) -> List[QAction]
        """
        Return a list of extra actions that can be inserted into context
        menu in the workflow editor.

        Subclasses can reimplement this method to extend the default context
        menu.

        Parameters
        ----------
        node: SchemeNode
            The node for which the context menu is requested.

        Return
        ------
        actions: List[QAction]
            Actions that are appended to the default menu.
        """
        return []
示例#22
0
class OWLouvainClustering(widget.OWWidget):
    name = "Louvain Clustering"
    description = "Detects communities in a network of nearest neighbors."
    icon = "icons/LouvainClustering.svg"
    priority = 2110

    want_main_area = False

    settingsHandler = DomainContextHandler()

    class Inputs:
        data = Input("Data", Table, default=True)

    if Graph is not None:

        class Outputs:
            annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME,
                                    Table,
                                    default=True)
            graph = Output("Network", Graph)
    else:

        class Outputs:
            annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME,
                                    Table,
                                    default=True)

    apply_pca = ContextSetting(True)
    pca_components = ContextSetting(_DEFAULT_PCA_COMPONENTS)
    normalize = ContextSetting(True)
    metric_idx = ContextSetting(0)
    k_neighbors = ContextSetting(_DEFAULT_K_NEIGHBORS)
    resolution = ContextSetting(1.)
    auto_commit = Setting(False)

    class Information(widget.OWWidget.Information):
        modified = Msg("Press commit to recompute clusters and send new data")

    class Error(widget.OWWidget.Error):
        empty_dataset = Msg("No features in data")

    def __init__(self):
        super().__init__()

        self.data = None  # type: Optional[Table]
        self.preprocessed_data = None  # type: Optional[Table]
        self.pca_projection = None  # type: Optional[Table]
        self.graph = None  # type: Optional[nx.Graph]
        self.partition = None  # type: Optional[np.array]
        # Use a executor with a single worker, to limit CPU overcommitment for
        # cancelled tasks. The method does not have a fine cancellation
        # granularity so we assure that there are not N - 1 jobs executing
        # for no reason only to be thrown away. It would be better to use the
        # global pool but implement a limit on jobs from this source.
        self.__executor = futures.ThreadPoolExecutor(max_workers=1)
        self.__task = None  # type: Optional[TaskState]
        self.__invalidated = False
        # coalescing commit timer
        self.__commit_timer = QTimer(self, singleShot=True)
        self.__commit_timer.timeout.connect(self.commit)

        # Set up UI
        info_box = gui.vBox(self.controlArea, "Info")
        self.info_label = gui.widgetLabel(info_box,
                                          "No data on input.")  # type: QLabel

        preprocessing_box = gui.vBox(self.controlArea, "Preprocessing")
        self.normalize_cbx = gui.checkBox(
            preprocessing_box,
            self,
            "normalize",
            label="Normalize data",
            callback=self._invalidate_preprocessed_data,
        )  # type: QCheckBox
        self.apply_pca_cbx = gui.checkBox(
            preprocessing_box,
            self,
            "apply_pca",
            label="Apply PCA preprocessing",
            callback=self._apply_pca_changed,
        )  # type: QCheckBox
        self.pca_components_slider = gui.hSlider(
            preprocessing_box,
            self,
            "pca_components",
            label="PCA Components: ",
            minValue=2,
            maxValue=_MAX_PCA_COMPONENTS,
            callback=self._invalidate_pca_projection,
            tracking=False)  # type: QSlider

        graph_box = gui.vBox(self.controlArea, "Graph parameters")
        self.metric_combo = gui.comboBox(
            graph_box,
            self,
            "metric_idx",
            label="Distance metric",
            items=[m[0] for m in METRICS],
            callback=self._invalidate_graph,
            orientation=Qt.Horizontal,
        )  # type: gui.OrangeComboBox
        self.k_neighbors_spin = gui.spin(
            graph_box,
            self,
            "k_neighbors",
            minv=1,
            maxv=_MAX_K_NEIGBOURS,
            label="k neighbors",
            controlWidth=80,
            alignment=Qt.AlignRight,
            callback=self._invalidate_graph,
        )  # type: gui.SpinBoxWFocusOut
        self.resolution_spin = gui.hSlider(
            graph_box,
            self,
            "resolution",
            minValue=0,
            maxValue=5.,
            step=1e-1,
            label="Resolution",
            intOnly=False,
            labelFormat="%.1f",
            callback=self._invalidate_partition,
            tracking=False,
        )  # type: QSlider
        self.resolution_spin.parent().setToolTip(
            "The resolution parameter affects the number of clusters to find. "
            "Smaller values tend to produce more clusters and larger values "
            "retrieve less clusters.")
        self.apply_button = gui.auto_commit(
            self.controlArea,
            self,
            "auto_commit",
            "Apply",
            box=None,
            commit=lambda: self.commit(),
            callback=lambda: self._on_auto_commit_changed(),
        )  # type: QWidget

    def _preprocess_data(self):
        if self.preprocessed_data is None:
            if self.normalize:
                normalizer = preprocess.Normalize(center=False)
                self.preprocessed_data = normalizer(self.data)
            else:
                self.preprocessed_data = self.data

    def _apply_pca_changed(self):
        self.controls.pca_components.setEnabled(self.apply_pca)
        self._invalidate_graph()

    def _invalidate_preprocessed_data(self):
        self.preprocessed_data = None
        self._invalidate_pca_projection()
        # If we don't apply PCA, this still invalidates the graph, otherwise
        # this change won't be propagated further
        if not self.apply_pca:
            self._invalidate_graph()

    def _invalidate_pca_projection(self):
        self.pca_projection = None
        if not self.apply_pca:
            return

        self._invalidate_graph()
        self._set_modified(True)

    def _invalidate_graph(self):
        self.graph = None
        self._invalidate_partition()
        self._set_modified(True)

    def _invalidate_partition(self):
        self.partition = None
        self._invalidate_output()
        self.Information.modified()
        self._set_modified(True)

    def _invalidate_output(self):
        self.__invalidated = True
        if self.__task is not None:
            self.__cancel_task(wait=False)

        if self.auto_commit:
            self.__commit_timer.start()
        else:
            self.__set_state_ready()

    def _set_modified(self, state):
        """
        Mark the widget (GUI) as containing modified state.
        """
        if self.data is None:
            # does not apply when we have no data
            state = False
        elif self.auto_commit:
            # does not apply when auto commit is on
            state = False
        self.Information.modified(shown=state)

    def _on_auto_commit_changed(self):
        if self.auto_commit and self.__invalidated:
            self.commit()

    def cancel(self):
        """Cancel any running jobs."""
        self.__cancel_task(wait=False)
        self.__set_state_ready()

    def commit(self):
        self.__commit_timer.stop()
        self.__invalidated = False
        self._set_modified(False)

        # Cancel current running task
        self.__cancel_task(wait=False)

        if self.data is None:
            self.__set_state_ready()
            return

        self.Error.clear()

        if self.partition is not None:
            self.__set_state_ready()
            self._send_data()
            return

        self._preprocess_data()

        state = TaskState(self)

        # Prepare/assemble the task(s) to run; reuse partial results
        if self.apply_pca:
            if self.pca_projection is not None:
                data = self.pca_projection
                pca_components = None
            else:
                data = self.preprocessed_data
                pca_components = self.pca_components
        else:
            data = self.preprocessed_data
            pca_components = None

        if self.graph is not None:
            # run on graph only; no need to do PCA and k-nn search ...
            graph = self.graph
            k_neighbors = metric = None
        else:
            k_neighbors, metric = self.k_neighbors, METRICS[self.metric_idx][1]
            graph = None

        if graph is None:
            task = partial(
                run_on_data,
                data,
                pca_components=pca_components,
                normalize=self.normalize,
                k_neighbors=k_neighbors,
                metric=metric,
                resolution=self.resolution,
                state=state,
            )
        else:
            task = partial(run_on_graph,
                           graph,
                           resolution=self.resolution,
                           state=state)

        self.info_label.setText("Running...")
        self.__set_state_busy()
        self.__start_task(task, state)

    @Slot(object)
    def __set_partial_results(self, result):
        # type: (Tuple[str, Any]) -> None
        which, res = result
        if which == "pca_projection":
            assert isinstance(res, Table) and len(res) == len(self.data)
            self.pca_projection = res
        elif which == "graph":
            assert isinstance(res, nx.Graph)
            self.graph = res
        elif which == "partition":
            assert isinstance(res, np.ndarray)
            self.partition = res
        else:
            assert False, which

    @Slot(object)
    def __on_done(self, future):
        # type: (Future["Results"]) -> None
        assert future.done()
        assert self.__task is not None
        assert self.__task.future is future
        assert self.__task.watcher.future() is future
        self.__task, task = None, self.__task
        task.deleteLater()

        self.__set_state_ready()

        result = future.result()
        self.__set_results(result)

    @Slot(str)
    def setStatusMessage(self, text):
        super().setStatusMessage(text)

    @Slot(float)
    def progressBarSet(self, value, *a, **kw):
        super().progressBarSet(value, *a, **kw)

    def __set_state_ready(self):
        self.progressBarFinished()
        self.setBlocking(False)
        self.setStatusMessage("")

    def __set_state_busy(self):
        self.progressBarInit()
        self.setBlocking(True)

    def __start_task(self, task, state):
        # type: (Callable[[], Any], TaskState) -> None
        assert self.__task is None
        state.status_changed.connect(self.setStatusMessage)
        state.progress_changed.connect(self.progressBarSet)
        state.partial_result_ready.connect(self.__set_partial_results)
        state.watcher.done.connect(self.__on_done)
        state.start(self.__executor, task)
        state.setParent(self)
        self.__task = state

    def __cancel_task(self, wait=True):
        # Cancel and dispose of the current task
        if self.__task is not None:
            state, self.__task = self.__task, None
            state.cancel()
            state.partial_result_ready.disconnect(self.__set_partial_results)
            state.status_changed.disconnect(self.setStatusMessage)
            state.progress_changed.disconnect(self.progressBarSet)
            state.watcher.done.disconnect(self.__on_done)
            if wait:
                futures.wait([state.future])
                state.deleteLater()
            else:
                w = FutureWatcher(state.future, parent=state)
                w.done.connect(state.deleteLater)

    def __set_results(self, results):
        # type: ("Results") -> None
        # NOTE: All of these have already been set by __set_partial_results,
        # we double check that they are aliases
        if results.pca_projection is not None:
            assert self.pca_components == results.pca_components
            assert self.pca_projection is results.pca_projection
            self.pca_projection = results.pca_projection
        if results.graph is not None:
            assert results.metric == METRICS[self.metric_idx][1]
            assert results.k_neighbors == self.k_neighbors
            assert self.graph is results.graph
            self.graph = results.graph
        if results.partition is not None:
            assert results.resolution == self.resolution
            assert self.partition is results.partition
            self.partition = results.partition

        # Display the number of found clusters in the UI
        num_clusters = len(np.unique(self.partition))
        self.info_label.setText("%d clusters found." % num_clusters)

        self._send_data()

    def _send_data(self):
        if self.partition is None or self.data is None:
            return
        domain = self.data.domain
        # Compute the frequency of each cluster index
        counts = np.bincount(self.partition)
        indices = np.argsort(counts)[::-1]
        index_map = {n: o for n, o in zip(indices, range(len(indices)))}
        new_partition = list(map(index_map.get, self.partition))

        cluster_var = DiscreteVariable(
            get_unique_names(domain, "Cluster"),
            values=[
                "C%d" % (i + 1) for i, _ in enumerate(np.unique(new_partition))
            ])

        new_domain = add_columns(domain, metas=[cluster_var])
        new_table = self.data.transform(new_domain)
        new_table.get_column_view(cluster_var)[0][:] = new_partition
        self.Outputs.annotated_data.send(new_table)

        if Graph is not None:
            graph = Graph(self.graph)
            graph.set_items(new_table)
            self.Outputs.graph.send(graph)

    @Inputs.data
    def set_data(self, data):
        self.closeContext()
        self.Error.clear()

        prev_data, self.data = self.data, data
        self.openContext(self.data)
        # Make sure to properly enable/disable slider based on `apply_pca` setting
        self.controls.pca_components.setEnabled(self.apply_pca)

        if prev_data and self.data and ut.array_equal(prev_data.X,
                                                      self.data.X):
            if self.auto_commit:
                self._send_data()
            return

        # Clear the outputs
        self.Outputs.annotated_data.send(None)
        if Graph is not None:
            self.Outputs.graph.send(None)

        # Clear internal state
        self.clear()
        self._invalidate_pca_projection()

        # Make sure the dataset is ok
        if self.data is not None and len(self.data.domain.attributes) < 1:
            self.Error.empty_dataset()
            self.data = None

        if self.data is None:
            return

        # Can't have more PCA components than the number of attributes
        n_attrs = len(data.domain.attributes)
        self.pca_components_slider.setMaximum(min(_MAX_PCA_COMPONENTS,
                                                  n_attrs))
        self.pca_components_slider.setValue(
            min(_DEFAULT_PCA_COMPONENTS, n_attrs))
        # Can't have more k neighbors than there are data points
        self.k_neighbors_spin.setMaximum(min(_MAX_K_NEIGBOURS, len(data) - 1))
        self.k_neighbors_spin.setValue(min(_DEFAULT_K_NEIGHBORS,
                                           len(data) - 1))

        self.info_label.setText("Clustering not yet run.")

        self.commit()

    def clear(self):
        self.__cancel_task(wait=False)
        self.preprocessed_data = None
        self.pca_projection = None
        self.graph = None
        self.partition = None
        self.Error.clear()
        self.Information.modified.clear()
        self.info_label.setText("No data on input.")

    def onDeleteWidget(self):
        self.__cancel_task(wait=True)
        self.__executor.shutdown(True)
        self.clear()
        self.data = None
        super().onDeleteWidget()

    def send_report(self):
        pca = report.bool_str(self.apply_pca)
        if self.apply_pca:
            pca += report.plural(", {number} component{s}",
                                 self.pca_components)

        self.report_items((
            ("Normalize data", report.bool_str(self.normalize)),
            ("PCA preprocessing", pca),
            ("Metric", METRICS[self.metric_idx][0]),
            ("k neighbors", self.k_neighbors),
            ("Resolution", self.resolution),
        ))
示例#23
0
class OWTimeSlice(widget.OWWidget):
    name = 'Time Slice'
    description = 'Select a slice of measurements on a time interval.'
    icon = 'icons/TimeSlice.svg'
    priority = 550

    inputs = [
        ('Data', Table, 'set_data'),
    ]
    outputs = [('Subset', Table)]

    want_main_area = False

    class Error(widget.OWWidget.Error):
        no_time_variable = widget.Msg('Data contains no time variable')

    MAX_SLIDER_VALUE = 500
    DATE_FORMATS = ('yyyy-MM-dd', 'HH:mm:ss.zzz')
    OVERLAP_AMOUNTS = OrderedDict(
        (('all but one (= shift by one slider value)',
          0), ('6/7 of interval', 6 / 7), ('3/4 of interval', 3 / 4),
         ('1/2 of interval', 1 / 2), ('1/3 of interval',
                                      1 / 3), ('1/5 of interval', 1 / 5)))

    loop_playback = settings.Setting(True)
    steps_overlap = settings.Setting(True)
    overlap_amount = settings.Setting(next(iter(OVERLAP_AMOUNTS)))
    playback_interval = settings.Setting(1000)
    slider_values = settings.Setting((0, .2 * MAX_SLIDER_VALUE))

    def __init__(self):
        super().__init__()
        self._delta = 0
        self.play_timer = QTimer(self,
                                 interval=self.playback_interval,
                                 timeout=self.play_single_step)
        slider = self.slider = Slider(
            Qt.Horizontal,
            self,
            minimum=0,
            maximum=self.MAX_SLIDER_VALUE,
            tracking=False,
            valuesChanged=self.valuesChanged,
            minimumValue=self.slider_values[0],
            maximumValue=self.slider_values[1],
        )
        slider.setShowText(False)
        box = gui.vBox(self.controlArea, 'Time Slice')
        box.layout().addWidget(slider)

        hbox = gui.hBox(box)

        def _dateTimeChanged(editted):
            def handler():
                minTime = self.date_from.dateTime().toMSecsSinceEpoch() / 1000
                maxTime = self.date_to.dateTime().toMSecsSinceEpoch() / 1000
                if minTime > maxTime:
                    minTime = maxTime = minTime if editted == self.date_from else maxTime
                    other = self.date_to if editted == self.date_from else self.date_from
                    with blockSignals(other):
                        other.setDateTime(editted.dateTime())

                with blockSignals(self.slider):
                    self.slider.setValues(self.slider.unscale(minTime),
                                          self.slider.unscale(maxTime))
                self.send_selection(minTime, maxTime)

            return handler

        kwargs = dict(calendarPopup=True,
                      displayFormat=' '.join(self.DATE_FORMATS),
                      timeSpec=Qt.UTC)
        date_from = self.date_from = QDateTimeEdit(self, **kwargs)
        date_to = self.date_to = QDateTimeEdit(self, **kwargs)
        date_from.dateTimeChanged.connect(_dateTimeChanged(date_from))
        date_to.dateTimeChanged.connect(_dateTimeChanged(date_to))
        hbox.layout().addStretch(100)
        hbox.layout().addWidget(date_from)
        hbox.layout().addWidget(QLabel(' – '))
        hbox.layout().addWidget(date_to)
        hbox.layout().addStretch(100)

        vbox = gui.vBox(self.controlArea, 'Step / Play Through')
        gui.checkBox(vbox, self, 'loop_playback', label='Loop playback')
        hbox = gui.hBox(vbox)
        gui.checkBox(hbox,
                     self,
                     'steps_overlap',
                     label='Stepping overlaps by:',
                     toolTip='If enabled, the active interval moves forward '
                     '(backward) by half of the interval at each step.')
        gui.comboBox(hbox,
                     self,
                     'overlap_amount',
                     items=tuple(self.OVERLAP_AMOUNTS.keys()),
                     sendSelectedValue=True)
        gui.spin(vbox,
                 self,
                 'playback_interval',
                 label='Playback delay (msec):',
                 minv=100,
                 maxv=30000,
                 step=200,
                 callback=lambda: self.play_timer.setInterval(
                     self.playback_interval))

        hbox = gui.hBox(vbox)
        self.step_backward = gui.button(
            hbox,
            self,
            '⏮',
            callback=lambda: self.play_single_step(backward=True),
            autoDefault=False)
        self.play_button = gui.button(hbox,
                                      self,
                                      '▶',
                                      callback=self.playthrough,
                                      toggleButton=True,
                                      default=True)
        self.step_forward = gui.button(hbox,
                                       self,
                                       '⏭',
                                       callback=self.play_single_step,
                                       autoDefault=False)

        gui.rubber(self.controlArea)

    def valuesChanged(self, minValue, maxValue):
        self.slider_values = (minValue, maxValue)
        self._delta = max(1, (maxValue - minValue))
        minTime = self.slider.scale(minValue)
        maxTime = self.slider.scale(maxValue)

        from_dt = QDateTime.fromMSecsSinceEpoch(minTime * 1000).toUTC()
        to_dt = QDateTime.fromMSecsSinceEpoch(maxTime * 1000).toUTC()
        with blockSignals(self.date_from, self.date_to):
            self.date_from.setDateTime(from_dt)
            self.date_to.setDateTime(to_dt)

        self.send_selection(minTime, maxTime)

    def send_selection(self, minTime, maxTime):
        try:
            time_values = self.data.time_values
        except AttributeError:
            return
        indices = (minTime <= time_values) & (time_values <= maxTime)
        self.send('Subset', self.data[indices] if indices.any() else None)

    def playthrough(self):
        playing = self.play_button.isChecked()

        for widget in (self.slider, self.step_forward, self.step_backward):
            widget.setDisabled(playing)

        if playing:
            self.play_timer.start()
            self.play_button.setText('▮▮')
        else:
            self.play_timer.stop()
            self.play_button.setText('▶')

    def play_single_step(self, backward=False):
        op = operator.sub if backward else operator.add
        minValue, maxValue = self.slider.values()
        orig_delta = delta = self._delta

        if self.steps_overlap:
            overlap_amount = self.OVERLAP_AMOUNTS[self.overlap_amount]
            if overlap_amount:
                delta = max(1, int(round(delta * (1 - overlap_amount))))
            else:
                delta = 1  # single slider step (== 1/self.MAX_SLIDER_VALUE)

        if maxValue == self.slider.maximum() and not backward:
            minValue = self.slider.minimum()
            maxValue = minValue + orig_delta

            if not self.loop_playback:
                self.play_button.click()
                assert not self.play_timer.isActive()
                assert not self.play_button.isChecked()

        elif minValue == self.slider.minimum() and backward:
            maxValue = self.slider.maximum()
            minValue = maxValue - orig_delta
        else:
            minValue = op(minValue, delta)
            maxValue = op(maxValue, delta)
        # Blocking signals because we want this to be synchronous to avoid
        # re-setting self._delta
        with blockSignals(self.slider):
            self.slider.setValues(minValue, maxValue)
        self.valuesChanged(self.slider.minimumValue(),
                           self.slider.maximumValue())
        self._delta = orig_delta  # Override valuesChanged handler

    def set_data(self, data):
        slider = self.slider
        self.data = data = None if data is None else Timeseries.from_data_table(
            data)

        def disabled():
            slider.setFormatter(str)
            slider.setHistogram(None)
            slider.setScale(0, 0)
            slider.setValues(0, 0)
            slider.setDisabled(True)
            self.send('Subset', None)

        if data is None:
            disabled()
            return

        if not isinstance(data.time_variable, TimeVariable):
            self.Error.no_time_variable()
            disabled()
            return
        self.Error.clear()
        var = data.time_variable

        time_values = data.time_values

        slider.setDisabled(False)
        slider.setHistogram(time_values)
        slider.setFormatter(var.repr_val)
        slider.setScale(time_values.min(), time_values.max())
        self.valuesChanged(slider.minimumValue(), slider.maximumValue())

        # Update datetime edit fields
        min_dt = QDateTime.fromMSecsSinceEpoch(time_values[0] * 1000).toUTC()
        max_dt = QDateTime.fromMSecsSinceEpoch(time_values[-1] * 1000).toUTC()
        self.date_from.setDateTimeRange(min_dt, max_dt)
        self.date_to.setDateTimeRange(min_dt, max_dt)
        date_format = '   '.join(
            (self.DATE_FORMATS[0] if var.have_date else '',
             self.DATE_FORMATS[1] if var.have_time else '')).strip()
        self.date_from.setDisplayFormat(date_format)
        self.date_to.setDisplayFormat(date_format)
示例#24
0
class OWBouncingBalls(OWWidget, ConcurrentWidgetMixin):
    name = "BouncingBalls"
    icon = "icons/mywidget.svg"

    want_main_area = False

    class Inputs:
        bb = Input('BouncingBalls', list)

    def __init__(self):
        OWWidget.__init__(self)
        ConcurrentWidgetMixin.__init__(self)

        self.frame = None

        self.animation = BouncingBalls()
        self.timer = QTimer()
        self.timer.timeout.connect(self.pygame_loop)
        self.timer.start(10)

        self.image = None
        self.current_colors = None

    @Inputs.bb
    def on_input(self, colors):
        self.current_colors = colors
        (blue, blue_rad), (green, green_rad) = colors

        if blue:
            self.animation.blue.color = blue
            self.animation.blue.radius = int(100 * blue_rad)
        else:
            self.animation.blue = self.animation.create_new_ball()

        if green:
            self.animation.green.color = green
            self.animation.green.radius = int(100 * green_rad)
        else:
            self.animation.green = self.animation.create_new_ball()

    def pygame_loop(self):
        self.animation.loop()

        self.image = QImage(self.animation.surface.get_buffer().raw,
                            self.animation.surface.get_width(),
                            self.animation.surface.get_height(),
                            QImage.Format_RGB32)

        # repaint Qt window
        self.update()

    def paintEvent(self, event):
        if self.image is not None:
            qp = QPainter()
            qp.begin(self)
            qp.drawImage(0, 0, self.image)
            qp.end()

    def onDeleteWidget(self):
        super().onDeleteWidget()

    def __set_state_ready(self):
        self.setBlocking(False)

    def __set_state_busy(self):
        self.setBlocking(True)

    def _connect_signals(self, state: TaskState):
        super()._connect_signals(state)

    def _disconnect_signals(self, state: TaskState):
        super()._disconnect_signals(state)
示例#25
0
class OWMDS(OWWidget):
    name = "MDS"
    description = "Two-dimensional data projection by multidimensional " \
                  "scaling constructed from a distance matrix."
    icon = "icons/MDS.svg"

    class Inputs:
        data = Input("Data", Orange.data.Table, default=True)
        distances = Input("Distances", Orange.misc.DistMatrix)
        data_subset = Input("Data Subset", Orange.data.Table)

    class Outputs:
        selected_data = Output("Selected Data",
                               Orange.data.Table,
                               default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table)

    settings_version = 2

    #: Initialization type
    PCA, Random = 0, 1

    #: Refresh rate
    RefreshRate = [("Every iteration", 1), ("Every 5 steps", 5),
                   ("Every 10 steps", 10), ("Every 25 steps", 25),
                   ("Every 50 steps", 50), ("None", -1)]

    #: Runtime state
    Running, Finished, Waiting = 1, 2, 3

    settingsHandler = settings.DomainContextHandler()

    max_iter = settings.Setting(300)
    initialization = settings.Setting(PCA)
    refresh_rate = settings.Setting(3)

    # output embedding role.
    NoRole, AttrRole, AddAttrRole, MetaRole = 0, 1, 2, 3

    auto_commit = settings.Setting(True)

    selection_indices = settings.Setting(None, schema_only=True)

    #: Percentage of all pairs displayed (ranges from 0 to 20)
    connected_pairs = settings.Setting(5)

    legend_anchor = settings.Setting(((1, 0), (1, 0)))

    graph = SettingProvider(OWMDSGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Error(OWWidget.Error):
        not_enough_rows = Msg("Input data needs at least 2 rows")
        matrix_too_small = Msg("Input matrix must be at least 2x2")
        no_attributes = Msg("Data has no attributes")
        mismatching_dimensions = \
            Msg("Data and distances dimensions do not match.")
        out_of_memory = Msg("Out of memory")
        optimization_error = Msg("Error during optimization\n{}")

    def __init__(self):
        super().__init__()
        #: Input dissimilarity matrix
        self.matrix = None  # type: Optional[Orange.misc.DistMatrix]
        #: Effective data used for plot styling/annotations. Can be from the
        #: input signal (`self.signal_data`) or the input matrix
        #: (`self.matrix.data`)
        self.data = None  # type: Optional[Orange.data.Table]
        #: Input subset data table
        self.subset_data = None  # type: Optional[Orange.data.Table]
        #: Data table from the `self.matrix.row_items` (if present)
        self.matrix_data = None  # type: Optional[Orange.data.Table]
        #: Input data table
        self.signal_data = None

        self._similar_pairs = None
        self._subset_mask = None  # type: Optional[np.ndarray]
        self._invalidated = False
        self.effective_matrix = None
        self._curve = None
        self._primitive_metas = ()
        self._data_metas = None

        self.variable_x = ContinuousVariable("mds-x")
        self.variable_y = ContinuousVariable("mds-y")

        self.__update_loop = None
        # timer for scheduling updates
        self.__timer = QTimer(self, singleShot=True, interval=0)
        self.__timer.timeout.connect(self.__next_step)
        self.__state = OWMDS.Waiting
        self.__in_next_step = False
        self.__draw_similar_pairs = False

        box = gui.vBox(self.controlArea, "MDS Optimization")
        form = QFormLayout(labelAlignment=Qt.AlignLeft,
                           formAlignment=Qt.AlignLeft,
                           fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow,
                           verticalSpacing=10)

        form.addRow("Max iterations:",
                    gui.spin(box, self, "max_iter", 10, 10**4, step=1))

        form.addRow(
            "Initialization:",
            gui.radioButtons(box,
                             self,
                             "initialization",
                             btnLabels=("PCA (Torgerson)", "Random"),
                             callback=self.__invalidate_embedding))

        box.layout().addLayout(form)
        form.addRow(
            "Refresh:",
            gui.comboBox(box,
                         self,
                         "refresh_rate",
                         items=[t for t, _ in OWMDS.RefreshRate],
                         callback=self.__invalidate_refresh))
        gui.separator(box, 10)
        self.runbutton = gui.button(box,
                                    self,
                                    "Run",
                                    callback=self._toggle_run)

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWMDSGraph(self,
                                box,
                                "MDSGraph",
                                view_box=MDSInteractiveViewBox)
        box.layout().addWidget(self.graph.plot_widget)
        self.plot = self.graph.plot_widget

        g = self.graph.gui
        box = g.point_properties_box(self.controlArea)
        self.models = g.points_models

        gui.hSlider(box,
                    self,
                    "connected_pairs",
                    label="Show similar pairs:",
                    minValue=0,
                    maxValue=20,
                    createLabel=False,
                    callback=self._on_connected_changed)
        g.add_widgets(ids=[g.JitterSizeSlider], widget=box)

        box = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([
            g.ShowLegend, g.ToolTipShowsAll, g.ClassDensity,
            g.LabelOnlySelected
        ], box)

        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        palette = self.graph.plot_widget.palette()
        self.graph.set_palette(palette)

        gui.rubber(self.controlArea)

        self.graph.box_zoom_select(self.controlArea)

        gui.auto_commit(box,
                        self,
                        "auto_commit",
                        "Send Selected",
                        checkbox_label="Send selected automatically",
                        box=None)

        self.plot.getPlotItem().hideButtons()
        self.plot.setRenderHint(QPainter.Antialiasing)

        self.graph.jitter_continuous = True
        self._initialize()

    def reset_graph_data(self, *_):
        if self.data is not None:
            self.graph.rescale_data()
            self.update_graph()
        self.connect_pairs()

    def update_colors(self):
        pass

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_regression_line(self):
        self.update_graph(reset_view=False)

    def init_attr_values(self):
        domain = self.data and len(self.data) and self.data.domain or None
        for model in self.models:
            model.set_domain(domain)
        self.graph.attr_color = self.data.domain.class_var if domain else None
        self.graph.attr_shape = None
        self.graph.attr_size = None
        self.graph.attr_label = None
        self.models[2][:] = self.models[2][0:1] + ["Stress"
                                                   ] + self.models[2][1:]

    def prepare_data(self):
        pass

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.variable_x, self.variable_y, True)

    def selection_changed(self):
        self.commit()

    @Inputs.data
    @check_sql_input
    def set_data(self, data):
        """Set the input data set.

        Parameters
        ----------
        data : Optional[Orange.data.Table]
        """
        if data is not None and len(data) < 2:
            self.Error.not_enough_rows()
            data = None
        else:
            self.Error.not_enough_rows.clear()

        self.signal_data = data

        if self.matrix is not None and data is not None and len(
                self.matrix) == len(data):
            self.closeContext()
            self.data = data
            self.openContext(data)
        else:
            self._invalidated = True
        if data is not None:
            self._primitive_metas = tuple(a for a in data.domain.metas
                                          if a.is_primitive())
            keys = [
                k for k, a in enumerate(data.domain.metas) if a.is_primitive()
            ]
            self._data_metas = data.metas[:, keys]
        else:
            self._primitive_metas = ()
            self._data_metas = None

    @Inputs.distances
    def set_disimilarity(self, matrix):
        """Set the dissimilarity (distance) matrix.

        Parameters
        ----------
        matrix : Optional[Orange.misc.DistMatrix]
        """

        if matrix is not None and len(matrix) < 2:
            self.Error.matrix_too_small()
            matrix = None
        else:
            self.Error.matrix_too_small.clear()

        self.matrix = matrix
        if matrix is not None and matrix.row_items:
            self.matrix_data = matrix.row_items
        if matrix is None:
            self.matrix_data = None
        self._invalidated = True

    @Inputs.data_subset
    def set_subset_data(self, subset_data):
        """Set a subset of `data` input to highlight in the plot.

        Parameters
        ----------
        subset_data: Optional[Orange.data.Table]
        """
        self.subset_data = subset_data
        # invalidate the pen/brush when the subset is changed
        self._subset_mask = None  # type: Optional[np.ndarray]
        self.controls.graph.alpha_value.setEnabled(subset_data is None)
        self._invalidated = True

    def _clear(self):
        self._similar_pairs = None

        self.__set_update_loop(None)
        self.__state = OWMDS.Waiting

    def _clear_plot(self):
        self.graph.plot_widget.clear()

    def _initialize(self):
        # clear everything
        self.closeContext()
        self._clear()
        self.Error.clear()
        self.data = None
        self.effective_matrix = None
        self.embedding = None
        self.init_attr_values()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self._update_plot()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is self.matrix_data:
                self.data = None
        elif self.data.domain.attributes:
            preprocessed_data = Orange.projection.MDS().preprocess(self.data)
            self.effective_matrix = Orange.distance.Euclidean(
                preprocessed_data)
        else:
            self.Error.no_attributes()
            return

        self.init_attr_values()
        self.openContext(self.data)

    def _toggle_run(self):
        if self.__state == OWMDS.Running:
            self.stop()
            self._invalidate_output()
        else:
            self.start()

    def start(self):
        if self.__state == OWMDS.Running:
            return
        elif self.__state == OWMDS.Finished:
            # Resume/continue from a previous run
            self.__start()
        elif self.__state == OWMDS.Waiting and \
                self.effective_matrix is not None:
            self.__start()

    def stop(self):
        if self.__state == OWMDS.Running:
            self.__set_update_loop(None)

    def __start(self):
        self.__draw_similar_pairs = False
        X = self.effective_matrix
        init = self.embedding

        # number of iterations per single GUI update step
        _, step_size = OWMDS.RefreshRate[self.refresh_rate]
        if step_size == -1:
            step_size = self.max_iter

        def update_loop(X, max_iter, step, init):
            """
            return an iterator over successive improved MDS point embeddings.
            """
            # NOTE: this code MUST NOT call into QApplication.processEvents
            done = False
            iterations_done = 0
            oldstress = np.finfo(np.float).max
            init_type = "PCA" if self.initialization == OWMDS.PCA else "random"

            while not done:
                step_iter = min(max_iter - iterations_done, step)
                mds = Orange.projection.MDS(dissimilarity="precomputed",
                                            n_components=2,
                                            n_init=1,
                                            max_iter=step_iter,
                                            init_type=init_type,
                                            init_data=init)

                mdsfit = mds(X)
                iterations_done += step_iter

                embedding, stress = mdsfit.embedding_, mdsfit.stress_
                stress /= np.sqrt(np.sum(embedding**2, axis=1)).sum()

                if iterations_done >= max_iter:
                    done = True
                elif (oldstress - stress) < mds.params["eps"]:
                    done = True
                init = embedding
                oldstress = stress

                yield embedding, mdsfit.stress_, iterations_done / max_iter

        self.__set_update_loop(update_loop(X, self.max_iter, step_size, init))
        self.progressBarInit(processEvents=None)

    def __set_update_loop(self, loop):
        """
        Set the update `loop` coroutine.

        The `loop` is a generator yielding `(embedding, stress, progress)`
        tuples where `embedding` is a `(N, 2) ndarray` of current updated
        MDS points, `stress` is the current stress and `progress` a float
        ratio (0 <= progress <= 1)

        If an existing update coroutine loop is already in palace it is
        interrupted (i.e. closed).

        .. note::
            The `loop` must not explicitly yield control flow to the event
            loop (i.e. call `QApplication.processEvents`)

        """
        if self.__update_loop is not None:
            self.__update_loop.close()
            self.__update_loop = None
            self.progressBarFinished(processEvents=None)

        self.__update_loop = loop

        if loop is not None:
            self.setBlocking(True)
            self.progressBarInit(processEvents=None)
            self.setStatusMessage("Running")
            self.runbutton.setText("Stop")
            self.__state = OWMDS.Running
            self.__timer.start()
        else:
            self.setBlocking(False)
            self.setStatusMessage("")
            self.runbutton.setText("Start")
            self.__state = OWMDS.Finished
            self.__timer.stop()

    def __next_step(self):
        if self.__update_loop is None:
            return

        assert not self.__in_next_step
        self.__in_next_step = True

        loop = self.__update_loop
        self.Error.out_of_memory.clear()
        try:
            embedding, _, progress = next(self.__update_loop)
            assert self.__update_loop is loop
        except StopIteration:
            self.__set_update_loop(None)
            self.unconditional_commit()
            self.__draw_similar_pairs = True
            self._update_plot()
        except MemoryError:
            self.Error.out_of_memory()
            self.__set_update_loop(None)
            self.__draw_similar_pairs = True
        except Exception as exc:
            self.Error.optimization_error(str(exc))
            self.__set_update_loop(None)
            self.__draw_similar_pairs = True
        else:
            self.progressBarSet(100.0 * progress, processEvents=None)
            self.embedding = embedding
            self._update_plot()
            # schedule next update
            self.__timer.start()

        self.__in_next_step = False

    def __invalidate_embedding(self):
        # reset/invalidate the MDS embedding, to the default initialization
        # (Random or PCA), restarting the optimization if necessary.
        if self.embedding is None:
            return
        state = self.__state
        if self.__update_loop is not None:
            self.__set_update_loop(None)

        X = self.effective_matrix

        if self.initialization == OWMDS.PCA:
            self.embedding = torgerson(X)
        else:
            self.embedding = np.random.rand(len(X), 2)

        self._update_plot()

        # restart the optimization if it was interrupted.
        if state == OWMDS.Running:
            self.__start()

    def __invalidate_refresh(self):
        state = self.__state

        if self.__update_loop is not None:
            self.__set_update_loop(None)

        # restart the optimization if it was interrupted.
        # TODO: decrease the max iteration count by the already
        # completed iterations count.
        if state == OWMDS.Running:
            self.__start()

    def handleNewSignals(self):
        if self._invalidated:
            self._invalidated = False
            self._initialize()
            self.start()
        self.__draw_similar_pairs = False

        if self._subset_mask is None and self.subset_data is not None and \
                self.data is not None:
            self._subset_mask = np.in1d(self.data.ids, self.subset_data.ids)

        self._update_plot(new=True)
        self.unconditional_commit()

    def _invalidate_output(self):
        self.commit()

    def _on_connected_changed(self):
        self._similar_pairs = None
        self._update_plot()

    def _update_plot(self, new=False):
        self._clear_plot()

        if self.embedding is not None:
            self._setup_plot(new=new)
        else:
            self.graph.new_data(None)

    def connect_pairs(self):
        if not (self.connected_pairs and self.__draw_similar_pairs):
            return
        emb_x, emb_y = self.graph.get_xy_data_positions(
            self.variable_x, self.variable_y, self.graph.valid_data)
        if self._similar_pairs is None:
            # This code requires storing lower triangle of X (n x n / 2
            # doubles), n x n / 2 * 2 indices to X, n x n / 2 indices for
            # argsort result. If this becomes an issue, it can be reduced to
            # n x n argsort indices by argsorting the entire X. Then we
            # take the first n + 2 * p indices. We compute their coordinates
            # i, j in the original matrix. We keep those for which i < j.
            # n + 2 * p will suffice to exclude the diagonal (i = j). If the
            # number of those for which i < j is smaller than p, we instead
            # take i > j. Among those that remain, we take the first p.
            # Assuming that MDS can't show so many points that memory could
            # become an issue, I preferred using simpler code.
            m = self.effective_matrix
            n = len(m)
            p = min(n * (n - 1) // 2 * self.connected_pairs // 100,
                    MAX_N_PAIRS * self.connected_pairs // 20)
            indcs = np.triu_indices(n, 1)
            sorted = np.argsort(m[indcs])[:p]
            self._similar_pairs = fpairs = np.empty(2 * p, dtype=int)
            fpairs[::2] = indcs[0][sorted]
            fpairs[1::2] = indcs[1][sorted]
        emb_x_pairs = emb_x[self._similar_pairs].reshape((-1, 2))
        emb_y_pairs = emb_y[self._similar_pairs].reshape((-1, 2))

        # Filter out zero distance lines (in embedding coords).
        # Null (zero length) line causes bad rendering artifacts
        # in Qt when using the raster graphics system (see gh-issue: 1668).
        (x1, x2), (y1, y2) = (emb_x_pairs.T, emb_y_pairs.T)
        pairs_mask = ~(np.isclose(x1, x2) & np.isclose(y1, y2))
        emb_x_pairs = emb_x_pairs[pairs_mask, :]
        emb_y_pairs = emb_y_pairs[pairs_mask, :]
        if self._curve:
            self.graph.plot_widget.removeItem(self._curve)
        self._curve = pg.PlotCurveItem(emb_x_pairs.ravel(),
                                       emb_y_pairs.ravel(),
                                       pen=pg.mkPen(0.8,
                                                    width=2,
                                                    cosmetic=True),
                                       connect="pairs",
                                       antialias=True)
        self.graph.plot_widget.addItem(self._curve)

    def _setup_plot(self, new=False):
        emb_x, emb_y = self.embedding[:, 0], self.embedding[:, 1]
        coords = np.vstack((emb_x, emb_y)).T
        attributes = self.data.domain.attributes + (self.variable_x, self.variable_y) + \
                     self._primitive_metas
        domain = Domain(attributes=attributes,
                        class_vars=self.data.domain.class_vars)
        if self._data_metas is not None:
            data_x = (self.data.X, coords, self._data_metas)
        else:
            data_x = (self.data.X, coords)
        data = Table.from_numpy(domain, X=np.hstack(data_x), Y=self.data.Y)
        subset_data = data[
            self._subset_mask] if self._subset_mask is not None else None
        self.graph.new_data(data, subset_data=subset_data, new=new)
        self.graph.update_data(self.variable_x, self.variable_y, True)
        self.connect_pairs()

    def commit(self):
        if self.embedding is not None:
            names = get_unique_names([v.name for v in self.data.domain],
                                     ["mds-x", "mds-y"])
            output = embedding = Orange.data.Table.from_numpy(
                Orange.data.Domain([
                    ContinuousVariable(names[0]),
                    ContinuousVariable(names[1])
                ]), self.embedding)
        else:
            output = embedding = None

        if self.embedding is not None and self.data is not None:
            domain = self.data.domain
            domain = Orange.data.Domain(
                domain.attributes, domain.class_vars,
                domain.metas + embedding.domain.attributes)
            output = self.data.transform(domain)
            output.metas[:, -2:] = embedding.X

        selection = self.graph.get_selection()
        if output is not None and len(selection) > 0:
            selected = output[selection]
        else:
            selected = None
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(
            create_annotated_table(output, selection))

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self._clear_plot()
        self._clear()

    def send_report(self):
        if self.data is None:
            return

        def name(var):
            return var and var.name

        caption = report.render_items_vert(
            (("Color", name(self.graph.attr_color)),
             ("Label", name(self.graph.attr_label)),
             ("Shape", name(self.graph.attr_shape)),
             ("Size", name(self.graph.attr_size)),
             ("Jittering", self.graph.jitter_size != 0
              and "{} %".format(self.graph.jitter_size))))
        self.report_plot()
        if caption:
            self.report_caption(caption)

    @classmethod
    def migrate_settings(cls, settings_, version):
        if version < 2:
            settings_graph = {}
            for old, new in (("label_only_selected", "label_only_selected"),
                             ("symbol_opacity", "alpha_value"),
                             ("symbol_size", "point_width"), ("jitter",
                                                              "jitter_size")):
                settings_graph[new] = settings_[old]
            settings_["graph"] = settings_graph
            settings_["auto_commit"] = settings_["autocommit"]

    @classmethod
    def migrate_context(cls, context, version):
        if version < 2:
            domain = context.ordered_domain
            n_domain = [t for t in context.ordered_domain if t[1] == 2]
            c_domain = [t for t in context.ordered_domain if t[1] == 1]
            context_values_graph = {}
            for _, old_val, new_val in ((domain, "color_value", "attr_color"),
                                        (c_domain, "shape_value",
                                         "attr_shape"),
                                        (n_domain, "size_value", "attr_size"),
                                        (domain, "label_value", "attr_label")):
                tmp = context.values[old_val]
                if tmp[1] >= 0:
                    context_values_graph[new_val] = (tmp[0], tmp[1] + 100)
                elif tmp[0] != "Stress":
                    context_values_graph[new_val] = None
                else:
                    context_values_graph[new_val] = tmp
            context.values["graph"] = context_values_graph
示例#26
0
    def test(self):
        window = QWidget()
        layout = QVBoxLayout()
        window.setLayout(layout)

        stack = stackedwidget.AnimatedStackedWidget()
        stack.transitionFinished.connect(self.app.exit)

        layout.addStretch(2)
        layout.addWidget(stack)
        layout.addStretch(2)
        window.show()

        widget1 = QLabel("A label " * 10)
        widget1.setWordWrap(True)

        widget2 = QGroupBox("Group")

        widget3 = QListView()
        self.assertEqual(stack.count(), 0)
        self.assertEqual(stack.currentIndex(), -1)

        stack.addWidget(widget1)
        self.assertEqual(stack.count(), 1)
        self.assertEqual(stack.currentIndex(), 0)

        stack.addWidget(widget2)
        stack.addWidget(widget3)
        self.assertEqual(stack.count(), 3)
        self.assertEqual(stack.currentIndex(), 0)

        def widgets():
            return [stack.widget(i) for i in range(stack.count())]

        self.assertSequenceEqual([widget1, widget2, widget3], widgets())
        stack.show()

        stack.removeWidget(widget2)
        self.assertEqual(stack.count(), 2)
        self.assertEqual(stack.currentIndex(), 0)
        self.assertSequenceEqual([widget1, widget3], widgets())

        stack.setCurrentIndex(1)
        # wait until animation finished
        self.app.exec_()

        self.assertEqual(stack.currentIndex(), 1)

        widget2 = QGroupBox("Group")
        stack.insertWidget(1, widget2)
        self.assertEqual(stack.count(), 3)
        self.assertEqual(stack.currentIndex(), 2)
        self.assertSequenceEqual([widget1, widget2, widget3], widgets())

        stack.transitionFinished.disconnect(self.app.exit)

        def toogle():
            idx = stack.currentIndex()
            stack.setCurrentIndex((idx + 1) % stack.count())

        timer = QTimer(stack, interval=1000)
        timer.timeout.connect(toogle)
        timer.start()
        self.app.exec_()
示例#27
0
class OWScatterPlot(OWDataProjectionWidget):
    """Scatterplot visualization with explorative analysis and intelligent
    data visualization enhancements."""

    name = 'Scatter Plot'
    description = "Interactive scatter plot visualization with " \
                  "intelligent data visualization enhancements."
    icon = "icons/ScatterPlot.svg"
    priority = 140
    keywords = []

    class Inputs(OWDataProjectionWidget.Inputs):
        features = Input("Features", AttributeList)

    class Outputs(OWDataProjectionWidget.Outputs):
        features = Output("Features", AttributeList, dynamic=False)

    settings_version = 4
    auto_sample = Setting(True)
    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)
    tooltip_shows_all = Setting(True)

    GRAPH_CLASS = OWScatterPlotGraph
    graph = SettingProvider(OWScatterPlotGraph)
    embedding_variables_names = None

    xy_changed_manually = Signal(Variable, Variable)

    class Warning(OWDataProjectionWidget.Warning):
        missing_coords = Msg(
            "Plot cannot be displayed because '{}' or '{}' "
            "is missing for all data points")
        no_continuous_vars = Msg("Data has no continuous variables")

    class Information(OWDataProjectionWidget.Information):
        sampled_sql = Msg("Large SQL table; showing a sample.")
        missing_coords = Msg(
            "Points with missing '{}' or '{}' are not displayed")

    def __init__(self):
        self.sql_data = None  # Orange.data.sql.table.SqlTable
        self.attribute_selection_list = None  # list of Orange.data.Variable
        self.__timer = QTimer(self, interval=1200)
        self.__timer.timeout.connect(self.add_data)
        super().__init__()

        # manually register Matplotlib file writers
        self.graph_writers = self.graph_writers.copy()
        for w in [MatplotlibFormat, MatplotlibPDFFormat]:
            self.graph_writers.append(w)

    def _add_controls(self):
        self._add_controls_axis()
        self._add_controls_sampling()
        super()._add_controls()
        self.gui.add_widgets(
            [self.gui.ShowGridLines,
             self.gui.ToolTipShowsAll,
             self.gui.RegressionLine],
            self._plot_box)
        gui.checkBox(
            gui.indentedBox(self._plot_box), self,
            value="graph.orthonormal_regression",
            label="Treat variables as independent",
            callback=self.graph.update_regression_line,
            tooltip=
            "If checked, fit line to group (minimize distance from points);\n"
            "otherwise fit y as a function of x (minimize vertical distances)")

    def _add_controls_axis(self):
        common_options = dict(
            labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True,
            contentsLength=14
        )
        self.attr_box = gui.vBox(self.controlArea, True)
        dmod = DomainModel
        self.xy_model = DomainModel(dmod.MIXED, valid_types=ContinuousVariable)
        self.cb_attr_x = gui.comboBox(
            self.attr_box, self, "attr_x", label="Axis x:",
            callback=self.set_attr_from_combo,
            model=self.xy_model, **common_options)
        self.cb_attr_y = gui.comboBox(
            self.attr_box, self, "attr_y", label="Axis y:",
            callback=self.set_attr_from_combo,
            model=self.xy_model, **common_options)
        vizrank_box = gui.hBox(self.attr_box)
        self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank(
            vizrank_box, self, "Find Informative Projections", self.set_attr)

    def _add_controls_sampling(self):
        self.sampling = gui.auto_commit(
            self.controlArea, self, "auto_sample", "Sample", box="Sampling",
            callback=self.switch_sampling, commit=lambda: self.add_data(1))
        self.sampling.setVisible(False)

    @property
    def effective_variables(self):
        return [self.attr_x, self.attr_y] if self.attr_x and self.attr_y else []

    def _vizrank_color_change(self):
        self.vizrank.initialize()
        err_msg = ""
        if self.data is None:
            err_msg = "No data on input"
        elif self.data.is_sparse():
            err_msg = "Data is sparse"
        elif len(self.xy_model) < 3:
            err_msg = "Not enough features for ranking"
        elif self.attr_color is None:
            err_msg = "Color variable is not selected"
        elif np.isnan(self.data.get_column_view(
                self.attr_color)[0].astype(float)).all():
            err_msg = "Color variable has no values"
        self.vizrank_button.setEnabled(not err_msg)
        self.vizrank_button.setToolTip(err_msg)

    def set_data(self, data):
        super().set_data(data)
        self._vizrank_color_change()

        def findvar(name, iterable):
            """Find a Orange.data.Variable in `iterable` by name"""
            for el in iterable:
                if isinstance(el, Variable) and el.name == name:
                    return el
            return None

        # handle restored settings from  < 3.3.9 when attr_* were stored
        # by name
        if isinstance(self.attr_x, str):
            self.attr_x = findvar(self.attr_x, self.xy_model)
        if isinstance(self.attr_y, str):
            self.attr_y = findvar(self.attr_y, self.xy_model)
        if isinstance(self.attr_label, str):
            self.attr_label = findvar(self.attr_label, self.gui.label_model)
        if isinstance(self.attr_color, str):
            self.attr_color = findvar(self.attr_color, self.gui.color_model)
        if isinstance(self.attr_shape, str):
            self.attr_shape = findvar(self.attr_shape, self.gui.shape_model)
        if isinstance(self.attr_size, str):
            self.attr_size = findvar(self.attr_size, self.gui.size_model)

    def check_data(self):
        super().check_data()
        self.__timer.stop()
        self.sampling.setVisible(False)
        self.sql_data = None
        if isinstance(self.data, SqlTable):
            if self.data.approx_len() < 4000:
                self.data = Table(self.data)
            else:
                self.Information.sampled_sql()
                self.sql_data = self.data
                data_sample = self.data.sample_time(0.8, no_cache=True)
                data_sample.download_data(2000, partial=True)
                self.data = Table(data_sample)
                self.sampling.setVisible(True)
                if self.auto_sample:
                    self.__timer.start()

        if self.data is not None:
            if not self.data.domain.has_continuous_attributes(True, True):
                self.Warning.no_continuous_vars()
                self.data = None

        if self.data is not None and (len(self.data) == 0 or
                                      len(self.data.domain) == 0):
            self.data = None

    def get_embedding(self):
        self.valid_data = None
        if self.data is None:
            return None

        x_data = self.get_column(self.attr_x, filter_valid=False)
        y_data = self.get_column(self.attr_y, filter_valid=False)
        if x_data is None or y_data is None:
            return None

        self.Warning.missing_coords.clear()
        self.Information.missing_coords.clear()
        self.valid_data = np.isfinite(x_data) & np.isfinite(y_data)
        if self.valid_data is not None and not np.all(self.valid_data):
            msg = self.Information if np.any(self.valid_data) else self.Warning
            msg.missing_coords(self.attr_x.name, self.attr_y.name)
        return np.vstack((x_data, y_data)).T

    # Tooltip
    def _point_tooltip(self, point_id, skip_attrs=()):
        point_data = self.data[point_id]
        xy_attrs = (self.attr_x, self.attr_y)
        text = "<br/>".join(
            escape('{} = {}'.format(var.name, point_data[var]))
            for var in xy_attrs)
        if self.tooltip_shows_all:
            others = super()._point_tooltip(point_id, skip_attrs=xy_attrs)
            if others:
                text = "<b>{}</b><br/><br/>{}".format(text, others)
        return text

    def add_data(self, time=0.4):
        if self.data and len(self.data) > 2000:
            self.__timer.stop()
            return
        data_sample = self.sql_data.sample_time(time, no_cache=True)
        if data_sample:
            data_sample.download_data(2000, partial=True)
            data = Table(data_sample)
            self.data = Table.concatenate((self.data, data), axis=0)
            self.handleNewSignals()

    def init_attr_values(self):
        super().init_attr_values()
        data = self.data
        domain = data.domain if data and len(data) else None
        self.xy_model.set_domain(domain)
        self.attr_x = self.xy_model[0] if self.xy_model else None
        self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \
            else self.attr_x

    def switch_sampling(self):
        self.__timer.stop()
        if self.auto_sample and self.sql_data:
            self.add_data()
            self.__timer.start()

    def set_subset_data(self, subset_data):
        self.warning()
        if isinstance(subset_data, SqlTable):
            if subset_data.approx_len() < AUTO_DL_LIMIT:
                subset_data = Table(subset_data)
            else:
                self.warning("Data subset does not support large Sql tables")
                subset_data = None
        super().set_subset_data(subset_data)

    # called when all signals are received, so the graph is updated only once
    def handleNewSignals(self):
        self.attr_box.setEnabled(True)
        self.vizrank.setEnabled(True)
        if self.attribute_selection_list and self.data is not None and \
                self.data.domain is not None and \
                all(attr in self.data.domain for attr
                        in self.attribute_selection_list):
            self.attr_x, self.attr_y = self.attribute_selection_list[:2]
            self.attr_box.setEnabled(False)
            self.vizrank.setEnabled(False)
        super().handleNewSignals()
        if self._domain_invalidated:
            self.graph.update_axes()
            self._domain_invalidated = False

    @Inputs.features
    def set_shown_attributes(self, attributes):
        if attributes and len(attributes) >= 2:
            self.attribute_selection_list = attributes[:2]
            self._invalidated = self._invalidated \
                or self.attr_x != attributes[0] \
                or self.attr_y != attributes[1]
        else:
            self.attribute_selection_list = None

    def set_attr(self, attr_x, attr_y):
        if attr_x != self.attr_x or attr_y != self.attr_y:
            self.attr_x, self.attr_y = attr_x, attr_y
            self.attr_changed()

    def set_attr_from_combo(self):
        self.attr_changed()
        self.xy_changed_manually.emit(self.attr_x, self.attr_y)

    def attr_changed(self):
        self.setup_plot()
        self.commit()

    def get_axes(self):
        return {"bottom": self.attr_x, "left": self.attr_y}

    def colors_changed(self):
        super().colors_changed()
        self._vizrank_color_change()

    def commit(self):
        super().commit()
        self.send_features()

    def send_features(self):
        features = [attr for attr in [self.attr_x, self.attr_y] if attr]
        self.Outputs.features.send(features or None)

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)
        return None

    @classmethod
    def migrate_settings(cls, settings, version):
        if version < 2 and "selection" in settings and settings["selection"]:
            settings["selection_group"] = [(a, 1) for a in settings["selection"]]
        if version < 3:
            if "auto_send_selection" in settings:
                settings["auto_commit"] = settings["auto_send_selection"]
            if "selection_group" in settings:
                settings["selection"] = settings["selection_group"]

    @classmethod
    def migrate_context(cls, context, version):
        values = context.values
        if version < 3:
            values["attr_color"] = values["graph"]["attr_color"]
            values["attr_size"] = values["graph"]["attr_size"]
            values["attr_shape"] = values["graph"]["attr_shape"]
            values["attr_label"] = values["graph"]["attr_label"]
        if version < 4:
            if values["attr_x"][1] % 100 == 1 or values["attr_y"][1] % 100 == 1:
                raise IncompatibleContext()
示例#28
0
class OWScatterPlot(OWWidget):
    """Scatterplot visualization with explorative analysis and intelligent
    data visualization enhancements."""

    name = 'Scatter Plot'
    description = "Interactive scatter plot visualization with " \
                  "intelligent data visualization enhancements."
    icon = "icons/ScatterPlot.svg"
    priority = 140

    inputs = [("Data", Table, "set_data", Default),
              ("Data Subset", Table, "set_subset_data"),
              ("Features", AttributeList, "set_shown_attributes")]

    outputs = [("Selected Data", Table, Default),
               (ANNOTATED_DATA_SIGNAL_NAME, Table),
               ("Features", Table)]

    settingsHandler = DomainContextHandler()

    auto_send_selection = Setting(True)
    auto_sample = Setting(True)
    toolbar_selection = Setting(0)

    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)

    graph = SettingProvider(OWScatterPlotGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Information(OWWidget.Information):
        sampled_sql = Msg("Large SQL table; showing a sample.")

    def __init__(self):
        super().__init__()

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWScatterPlotGraph(self, box, "ScatterPlot")
        box.layout().addWidget(self.graph.plot_widget)
        plot = self.graph.plot_widget

        axispen = QPen(self.palette().color(QPalette.Text))
        axis = plot.getAxis("bottom")
        axis.setPen(axispen)

        axis = plot.getAxis("left")
        axis.setPen(axispen)

        self.data = None  # Orange.data.Table
        self.subset_data = None  # Orange.data.Table
        self.data_metas_X = None  # self.data, where primitive metas are moved to X
        self.sql_data = None  # Orange.data.sql.table.SqlTable
        self.attribute_selection_list = None  # list of Orange.data.Variable
        self.__timer = QTimer(self, interval=1200)
        self.__timer.timeout.connect(self.add_data)

        common_options = dict(
            labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True,
            valueType=str)
        box = gui.vBox(self.controlArea, "Axis Data")
        dmod = DomainModel
        self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE)
        gui.comboBox(
            box, self, "attr_x", label="Axis x:", callback=self.update_attr,
            model=self.xy_model, **common_options)
        self.cb_attr_y = gui.comboBox(
            box, self, "attr_y", label="Axis y:", callback=self.update_attr,
            model=self.xy_model, **common_options)

        vizrank_box = gui.hBox(box)
        gui.separator(vizrank_box, width=common_options["labelWidth"])
        self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank(
            vizrank_box, self, "Find Informative Projections", self.set_attr)

        gui.separator(box)

        gui.valueSlider(
            box, self, value='graph.jitter_size', label='Jittering: ',
            values=self.jitter_sizes, callback=self.reset_graph_data,
            labelFormat=lambda x:
            "None" if x == 0 else ("%.1f %%" if x < 1 else "%d %%") % x)
        gui.checkBox(
            gui.indentedBox(box), self, 'graph.jitter_continuous',
            'Jitter continuous values', callback=self.reset_graph_data)

        self.sampling = gui.auto_commit(
            self.controlArea, self, "auto_sample", "Sample", box="Sampling",
            callback=self.switch_sampling, commit=lambda: self.add_data(1))
        self.sampling.setVisible(False)

        box = gui.vBox(self.controlArea, "Points")
        self.color_model = DomainModel(
            placeholder="(Same color)", valid_types=dmod.PRIMITIVE)
        self.cb_attr_color = gui.comboBox(
            box, self, "graph.attr_color", label="Color:",
            callback=self.update_colors,
            model=self.color_model, **common_options)
        self.label_model = DomainModel(
            placeholder="(No labels)", valid_types=dmod.PRIMITIVE)
        self.cb_attr_label = gui.comboBox(
            box, self, "graph.attr_label", label="Label:",
            callback=self.graph.update_labels,
            model=self.label_model, **common_options)
        self.shape_model = DomainModel(
            placeholder="(Same shape)", valid_types=DiscreteVariable)
        self.cb_attr_shape = gui.comboBox(
            box, self, "graph.attr_shape", label="Shape:",
            callback=self.graph.update_shapes,
            model=self.shape_model, **common_options)
        self.size_model = DomainModel(
            placeholder="(Same size)", valid_types=ContinuousVariable)
        self.cb_attr_size = gui.comboBox(
            box, self, "graph.attr_size", label="Size:",
            callback=self.graph.update_sizes,
            model=self.size_model, **common_options)
        self.models = [self.xy_model, self.color_model, self.label_model,
                       self.shape_model, self.size_model]

        g = self.graph.gui
        g.point_properties_box(self.controlArea, box)
        box = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([g.ShowLegend, g.ShowGridLines], box)
        gui.checkBox(
            box, self, value='graph.tooltip_shows_all',
            label='Show all data on mouse hover')
        self.cb_class_density = gui.checkBox(
            box, self, value='graph.class_density', label='Show class density',
            callback=self.update_density)
        gui.checkBox(
            box, self, 'graph.label_only_selected',
            'Label only selected points', callback=self.graph.update_labels)

        self.zoom_select_toolbar = g.zoom_select_toolbar(
            gui.vBox(self.controlArea, "Zoom/Select"), nomargin=True,
            buttons=[g.StateButtonsBegin, g.SimpleSelect, g.Pan, g.Zoom,
                     g.StateButtonsEnd, g.ZoomReset]
        )
        buttons = self.zoom_select_toolbar.buttons
        buttons[g.Zoom].clicked.connect(self.graph.zoom_button_clicked)
        buttons[g.Pan].clicked.connect(self.graph.pan_button_clicked)
        buttons[g.SimpleSelect].clicked.connect(self.graph.select_button_clicked)
        buttons[g.ZoomReset].clicked.connect(self.graph.reset_button_clicked)
        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        p = self.graph.plot_widget.palette()
        self.graph.set_palette(p)

        gui.auto_commit(self.controlArea, self, "auto_send_selection",
                        "Send Selection", "Send Automatically")

        def zoom(s):
            """Zoom in/out by factor `s`."""
            viewbox = plot.getViewBox()
            # scaleBy scales the view's bounds (the axis range)
            viewbox.scaleBy((1 / s, 1 / s))

        def fit_to_view():
            viewbox = plot.getViewBox()
            viewbox.autoRange()

        zoom_in = QAction(
            "Zoom in", self, triggered=lambda: zoom(1.25)
        )
        zoom_in.setShortcuts([QKeySequence(QKeySequence.ZoomIn),
                              QKeySequence(self.tr("Ctrl+="))])
        zoom_out = QAction(
            "Zoom out", self, shortcut=QKeySequence.ZoomOut,
            triggered=lambda: zoom(1 / 1.25)
        )
        zoom_fit = QAction(
            "Fit in view", self,
            shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0),
            triggered=fit_to_view
        )
        self.addActions([zoom_in, zoom_out, zoom_fit])

    # def settingsFromWidgetCallback(self, handler, context):
    #     context.selectionPolygons = []
    #     for curve in self.graph.selectionCurveList:
    #         xs = [curve.x(i) for i in range(curve.dataSize())]
    #         ys = [curve.y(i) for i in range(curve.dataSize())]
    #         context.selectionPolygons.append((xs, ys))

    # def settingsToWidgetCallback(self, handler, context):
    #     selections = getattr(context, "selectionPolygons", [])
    #     for (xs, ys) in selections:
    #         c = SelectionCurve("")
    #         c.setData(xs,ys)
    #         c.attach(self.graph)
    #         self.graph.selectionCurveList.append(c)

    def reset_graph_data(self, *_):
        self.graph.rescale_data()
        self.update_graph()

    def set_data(self, data):
        self.clear_messages()
        self.Information.sampled_sql.clear()
        self.__timer.stop()
        self.sampling.setVisible(False)
        self.sql_data = None
        if isinstance(data, SqlTable):
            if data.approx_len() < 4000:
                data = Table(data)
            else:
                self.Information.sampled_sql()
                self.sql_data = data
                data_sample = data.sample_time(0.8, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
                self.sampling.setVisible(True)
                if self.auto_sample:
                    self.__timer.start()

        if data is not None and (len(data) == 0 or len(data.domain) == 0):
            data = None
        if self.data and data and self.data.checksum() == data.checksum():
            return

        self.closeContext()
        same_domain = (self.data and data and
                       data.domain.checksum() == self.data.domain.checksum())
        self.data = data
        self.data_metas_X = self.move_primitive_metas_to_X(data)

        if not same_domain:
            self.init_attr_values()
        self.vizrank.initialize()
        self.vizrank.attrs = self.data.domain.attributes if self.data is not None else []
        self.vizrank_button.setEnabled(
            self.data is not None and self.data.domain.class_var is not None
            and len(self.data.domain.attributes) > 1 and len(self.data) > 1)
        if self.data is not None and self.data.domain.class_var is None \
            and len(self.data.domain.attributes) > 1 and len(self.data) > 1:
            self.vizrank_button.setToolTip(
                "Data with a class variable is required.")
        else:
            self.vizrank_button.setToolTip("")
        self.openContext(self.data)

        def findvar(name, iterable):
            """Find a Orange.data.Variable in `iterable` by name"""
            for el in iterable:
                if isinstance(el, Orange.data.Variable) and el.name == name:
                    return el
            else:
                return None
        # handle restored settings from  < 3.3.9 when attr_* were stored
        # by name
        if isinstance(self.attr_x, str):
            self.attr_x = findvar(self.attr_x, self.xy_model)
        if isinstance(self.attr_y, str):
            self.attr_y = findvar(self.attr_y, self.xy_model)
        if isinstance(self.graph.attr_label, str):
            self.graph.attr_label = findvar(
                self.graph.attr_label, self.label_model)
        if isinstance(self.graph.attr_color, str):
            self.graph.attr_color = findvar(
                self.graph.attr_color, self.color_model)
        if isinstance(self.graph.attr_shape, str):
            self.graph.attr_shape = findvar(
                self.graph.attr_shape, self.shape_model)
        if isinstance(self.graph.attr_size, str):
            self.graph.attr_size = findvar(
                self.graph.attr_size, self.size_model)

    def add_data(self, time=0.4):
        if self.data and len(self.data) > 2000:
            return self.__timer.stop()
        data_sample = self.sql_data.sample_time(time, no_cache=True)
        if data_sample:
            data_sample.download_data(2000, partial=True)
            data = Table(data_sample)
            self.data = Table.concatenate((self.data, data), axis=0)
            self.data_metas_X = self.move_primitive_metas_to_X(self.data)
            self.handleNewSignals()

    def switch_sampling(self):
        self.__timer.stop()
        if self.auto_sample and self.sql_data:
            self.add_data()
            self.__timer.start()

    def move_primitive_metas_to_X(self, data):
        if data is not None:
            new_attrs = [a for a in data.domain.attributes + data.domain.metas
                         if a.is_primitive()]
            new_metas = [m for m in data.domain.metas if not m.is_primitive()]
            data = Table.from_table(Domain(new_attrs, data.domain.class_vars,
                                           new_metas), data)
        return data

    def set_subset_data(self, subset_data):
        self.warning()
        if isinstance(subset_data, SqlTable):
            if subset_data.approx_len() < AUTO_DL_LIMIT:
                subset_data = Table(subset_data)
            else:
                self.warning("Data subset does not support large Sql tables")
                subset_data = None
        self.subset_data = self.move_primitive_metas_to_X(subset_data)
        self.controls.graph.alpha_value.setEnabled(subset_data is None)

    # called when all signals are received, so the graph is updated only once
    def handleNewSignals(self):
        self.graph.new_data(self.data_metas_X, self.subset_data)
        if self.attribute_selection_list and \
                all(attr in self.graph.domain
                    for attr in self.attribute_selection_list):
            self.attr_x = self.attribute_selection_list[0]
            self.attr_y = self.attribute_selection_list[1]
        self.attribute_selection_list = None
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.unconditional_commit()

    def set_shown_attributes(self, attributes):
        if attributes and len(attributes) >= 2:
            self.attribute_selection_list = attributes[:2]
        else:
            self.attribute_selection_list = None

    def get_shown_attributes(self):
        return self.attr_x, self.attr_y

    def init_attr_values(self):
        domain = self.data and self.data.domain
        for model in self.models:
            model.set_domain(domain)
        self.attr_x = self.xy_model[0] if self.xy_model else None
        self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \
            else self.attr_x
        self.graph.attr_color = domain and self.data.domain.class_var or None
        self.graph.attr_shape = None
        self.graph.attr_size = None
        self.graph.attr_label = None

    def set_attr(self, attr_x, attr_y):
        self.attr_x, self.attr_y = attr_x, attr_y
        self.update_attr()

    def update_attr(self):
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.send_features()

    def update_colors(self):
        self.graph.update_colors()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.attr_x, self.attr_y, reset_view)

    def selection_changed(self):
        self.send_data()

    def send_data(self):
        selected = None
        selection = None
        # TODO: Implement selection for sql data
        if isinstance(self.data, SqlTable):
            selected = self.data
        elif self.data is not None:
            selection = self.graph.get_selection()
            if len(selection) > 0:
                selected = self.data[selection]
        self.send("Selected Data", selected)
        self.send(ANNOTATED_DATA_SIGNAL_NAME,
                  create_annotated_table(self.data, selection))

    def send_features(self):
        features = None
        if self.attr_x or self.attr_y:
            dom = Domain([], metas=(StringVariable(name="feature"),))
            features = Table(dom, [[self.attr_x], [self.attr_y]])
            features.name = "Features"
        self.send("Features", features)

    def commit(self):
        self.send_data()
        self.send_features()

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)

    def send_report(self):
        def name(var):
            return var and var.name
        caption = report.render_items_vert((
            ("Color", name(self.graph.attr_color)),
            ("Label", name(self.graph.attr_label)),
            ("Shape", name(self.graph.attr_shape)),
            ("Size", name(self.graph.attr_size)),
            ("Jittering", (self.attr_x.is_discrete or
                           self.attr_y.is_discrete or
                           self.graph.jitter_continuous) and
             self.graph.jitter_size)))
        self.report_plot()
        if caption:
            self.report_caption(caption)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self.graph.plot_widget.getViewBox().deleteLater()
        self.graph.plot_widget.clear()
class OWGOBrowser(widget.OWWidget):
    name = "GO Browser"
    description = "Enrichment analysis for Gene Ontology terms."
    icon = "../widgets/icons/OWGOBrowser.svg"
    priority = 7

    inputs = [
        ("Cluster Data", Orange.data.Table, "set_dataset",
         widget.Single + widget.Default),
        ("Reference Data", Orange.data.Table, "set_reference_dataset"),
    ]

    outputs = [("Data on Selected Genes", Orange.data.Table),
               ("Enrichment Report", Orange.data.Table)]

    settingsHandler = settings.DomainContextHandler()

    gene_attr_index = settings.ContextSetting(0)
    use_attr_names = settings.ContextSetting(False)
    use_reference_dataset = settings.Setting(False)
    aspect_index = settings.Setting(0)
    use_evidence_type = settings.Setting(
        {et: True
         for et in go.evidence_types_ordered})
    filter_by_num_of_instances = settings.Setting(False)
    min_num_of_instances = settings.Setting(1)
    filter_by_p_value = settings.Setting(True)
    max_p_value = settings.Setting(0.2)
    filter_by_p_value_nofdr = settings.Setting(False)
    max_p_value_no_fdr = settings.Setting(0.01)
    prob_func = settings.Setting(0)
    selection_direct_annotation = settings.Setting(0)
    selection_disjoint = settings.Setting(0)

    class Error(widget.OWWidget.Error):
        serverfiles_unavailable = widget.Msg(
            'Can not locate annotation files, '
            'please check your connection and try again.')
        missing_annotation = widget.Msg(ERROR_ON_MISSING_ANNOTATION)
        missing_gene_id = widget.Msg(ERROR_ON_MISSING_GENE_ID)
        missing_tax_id = widget.Msg(ERROR_ON_MISSING_TAX_ID)

    def __init__(self, parent=None):
        super().__init__(self, parent)

        self.input_data = None
        self.gene_info = None
        self.ref_data = None
        self.ontology = None
        self.annotations = None
        self.loaded_annotation_code = None
        self.treeStructRootKey = None
        self.probFunctions = [
            statistics.Binomial(),
            statistics.Hypergeometric()
        ]
        self.selectedTerms = []

        self.selectionChanging = 0
        self.__state = State.Ready
        self.__scheduletimer = QTimer(self, singleShot=True)
        self.__scheduletimer.timeout.connect(self.__update)

        #############
        # GUI
        #############
        self.tabs = gui.tabWidget(self.controlArea)
        # Input tab
        self.inputTab = gui.createTabPage(self.tabs, "Input")
        box = gui.widgetBox(self.inputTab, "Info")
        self.infoLabel = gui.widgetLabel(box, "No data on input\n")

        gui.button(
            box,
            self,
            "Ontology/Annotation Info",
            callback=self.show_info,
            tooltip="Show information on loaded ontology and annotations",
        )

        self.referenceRadioBox = gui.radioButtonsInBox(
            self.inputTab,
            self,
            "use_reference_dataset",
            ["Entire genome", "Reference set (input)"],
            tooltips=[
                "Use entire genome for reference",
                "Use genes from Referece Examples input signal as reference"
            ],
            box="Reference",
            callback=self.__invalidate,
        )

        self.referenceRadioBox.buttons[1].setDisabled(True)
        gui.radioButtonsInBox(
            self.inputTab,
            self,
            "aspect_index",
            ["Biological process", "Cellular component", "Molecular function"],
            box="Aspect",
            callback=self.__invalidate,
        )

        # Filter tab
        self.filterTab = gui.createTabPage(self.tabs, "Filter")
        box = gui.widgetBox(self.filterTab, "Filter GO Term Nodes")
        gui.checkBox(
            box,
            self,
            "filter_by_num_of_instances",
            "Genes",
            callback=self.filter_and_display_graph,
            tooltip="Filter by number of input genes mapped to a term",
        )
        ibox = gui.indentedBox(box)
        gui.spin(
            ibox,
            self,
            'min_num_of_instances',
            1,
            100,
            step=1,
            label='#:',
            labelWidth=15,
            callback=self.filter_and_display_graph,
            callbackOnReturn=True,
            tooltip="Min. number of input genes mapped to a term",
        )

        gui.checkBox(
            box,
            self,
            "filter_by_p_value_nofdr",
            "p-value",
            callback=self.filter_and_display_graph,
            tooltip="Filter by term p-value",
        )

        gui.doubleSpin(
            gui.indentedBox(box),
            self,
            'max_p_value_no_fdr',
            1e-8,
            1,
            step=1e-8,
            label='p:',
            labelWidth=15,
            callback=self.filter_and_display_graph,
            callbackOnReturn=True,
            tooltip="Max term p-value",
        )

        # use filter_by_p_value for FDR, as it was the default in prior versions
        gui.checkBox(box,
                     self,
                     "filter_by_p_value",
                     "FDR",
                     callback=self.filter_and_display_graph,
                     tooltip="Filter by term FDR")
        gui.doubleSpin(
            gui.indentedBox(box),
            self,
            'max_p_value',
            1e-8,
            1,
            step=1e-8,
            label='p:',
            labelWidth=15,
            callback=self.filter_and_display_graph,
            callbackOnReturn=True,
            tooltip="Max term p-value",
        )

        box = gui.widgetBox(box, "Significance test")

        gui.radioButtonsInBox(
            box,
            self,
            "prob_func",
            ["Binomial", "Hypergeometric"],
            tooltips=[
                "Use binomial distribution test",
                "Use hypergeometric distribution test"
            ],
            callback=self.__invalidate,
        )  # TODO: only update the p values
        box = gui.widgetBox(self.filterTab,
                            "Evidence codes in annotation",
                            addSpace=True)
        self.evidenceCheckBoxDict = {}
        for etype in go.evidence_types_ordered:
            ecb = QCheckBox(etype,
                            toolTip=go.evidence_types[etype],
                            checked=self.use_evidence_type[etype])
            ecb.toggled.connect(self.__on_evidence_changed)
            box.layout().addWidget(ecb)
            self.evidenceCheckBoxDict[etype] = ecb

        # Select tab
        self.selectTab = gui.createTabPage(self.tabs, "Select")
        box = gui.radioButtonsInBox(
            self.selectTab,
            self,
            "selection_direct_annotation",
            ["Directly or Indirectly", "Directly"],
            box="Annotated genes",
            callback=self.example_selection,
        )

        box = gui.widgetBox(self.selectTab, "Output", addSpace=True)
        gui.radioButtonsInBox(
            box,
            self,
            "selection_disjoint",
            btnLabels=[
                "All selected genes", "Term-specific genes",
                "Common term genes"
            ],
            tooltips=[
                "Outputs genes annotated to all selected GO terms",
                "Outputs genes that appear in only one of selected GO terms",
                "Outputs genes common to all selected GO terms",
            ],
            callback=self.example_selection,
        )

        # ListView for DAG, and table for significant GOIDs
        self.DAGcolumns = [
            'GO term', 'Cluster', 'Reference', 'p-value', 'FDR', 'Genes',
            'Enrichment'
        ]

        self.splitter = QSplitter(Qt.Vertical, self.mainArea)
        self.mainArea.layout().addWidget(self.splitter)

        # list view
        self.listView = GOTreeWidget(self.splitter)
        self.listView.setSelectionMode(QTreeView.ExtendedSelection)
        self.listView.setAllColumnsShowFocus(1)
        self.listView.setColumnCount(len(self.DAGcolumns))
        self.listView.setHeaderLabels(self.DAGcolumns)

        self.listView.header().setSectionsClickable(True)
        self.listView.header().setSortIndicatorShown(True)
        self.listView.header().setSortIndicator(
            self.DAGcolumns.index('p-value'), Qt.AscendingOrder)
        self.listView.setSortingEnabled(True)
        self.listView.setItemDelegateForColumn(
            6, EnrichmentColumnItemDelegate(self))
        self.listView.setRootIsDecorated(True)

        self.listView.itemSelectionChanged.connect(self.view_selection_changed)

        # table of significant GO terms
        self.sigTerms = QTreeWidget(self.splitter)
        self.sigTerms.setColumnCount(len(self.DAGcolumns))
        self.sigTerms.setHeaderLabels(self.DAGcolumns)
        self.sigTerms.setSortingEnabled(True)
        self.sigTerms.setSelectionMode(QTreeView.ExtendedSelection)
        self.sigTerms.header().setSortIndicator(
            self.DAGcolumns.index('p-value'), Qt.AscendingOrder)
        self.sigTerms.setItemDelegateForColumn(
            6, EnrichmentColumnItemDelegate(self))

        self.sigTerms.itemSelectionChanged.connect(
            self.table_selection_changed)

        self.sigTableTermsSorted = []
        self.graph = {}
        self.originalGraph = None

        self.inputTab.layout().addStretch(1)
        self.filterTab.layout().addStretch(1)
        self.selectTab.layout().addStretch(1)

        class AnnotationSlot(SimpleNamespace):
            taxid = ...  # type: str
            name = ...  # type: str
            filename = ...  # type:str

            @staticmethod
            def parse_tax_id(f_name):
                return f_name.split('.')[0]

        try:
            remote_files = serverfiles.ServerFiles().listfiles(DOMAIN)
        except (ConnectTimeout, RequestException, ConnectionError):
            # TODO: Warn user about failed connection to the remote server
            remote_files = []

        self.available_annotations = [
            AnnotationSlot(
                taxid=AnnotationSlot.parse_tax_id(annotation_file),
                name=taxonomy.common_taxid_to_name(
                    AnnotationSlot.parse_tax_id(annotation_file)),
                filename=FILENAME_ANNOTATION.format(
                    AnnotationSlot.parse_tax_id(annotation_file)),
            ) for _, annotation_file in set(remote_files +
                                            serverfiles.listfiles(DOMAIN))
            if annotation_file != FILENAME_ONTOLOGY
        ]
        self._executor = ThreadExecutor()

    def sizeHint(self):
        return QSize(1000, 700)

    def __on_evidence_changed(self):
        for etype, cb in self.evidenceCheckBoxDict.items():
            self.use_evidence_type[etype] = cb.isChecked()
        self.__invalidate()

    def clear(self):
        self.infoLabel.setText("No data on input\n")
        self.warning(0)
        self.warning(1)
        self.clear_graph()

        self.send("Data on Selected Genes", None)
        self.send("Enrichment Report", None)

    def set_dataset(self, data=None):
        self.closeContext()
        self.clear()
        self.Error.clear()
        if data:
            self.input_data = data
            self.tax_id = str(self.input_data.attributes.get(TAX_ID, None))
            self.use_attr_names = self.input_data.attributes.get(
                GENE_AS_ATTRIBUTE_NAME, None)
            self.gene_id_attribute = self.input_data.attributes.get(
                GENE_ID_ATTRIBUTE, None)
            self.gene_id_column = self.input_data.attributes.get(
                GENE_ID_COLUMN, None)
            self.annotation_index = None

            if not (self.use_attr_names is not None and
                    ((self.gene_id_attribute is None) ^
                     (self.gene_id_column is None))):

                if self.tax_id is None:
                    self.Error.missing_annotation()
                    return

                self.Error.missing_gene_id()
                return

            elif self.tax_id is None:
                self.Error.missing_tax_id()
                return

            _c2i = {
                a.taxid: i
                for i, a in enumerate(self.available_annotations)
            }
            try:
                self.annotation_index = _c2i[self.tax_id]
            except KeyError:
                self.Error.serverfiles_unavailable()
                # raise ValueError('Taxonomy {} not supported.'.format(self.tax_id))
                return

            self.gene_info = gene.GeneInfo(self.tax_id)

            self.__invalidate()

    def set_reference_dataset(self, data=None):
        self.Error.clear()
        if data:
            self.ref_data = data
            self.ref_tax_id = str(self.ref_data.attributes.get(TAX_ID, None))
            self.ref_use_attr_names = self.ref_data.attributes.get(
                GENE_AS_ATTRIBUTE_NAME, None)
            self.ref_gene_id_attribute = self.ref_data.attributes.get(
                GENE_ID_ATTRIBUTE, None)
            self.ref_gene_id_column = self.ref_data.attributes.get(
                GENE_ID_COLUMN, None)

            if not (self.ref_use_attr_names is not None and
                    ((self.ref_gene_id_attribute is None) ^
                     (self.ref_gene_id_column is None))):

                if self.ref_tax_id is None:
                    self.Error.missing_annotation()
                    return

                self.Error.missing_gene_id()
                return

            elif self.ref_tax_id is None:
                self.Error.missing_tax_id()
                return

        self.referenceRadioBox.buttons[1].setDisabled(not bool(data))
        self.referenceRadioBox.buttons[1].setText("Reference set")
        if self.input_data is not None and self.use_reference_dataset:
            self.use_reference_dataset = 0 if not data else 1
            self.__invalidate()

    @Slot()
    def __invalidate(self):
        # Invalidate the current results or pending task and schedule an
        # update.
        self.__scheduletimer.start()
        if self.__state != State.Ready:
            self.__state |= State.Stale

        self.set_graph({})
        self.ref_genes = None
        self.input_genes = None

    def __invalidate_annotations(self):
        self.annotations = None
        self.loaded_annotation_code = None
        if self.input_data:
            self.infoLabel.setText("...\n")
        self.__invalidate()

    @Slot()
    def __update(self):
        self.__scheduletimer.stop()
        if self.input_data is None:
            return

        if self.__state & State.Running:
            self.__state |= State.Stale
        elif self.__state & State.Downloading:
            self.__state |= State.Stale
        elif self.__state & State.Ready:
            if self.__ensure_data():
                self.load()
                self.enrichment()
            else:
                assert self.__state & State.Downloading
                assert self.isBlocking()

    def __get_ref_genes(self):
        self.ref_genes = []

        if self.ref_use_attr_names:
            for variable in self.input_data.domain.attributes:
                self.ref_genes.append(
                    str(
                        variable.attributes.get(self.ref_gene_id_attribute,
                                                '?')))
        else:
            genes, _ = self.ref_data.get_column_view(self.ref_gene_id_column)
            self.ref_genes = [str(g) for g in genes]

    def __get_input_genes(self):
        self.input_genes = []

        if self.use_attr_names:
            for variable in self.input_data.domain.attributes:
                self.input_genes.append(
                    str(variable.attributes.get(self.gene_id_attribute, '?')))
        else:
            genes, _ = self.input_data.get_column_view(self.gene_id_column)
            self.input_genes = [str(g) for g in genes]

    def filter_annotated_genes(self, genes):
        matchedgenes = self.annotations.get_gene_names_translator(
            genes).values()
        return matchedgenes, [
            gene for gene in genes if gene not in matchedgenes
        ]

    def __start_download(self, files_list):
        # type: (List[Tuple[str, str]]) -> None
        task = EnsureDownloaded(files_list)
        task.progress.connect(self._progress_bar_set)

        f = self._executor.submit(task)
        fw = FutureWatcher(f, self)
        fw.finished.connect(self.__download_finish)
        fw.finished.connect(fw.deleteLater)
        fw.resultReady.connect(self.__invalidate)

        self.progressBarInit(processEvents=None)
        self.setBlocking(True)
        self.setStatusMessage("Downloading")
        self.__state = State.Downloading

    @Slot(Future)
    def __download_finish(self, result):
        # type: (Future[None]) -> None
        assert QThread.currentThread() is self.thread()
        assert result.done()
        self.setBlocking(False)
        self.setStatusMessage("")
        self.progressBarFinished(processEvents=False)
        try:
            result.result()
        except ConnectTimeout:
            logging.getLogger(__name__).error("Error:")
            self.error(
                2,
                "Internet connection error, unable to load data. " +
                "Check connection and create a new GO Browser widget.",
            )
        except RequestException as err:
            logging.getLogger(__name__).error("Error:")
            self.error(2, "Internet error:\n" + str(err))
        except BaseException as err:
            logging.getLogger(__name__).error("Error:")
            self.error(2, "Error:\n" + str(err))
            raise
        else:
            self.error(2)
        finally:
            self.__state = State.Ready

    def __ensure_data(self):
        # Ensure that all required database (ontology and annotations for
        # the current selected organism are present. If not start a download in
        # the background. Return True if all dbs are present and false
        # otherwise
        assert self.__state == State.Ready
        annotation = self.available_annotations[self.annotation_index]
        go_files = [fname for domain, fname in serverfiles.listfiles(DOMAIN)]
        files = []

        if annotation.filename not in go_files:
            files.append(("go", annotation.filename))

        if FILENAME_ONTOLOGY not in go_files:
            files.append((DOMAIN, FILENAME_ONTOLOGY))
        if files:
            self.__start_download(files)
            assert self.__state == State.Downloading
            return False
        else:
            return True

    def load(self):
        a = self.available_annotations[self.annotation_index]

        if self.ontology is None:
            self.ontology = go.Ontology()

        if a.taxid != self.loaded_annotation_code:
            self.annotations = None
            gc.collect()  # Force run garbage collection
            self.annotations = go.Annotations(a.taxid)
            self.loaded_annotation_code = a.taxid
            count = defaultdict(int)
            gene_sets = defaultdict(set)

            for anno in self.annotations.annotations:
                count[anno.evidence] += 1
                gene_sets[anno.evidence].add(anno.gene_id)
            for etype in go.evidence_types_ordered:
                ecb = self.evidenceCheckBoxDict[etype]
                ecb.setEnabled(bool(count[etype]))
                ecb.setText(etype + ": %i annots(%i genes)" %
                            (count[etype], len(gene_sets[etype])))

    def enrichment(self):
        assert self.input_data is not None
        assert self.__state == State.Ready

        if not self.annotations.ontology:
            self.annotations.ontology = self.ontology

        self.error(1)
        self.warning([0, 1])

        self.__get_input_genes()
        self.input_genes = set(self.input_genes)
        self.known_input_genes = self.annotations.get_genes_with_known_annotation(
            self.input_genes)

        # self.clusterGenes = clusterGenes = self.annotations.map_to_ncbi_id(self.input_genes).values()

        self.infoLabel.setText(
            "%i unique genes on input\n%i (%.1f%%) genes with known annotations"
            % (
                len(self.input_genes),
                len(self.known_input_genes),
                100.0 * len(self.known_input_genes) /
                len(self.input_genes) if len(self.input_genes) else 0.0,
            ))

        if not self.use_reference_dataset or self.ref_data is None:
            self.information(2)
            self.information(1)
            self.ref_genes = set(self.gene_info.keys())

        elif self.ref_data is not None:
            self.__get_ref_genes()
            self.ref_genes = set(self.ref_genes)

            ref_count = len(self.ref_genes)
            if ref_count == 0:
                self.ref_genes = self.annotations.genes()
                self.referenceRadioBox.buttons[1].setText("Reference set")
                self.referenceRadioBox.buttons[1].setDisabled(True)
                self.information(
                    2, "Unable to extract gene names from reference dataset. "
                    "Using entire genome for reference")
                self.use_reference_dataset = 0
            else:
                self.referenceRadioBox.buttons[1].setText(
                    "Reference set ({} genes)".format(ref_count))
                self.referenceRadioBox.buttons[1].setDisabled(False)
                self.information(2)
        else:
            self.use_reference_dataset = 0
            self.ref_genes = []

        if not self.ref_genes:
            self.error(1, "No valid reference set")
            return {}

        evidences = []
        for etype in go.evidence_types_ordered:
            if self.use_evidence_type[etype]:
                evidences.append(etype)
        aspect = ['Process', 'Component', 'Function'][self.aspect_index]

        self.progressBarInit(processEvents=False)
        self.setBlocking(True)
        self.__state = State.Running

        if self.input_genes:
            f = self._executor.submit(
                self.annotations.get_enriched_terms,
                self.input_genes,
                self.ref_genes,
                evidences,
                aspect=aspect,
                prob=self.probFunctions[self.prob_func],
                use_fdr=False,
                progress_callback=methodinvoke(self, "_progress_bar_set",
                                               (float, )),
            )
            fw = FutureWatcher(f, parent=self)
            fw.done.connect(self.__on_enrichment_done)
            fw.done.connect(fw.deleteLater)
            return
        else:
            f = Future()
            f.set_result({})
            self.__on_enrichment_done(f)

    def __on_enrichment_done(self, results):
        # type: (Future[Dict[str, tuple]]) -> None
        self.progressBarFinished(processEvents=False)
        self.setBlocking(False)
        self.setStatusMessage("")
        if self.__state & State.Stale:
            self.__state = State.Ready
            self.__invalidate()
            return

        self.__state = State.Ready
        try:
            results = results.result()  # type: Dict[str, tuple]
        except Exception as ex:
            results = {}
            error = str(ex)
            self.error(1, error)

        if results:
            terms = list(results.items())
            fdr_vals = statistics.FDR([d[1] for _, d in terms])
            terms = [(key, d + (fdr, ))
                     for (key, d), fdr in zip(terms, fdr_vals)]
            terms = dict(terms)

        else:
            terms = {}

        self.terms = terms

        if not self.terms:
            self.warning(0, "No enriched terms found.")
        else:
            self.warning(0)

        self.treeStructDict = {}
        ids = self.terms.keys()

        self.treeStructRootKey = None

        parents = {}
        for _id in ids:
            parents[_id] = {term for _, term in self.ontology[_id].related}

        children = {}
        for term in self.terms:
            children[term] = {id for id in ids if term in parents[id]}

        for term in self.terms:
            self.treeStructDict[term] = TreeNode(self.terms[term],
                                                 children[term])
            if not self.ontology[term].related and not getattr(
                    self.ontology[term], "is_obsolete", False):
                self.treeStructRootKey = term

        self.set_graph(terms)
        self._update_enrichment_report_output()
        self.commit()

    def _update_enrichment_report_output(self):
        terms = sorted(self.terms.items(), key=lambda item: item[1][1])
        # Create and send the enrichemnt report table.
        terms_domain = Orange.data.Domain(
            [],
            [],
            # All is meta!
            [
                Orange.data.StringVariable("GO Term Id"),
                Orange.data.StringVariable("GO Term Name"),
                Orange.data.ContinuousVariable("Cluster Frequency"),
                Orange.data.ContinuousVariable("Genes in Cluster",
                                               number_of_decimals=0),
                Orange.data.ContinuousVariable("Reference Frequency"),
                Orange.data.ContinuousVariable("Genes in Reference",
                                               number_of_decimals=0),
                Orange.data.ContinuousVariable("p-value"),
                Orange.data.ContinuousVariable("FDR"),
                Orange.data.ContinuousVariable("Enrichment"),
                Orange.data.StringVariable("Genes"),
            ],
        )

        terms = [[
            t_id,
            self.ontology[t_id].name,
            len(genes) / len(self.input_genes),
            len(genes),
            r_count / len(self.ref_genes),
            r_count,
            p_value,
            fdr,
            len(genes) / len(self.input_genes) * len(self.ref_genes) / r_count,
            ",".join(genes),
        ] for t_id, (genes, p_value, r_count, fdr) in terms
                 if genes and r_count]

        if terms:
            x = numpy.empty((len(terms), 0))
            m = numpy.array(terms, dtype=object)
            terms_table = Orange.data.Table.from_numpy(terms_domain,
                                                       x,
                                                       metas=m)
        else:
            terms_table = None
        self.send("Enrichment Report", terms_table)

    @Slot(float)
    def _progress_bar_set(self, value):
        assert QThread.currentThread() is self.thread()
        self.progressBarSet(value, processEvents=None)

    @Slot()
    def _progress_bar_finish(self):
        assert QThread.currentThread() is self.thread()
        self.progressBarFinished(processEvents=None)

    def filter_graph(self, graph):
        if self.filter_by_p_value_nofdr:
            graph = go.filter_by_p_value(graph, self.max_p_value_no_fdr)
        if self.filter_by_p_value:  # FDR
            graph = dict(
                filter(lambda item: item[1][3] <= self.max_p_value,
                       graph.items()))
        if self.filter_by_num_of_instances:
            graph = dict(
                filter(
                    lambda item: len(item[1][0]) >= self.min_num_of_instances,
                    graph.items()))
        return graph

    def filter_and_display_graph(self):
        if self.input_data and self.originalGraph is not None:
            self.graph = self.filter_graph(self.originalGraph)
            if self.originalGraph and not self.graph:
                self.warning(1, "All found terms were filtered out.")
            else:
                self.warning(1)
            self.clear_graph()
            self.display_graph()

    def set_graph(self, graph=None):
        self.originalGraph = graph
        if graph:
            self.filter_and_display_graph()
        else:
            self.graph = {}
            self.clear_graph()

    def clear_graph(self):
        self.listView.clear()
        self.listViewItems = []
        self.sigTerms.clear()

    def display_graph(self):
        from_parent_dict = {}
        self.termListViewItemDict = {}
        self.listViewItems = []

        def enrichment(t):
            try:
                return len(t[0]) / t[2] * (len(self.ref_genes) /
                                           len(self.input_genes))
            except ZeroDivisionError:
                # TODO: find out why this happens
                return 0

        max_fold_enrichment = max(
            [enrichment(term) for term in self.graph.values()] or [1])

        def add_node(term, parent, parent_display_node):
            if (parent, term) in from_parent_dict:
                return
            if term in self.graph:
                display_node = GOTreeWidgetItem(
                    self.ontology[term],
                    self.graph[term],
                    len(self.input_genes),
                    len(self.ref_genes),
                    max_fold_enrichment,
                    parent_display_node,
                )
                display_node.goId = term
                self.listViewItems.append(display_node)
                if term in self.termListViewItemDict:
                    self.termListViewItemDict[term].append(display_node)
                else:
                    self.termListViewItemDict[term] = [display_node]
                from_parent_dict[(parent, term)] = True
                parent = term
            else:
                display_node = parent_display_node

            for c in self.treeStructDict[term].children:
                add_node(c, parent, display_node)

        if self.treeStructDict:
            add_node(self.treeStructRootKey, None, self.listView)

        terms = self.graph.items()
        terms = sorted(terms, key=lambda item: item[1][1])
        self.sigTableTermsSorted = [t[0] for t in terms]

        self.sigTerms.clear()
        for i, (t_id, (genes, p_value, ref_count, fdr)) in enumerate(terms):
            item = GOTreeWidgetItem(
                self.ontology[t_id],
                (genes, p_value, ref_count, fdr),
                len(self.input_genes),
                len(self.ref_genes),
                max_fold_enrichment,
                self.sigTerms,
            )
            item.goId = t_id

        self.listView.expandAll()
        for i in range(5):
            self.listView.resizeColumnToContents(i)
            self.sigTerms.resizeColumnToContents(i)
        self.sigTerms.resizeColumnToContents(6)
        width = min(self.listView.columnWidth(0), 350)
        self.listView.setColumnWidth(0, width)
        self.sigTerms.setColumnWidth(0, width)

    def view_selection_changed(self):
        if self.selectionChanging:
            return

        self.selectionChanging = 1
        self.selectedTerms = []
        selected = self.listView.selectedItems()
        self.selectedTerms = list({lvi.term.id for lvi in selected})
        self.example_selection()
        self.selectionChanging = 0

    def table_selection_changed(self):
        if self.selectionChanging:
            return

        self.selectionChanging = 1
        self.selectedTerms = []
        selected_ids = {
            self.sigTerms.itemFromIndex(index).goId
            for index in self.sigTerms.selectedIndexes()
        }

        for i in range(self.sigTerms.topLevelItemCount()):
            item = self.sigTerms.topLevelItem(i)
            selected = item.goId in selected_ids
            term = item.goId

            if selected:
                self.selectedTerms.append(term)

            for lvi in self.termListViewItemDict[term]:
                try:
                    lvi.setSelected(selected)
                    if selected:
                        lvi.setExpanded(True)
                except RuntimeError:  # Underlying C/C++ object deleted
                    pass
        self.selectionChanging = 0
        self.example_selection()

    def example_selection(self):
        self.commit()

    def commit(self):
        if self.input_data is None or self.originalGraph is None or self.annotations is None:
            return
        if self.__state & State.Stale:
            return

        terms = set(self.selectedTerms)
        genes = reduce(operator.ior,
                       (set(self.graph[term][0]) for term in terms), set())

        evidences = []
        for etype in go.evidence_types_ordered:
            if self.use_evidence_type[etype]:
                evidences.append(etype)

        all_terms = self.annotations.get_annotated_terms(
            genes,
            direct_annotation_only=self.selection_direct_annotation,
            evidence_codes=evidences)

        if self.selection_disjoint > 0:
            count = defaultdict(int)
            for term in self.selectedTerms:
                for g in all_terms.get(term, []):
                    count[g] += 1
            ccount = 1 if self.selection_disjoint == 1 else len(
                self.selectedTerms)
            selected_genes = [
                gene for gene, c in count.items()
                if c == ccount and gene in genes
            ]
        else:
            selected_genes = reduce(operator.ior,
                                    (set(all_terms.get(term, []))
                                     for term in self.selectedTerms), set())

        if self.use_attr_names:
            selected = [
                column for column in self.input_data.domain.attributes
                if self.gene_id_attribute in column.attributes
                and str(column.attributes[self.gene_id_attribute]) in set(
                    selected_genes)
            ]

            domain = Orange.data.Domain(selected,
                                        self.input_data.domain.class_vars,
                                        self.input_data.domain.metas)
            new_data = self.input_data.from_table(domain, self.input_data)
            self.send("Data on Selected Genes", new_data)

        else:
            selected_rows = []
            for row_index, row in enumerate(self.input_data):
                gene_in_row = str(row[self.gene_id_column])
                if gene_in_row in self.input_genes and gene_in_row in selected_genes:
                    selected_rows.append(row_index)

                if selected_rows:
                    selected = self.input_data[selected_rows]
                else:
                    selected = None

                self.send("Data on Selected Genes", selected)

    def show_info(self):
        dialog = QDialog(self)
        dialog.setModal(False)
        dialog.setLayout(QVBoxLayout())
        label = QLabel(dialog)
        label.setText(
            "Ontology:\n" +
            self.ontology.header if self.ontology else "Ontology not loaded!")
        dialog.layout().addWidget(label)

        label = QLabel(dialog)
        label.setText("Annotations:\n" +
                      self.annotations.header.replace("!", "") if self.
                      annotations else "Annotations not loaded!")
        dialog.layout().addWidget(label)
        dialog.show()

    def onDeleteWidget(self):
        """Called before the widget is removed from the canvas.
        """
        self.annotations = None
        self.ontology = None
        gc.collect()  # Force collection
示例#30
0
class OWNxExplorer(widget.OWWidget):
    name = "Network Explorer"
    description = "Visually explore the network and its properties."
    icon = "icons/NetworkExplorer.svg"
    priority = 6420

    class Inputs:
        network = Input("Network", network.Graph, default=True)
        node_subset = Input("Node Subset", Table)
        node_data = Input("Node Data", Table)
        node_distances = Input("Node Distances", Orange.misc.DistMatrix)

    class Outputs:
        subgraph = Output("Selected sub-network", network.Graph)
        unselected_subgraph = Output("Remaining sub-network", network.Graph)
        distances = Output("Distance matrix", Orange.misc.DistMatrix)
        selected = Output("Selected items", Table)
        highlighted = Output("Highlighted items", Table)
        remaining = Output("Remaining items", Table)

    settingsList = [
        "lastVertexSizeColumn",
        "lastColorColumn",
        "lastLabelColumns",
        "lastTooltipColumns",
    ]
    # TODO: set settings

    UserAdviceMessages = [
        widget.Message(
            'When selecting nodes on the Marking tab, '
            'press <b><tt>Enter</tt></b> key to add '
            '<b><font color="{}">highlighted</font></b> nodes to '
            '<b><font color="{}">selection</font></b>.'.format(
                Node.Pen.HIGHLIGHTED.color().name(),
                Node.Pen.SELECTED.color().name()), 'marking-info',
            widget.Message.Information),
        widget.Message(
            'Left-click to select nodes '
            '(hold <b><tt>Shift</tt></b> to append to selection). '
            'Right-click to pan/move the view. Scroll to zoom.', 'mouse-info',
            widget.Message.Information),
    ]

    do_auto_commit = settings.Setting(True)
    maxNodeSize = settings.Setting(50)
    minNodeSize = settings.Setting(8)
    selectionMode = settings.Setting(SelectionMode.FROM_INPUT)
    tabIndex = settings.Setting(0)
    showEdgeWeights = settings.Setting(False)
    relativeEdgeWidths = settings.Setting(False)
    invertNodeSize = settings.Setting(False)
    markDistance = settings.Setting(1)
    markSearchString = settings.Setting("")
    markNBest = settings.Setting(1)
    markNConnections = settings.Setting(2)

    graph_name = 'view'

    class Warning(widget.OWWidget.Warning):
        distance_matrix_size = widget.Msg(
            "Distance matrix size doesn't match the number of network nodes. Not using it."
        )
        no_graph_found = widget.Msg('No graph found!')
        no_graph_or_items = widget.Msg(
            'No graph provided or no items attached to the graph.')

    class Error(widget.OWWidget.Error):
        instance_for_each_node = widget.Msg(
            'Items table must have one instance for each network node.')
        network_too_large = widget.Msg(
            'Network is too large to visualize. Sorry.')

    def __init__(self):
        super().__init__()
        #self.contextHandlers = {"": DomainContextHandler("", [ContextField("attributes", selected="node_label_attrs"), ContextField("attributes", selected="tooltipAttributes"), "color"])}

        self.view = GraphView(self)
        self.mainArea.layout().addWidget(self.view)

        self.graph_attrs = []

        self.acceptingEnterKeypress = False

        self.node_label_attrs = []
        self.tooltipAttributes = []
        self.searchStringTimer = QTimer(self)
        self.markInputItems = None
        self.node_color_attr = 0
        self.node_size_attr = 0

        self.nHighlighted = 0
        self.nSelected = 0
        self.verticesPerEdge = 0
        self.edgesPerVertex = 0

        self.lastVertexSizeColumn = ''
        self.lastColorColumn = ''
        self.lastLabelColumns = set()
        self.lastTooltipColumns = set()

        self.items_matrix = None
        self.number_of_nodes_label = 0
        self.number_of_edges_label = 0

        self.graph = None

        self.setMinimumWidth(600)

        self.tabs = gui.tabWidget(self.controlArea)
        self.displayTab = gui.createTabPage(self.tabs, "Display")
        self.markTab = gui.createTabPage(self.tabs, "Marking")

        def on_tab_changed(index):
            self.tabIndex = index
            self.set_selection_mode()

        self.tabs.currentChanged.connect(on_tab_changed)
        self.tabs.setCurrentIndex(self.tabIndex)

        ib = gui.widgetBox(self.displayTab, "Info")
        gui.label(
            ib, self,
            "Nodes: %(number_of_nodes_label)i (%(verticesPerEdge).2f per edge)"
        )
        gui.label(
            ib, self,
            "Edges: %(number_of_edges_label)i (%(edgesPerVertex).2f per node)")

        box = gui.widgetBox(self.displayTab, "Nodes")

        self.relayout_button = gui.button(box,
                                          self,
                                          'Re-layout',
                                          callback=self.relayout,
                                          autoDefault=False)
        self.view.positionsChanged.connect(
            lambda positions, progress: self.progressbar.widget.progressBarSet(
                int(round(100 * progress))))

        def animationFinished():
            self.relayout_button.setEnabled(True)
            self.progressbar.finish()

        self.view.animationFinished.connect(animationFinished)

        self.colorCombo = gui.comboBox(box,
                                       self,
                                       "node_color_attr",
                                       label='Color:',
                                       orientation='horizontal',
                                       callback=self.set_node_colors)

        self.invertNodeSizeCheck = self.maxNodeSizeSpin = QWidget(
        )  # Forward declaration
        self.nodeSizeCombo = gui.comboBox(box,
                                          self,
                                          "node_size_attr",
                                          label='Size:',
                                          orientation='horizontal',
                                          callback=self.set_node_sizes)
        hb = gui.widgetBox(box, orientation="horizontal")
        hb.layout().addStretch(1)
        self.minNodeSizeSpin = gui.spin(hb,
                                        self,
                                        "minNodeSize",
                                        1,
                                        50,
                                        step=1,
                                        label="Min:",
                                        callback=self.set_node_sizes)
        self.minNodeSizeSpin.setValue(8)
        gui.separator(hb)
        self.maxNodeSizeSpin = gui.spin(hb,
                                        self,
                                        "maxNodeSize",
                                        10,
                                        200,
                                        step=5,
                                        label="Max:",
                                        callback=self.set_node_sizes)
        self.maxNodeSizeSpin.setValue(50)
        gui.separator(hb)
        self.invertNodeSizeCheck = gui.checkBox(hb,
                                                self,
                                                "invertNodeSize",
                                                "Invert",
                                                callback=self.set_node_sizes)

        hb = gui.widgetBox(self.displayTab,
                           box="Node labels | tooltips",
                           orientation="horizontal",
                           addSpace=False)
        self.attListBox = gui.listBox(
            hb,
            self,
            "node_label_attrs",
            "graph_attrs",
            selectionMode=QListWidget.MultiSelection,
            sizeHint=QSize(100, 100),
            callback=self._on_node_label_attrs_changed)
        self.tooltipListBox = gui.listBox(
            hb,
            self,
            "tooltipAttributes",
            "graph_attrs",
            selectionMode=QListWidget.MultiSelection,
            sizeHint=QSize(100, 100),
            callback=self._clicked_tooltip_lstbox)

        eb = gui.widgetBox(self.displayTab, "Edges", orientation="vertical")
        self.checkbox_relative_edges = gui.checkBox(
            eb,
            self,
            'relativeEdgeWidths',
            'Relative edge widths',
            callback=self.set_edge_sizes)
        self.checkbox_show_weights = gui.checkBox(
            eb,
            self,
            'showEdgeWeights',
            'Show edge weights',
            callback=self.set_edge_labels)

        ib = gui.widgetBox(self.markTab, "Info", orientation="vertical")
        gui.label(ib, self, "Nodes: %(number_of_nodes_label)i")
        gui.label(ib, self, "Selected: %(nSelected)i")
        gui.label(ib, self, "Highlighted: %(nHighlighted)i")

        def on_selection_change():
            self.nSelected = len(self.view.getSelected())
            self.nHighlighted = len(self.view.getHighlighted())
            self.set_selection_mode()
            self.commit()

        self.view.selectionChanged.connect(on_selection_change)

        ib = gui.widgetBox(self.markTab, "Highlight nodes ...")
        ribg = gui.radioButtonsInBox(ib,
                                     self,
                                     "selectionMode",
                                     callback=self.set_selection_mode)
        gui.appendRadioButton(ribg, "None")
        gui.appendRadioButton(ribg, "... whose attributes contain:")
        self.ctrlMarkSearchString = gui.lineEdit(
            gui.indentedBox(ribg),
            self,
            "markSearchString",
            callback=self._set_search_string_timer,
            callbackOnType=True)
        self.searchStringTimer.timeout.connect(self.set_selection_mode)

        gui.appendRadioButton(ribg,
                              "... neighbours of selected, ≤ N hops away")
        ib = gui.indentedBox(ribg, orientation=0)
        self.ctrlMarkDistance = gui.spin(
            ib,
            self,
            "markDistance",
            1,
            100,
            1,
            label="Hops:",
            callback=lambda: self.set_selection_mode(SelectionMode.NEIGHBORS))
        ib.layout().addStretch(1)
        gui.appendRadioButton(ribg, "... with at least N connections")
        gui.appendRadioButton(ribg, "... with at most N connections")
        ib = gui.indentedBox(ribg, orientation=0)
        self.ctrlMarkNConnections = gui.spin(
            ib,
            self,
            "markNConnections",
            0,
            1000000,
            1,
            label="Connections:",
            callback=lambda: self.set_selection_mode(
                SelectionMode.AT_MOST_N if self.selectionMode == SelectionMode.
                AT_MOST_N else SelectionMode.AT_LEAST_N))
        ib.layout().addStretch(1)
        gui.appendRadioButton(ribg,
                              "... with more connections than any neighbor")
        gui.appendRadioButton(
            ribg, "... with more connections than average neighbor")
        gui.appendRadioButton(ribg, "... with most connections")
        ib = gui.indentedBox(ribg, orientation=0)
        self.ctrlMarkNumber = gui.spin(
            ib,
            self,
            "markNBest",
            1,
            1000000,
            1,
            label="Number of nodes:",
            callback=lambda: self.set_selection_mode(SelectionMode.MOST_CONN))
        ib.layout().addStretch(1)
        self.markInputRadioButton = gui.appendRadioButton(
            ribg, "... from Node Subset input signal")
        self.markInputRadioButton.setEnabled(True)

        gui.auto_commit(ribg, self, 'do_auto_commit', 'Output changes')
        self.markTab.layout().addStretch(1)

        self.set_graph(None)
        self.set_selection_mode()

    def commit(self):
        self.send_data()

    @Inputs.node_distances
    def set_items_distance_matrix(self, matrix):
        assert matrix is None or isinstance(matrix, Orange.misc.DistMatrix)
        self.items_matrix = matrix
        self.relayout()

    def _set_search_string_timer(self):
        self.selectionMode = SelectionMode.SEARCH
        self.searchStringTimer.stop()
        self.searchStringTimer.start(300)

    def switchTab(self, index=None):
        index = index or self.tabs.currentIndex()
        curTab = self.tabs.widget(index)
        self.acceptingEnterKeypress = False
        if curTab == self.markTab and self.selectionMode != SelectionMode.NONE:
            self.acceptingEnterKeypress = True

    @non_reentrant
    def set_selection_mode(self, selectionMode=None):
        self.searchStringTimer.stop()
        selectionMode = self.selectionMode = selectionMode or self.selectionMode
        self.switchTab()
        if (self.graph is None
                or self.tabs.widget(self.tabs.currentIndex()) != self.markTab
                and selectionMode != SelectionMode.FROM_INPUT):
            return

        if selectionMode == SelectionMode.NONE:
            self.view.setHighlighted([])
        elif selectionMode == SelectionMode.SEARCH:
            table, txt = self.graph.items(), self.markSearchString.lower()
            if not table or not txt: return
            toMark = set(i for i, instance in enumerate(table)
                         if txt in " ".join(map(str, instance.list)).lower())
            self.view.setHighlighted(toMark)
        elif selectionMode == SelectionMode.NEIGHBORS:
            selected = set(self.view.getSelected())
            neighbors = selected.copy()
            for _ in range(self.markDistance):
                for neigh in list(neighbors):
                    neighbors |= set(self.graph[neigh].keys())
            neighbors -= selected
            self.view.setHighlighted(neighbors)
        elif selectionMode == SelectionMode.AT_LEAST_N:
            self.view.setHighlighted(
                set(node for node, degree in self.graph.degree()
                    if degree >= self.markNConnections))
        elif selectionMode == SelectionMode.AT_MOST_N:
            self.view.setHighlighted(
                set(node for node, degree in self.graph.degree()
                    if degree <= self.markNConnections))
        elif selectionMode == SelectionMode.ANY_NEIGH:
            self.view.setHighlighted(
                set(node for node, degree in self.graph.degree() if degree >
                    max(dict(self.graph.degree(self.graph[node])).values(),
                        default=0)))
        elif selectionMode == SelectionMode.AVG_NEIGH:
            self.view.setHighlighted(
                set(node for node, degree in self.graph.degree()
                    if degree > np.nan_to_num(
                        np.mean(
                            list(
                                dict(self.graph.degree(
                                    self.graph[node])).values())))))
        elif selectionMode == SelectionMode.MOST_CONN:
            degrees = np.array(
                sorted(self.graph.degree(), key=lambda i: i[1], reverse=True))
            cut_ind = max(1, min(self.markNBest, self.graph.number_of_nodes()))
            cut_degree = degrees[cut_ind - 1, 1]
            toMark = set(degrees[degrees[:, 1] >= cut_degree, 0])
            self.view.setHighlighted(toMark)
        elif selectionMode == SelectionMode.FROM_INPUT:
            tomark = {}
            if self.markInputItems:
                ids = set(self.markInputItems.ids)
                tomark = {
                    x
                    for x in self.graph if self.graph.items()[x].id in ids
                }
            self.view.setHighlighted(tomark)

    def keyReleaseEvent(self, ev):
        """On Enter, expand the selected set with the highlighted"""
        if (not self.acceptingEnterKeypress
                or ev.key() not in (Qt.Key_Return, Qt.Key_Enter)):
            super().keyReleaseEvent(ev)
            return
        highlighted = self.view.getHighlighted()
        self.view.setSelected(highlighted, extend=True)
        self.view.setHighlighted([])
        self.set_selection_mode()

    def save_network(self):
        # TODO: this was never reviewed since Orange2
        if self.view is None or self.graph is None:
            return

        filename = QFileDialog.getSaveFileName(
            self, 'Save Network', '',
            'NetworkX graph as Python pickle (*.gpickle)\n'
            'NetworkX edge list (*.edgelist)\n'
            'Pajek network (*.net *.pajek)\n'
            'GML network (*.gml)')
        if filename:
            _, ext = os.path.splitext(filename)
            if not ext: filename += ".net"
            items = self.graph.items()
            for i in range(self.graph.number_of_nodes()):
                graph_node = self.graph.node[i]
                plot_node = self.networkCanvas.networkCurve.nodes()[i]

                if items is not None:
                    ex = items[i]
                    if 'x' in ex.domain: ex['x'] = plot_node.x()
                    if 'y' in ex.domain: ex['y'] = plot_node.y()

                graph_node['x'] = plot_node.x()
                graph_node['y'] = plot_node.y()

            network.readwrite.write(self.graph, filename)

    def send_data(self):
        if not self.graph:
            for output in dir(self.Outputs):
                if not output.startswith('__'):
                    getattr(self.Outputs, output).send(None)
            return
        selected = self.view.getSelected()
        self.Outputs.subgraph.send(
            self.graph.subgraph(selected) if selected else None)
        self.Outputs.unselected_subgraph.send(
            self.graph.subgraph(self.view.getUnselected()
                                ) if selected else self.graph)
        self.Outputs.distances.send(
            self.items_matrix.submatrix(sorted(selected))
            if self.items_matrix is not None and selected else None)
        items = self.graph.items()
        if not items:
            self.Outputs.selected.send(None)
            self.Outputs.highlighted.send(None)
            self.Outputs.remaining.send(None)
        else:
            highlighted = self.view.getHighlighted()
            self.Outputs.selected.send(items[
                sorted(selected), :] if selected else None)
            self.Outputs.highlighted.send(items[
                sorted(highlighted), :] if highlighted else None)
            remaining = sorted(
                set(self.graph) - set(selected) - set(highlighted))
            self.Outputs.remaining.send(items[
                remaining, :] if remaining else None)

    def _set_combos(self):
        self._clear_combos()
        self.graph_attrs = self.graph.items_vars()
        lastLabelColumns = self.lastLabelColumns
        lastTooltipColumns = self.lastTooltipColumns

        for var in self.graph_attrs:
            if var.is_discrete or var.is_continuous:
                self.colorCombo.addItem(
                    gui.attributeIconDict[gui.vartype(var)], var.name, var)

            if var.is_continuous:
                self.nodeSizeCombo.addItem(
                    gui.attributeIconDict[gui.vartype(var)], var.name, var)

        self.nodeSizeCombo.setDisabled(not self.graph_attrs)
        self.colorCombo.setDisabled(not self.graph_attrs)

        for i in range(self.nodeSizeCombo.count()):
            if self.lastVertexSizeColumn == \
                    self.nodeSizeCombo.itemText(i):
                self.node_size_attr = i
                self.set_node_sizes()
                break

        for i in range(self.colorCombo.count()):
            if self.lastColorColumn == self.colorCombo.itemText(i):
                self.node_color_attr = i
                self.set_node_colors()
                break

        if lastLabelColumns:
            selection = QItemSelection()
            model = self.attListBox.model()
            for i in range(self.attListBox.count()):
                if str(self.attListBox.item(i).text()) in lastLabelColumns:
                    selection.append(QItemSelectionRange(model.index(i, 0)))
            selmodel = self.attListBox.selectionModel()
            selmodel.select(selection, selmodel.Select | selmodel.Clear)
        else:
            self.attListBox.selectionModel().clearSelection()
        self._on_node_label_attrs_changed()

        if lastTooltipColumns:
            selection = QItemSelection()
            model = self.tooltipListBox.model()
            for i in range(self.tooltipListBox.count()):
                if self.tooltipListBox.item(i).text() in lastTooltipColumns:
                    selection.append(QItemSelectionRange(model.index(i, 0)))
            selmodel = self.tooltipListBox.selectionModel()
            selmodel.select(selection, selmodel.Select | selmodel.Clear)
        else:
            self.tooltipListBox.selectionModel().clearSelection()
        self._clicked_tooltip_lstbox()

        self.lastLabelColumns = lastLabelColumns
        self.lastTooltipColumns = lastTooltipColumns

    def _clear_combos(self):
        self.graph_attrs = []

        self.colorCombo.clear()
        self.nodeSizeCombo.clear()

        self.colorCombo.addItem('(none)', None)
        self.nodeSizeCombo.addItem("(uniform)")

    def set_graph_none(self):
        self.graph = None
        self.graph_base = None
        self._clear_combos()
        self.number_of_nodes_label = 0
        self.number_of_edges_label = 0
        self.verticesPerEdge = 0
        self.edgesPerVertex = 0
        self._items = None
        self.view.set_graph(None)

    @Inputs.network
    def set_graph(self, graph):
        if not graph:
            return self.set_graph_none()
        if graph.number_of_nodes() < 2:
            self.set_graph_none()
            self.information(
                'I\'m not really in a mood to visualize just one node. Try again tomorrow.'
            )
            return
        if graph.number_of_nodes() + graph.number_of_edges() > 30000:
            self.set_graph_none()
            self.Error.network_too_large()
            return
        self.information()

        all_edges_equal = bool(
            1 == len(set(w for u, v, w in graph.edges(data='weight'))))
        self.checkbox_show_weights.setEnabled(not all_edges_equal)
        self.checkbox_relative_edges.setEnabled(not all_edges_equal)

        self.graph_base = graph
        self.graph = graph.copy()
        # Set items table from the separate signal
        if self._items: self.set_items(self._items)

        self.view.set_graph(self.graph, relayout=False)

        # Set labels
        self.number_of_nodes_label = self.graph.number_of_nodes()
        self.number_of_edges_label = self.graph.number_of_edges()
        self.verticesPerEdge = self.graph.number_of_nodes() / max(
            1, self.graph.number_of_edges())
        self.edgesPerVertex = self.graph.number_of_edges() / max(
            1, self.graph.number_of_nodes())

        self._set_combos()
        self.Error.clear()

        self.set_selection_mode()
        self.relayout()

    @Inputs.node_data
    def set_items(self, items=None):
        self._items = items
        if items is None:
            return self.set_graph(self.graph_base)
        if not self.graph:
            self.Warning.no_graph_found()
            return
        self.Warning.clear()
        if len(items) != self.graph.number_of_nodes():
            self.Error.instance_for_each_node()
            return
        self.Error.instance_for_each_node.clear()
        self.graph.set_items(items)
        self._set_combos()

    @Inputs.node_subset
    def set_marking_items(self, items):
        self.markInputRadioButton.setEnabled(False)
        self.markInputItems = items

        self.Warning.clear()

        if items is None:
            self.view.selectionChanged.emit()
            return

        if self.graph is None or self.graph.items() is None:
            self.Warning.no_graph_or_items()
            return

        graph_items = self.graph.items()
        domain = graph_items.domain

        if len(items) > 0:
            commonVars = (
                set(x.name
                    for x in chain(items.domain.variables, items.domain.metas))
                & set(x.name for x in chain(domain.variables, domain.metas)))

            self.markInputRadioButton.setEnabled(True)
        self.view.selectionChanged.emit()

    def relayout(self):
        if self.graph is None or self.graph.number_of_nodes() <= 1:
            return
        self.progressbar = gui.ProgressBar(self, FR_ITERATIONS)

        distmatrix = self.items_matrix
        if distmatrix is not None and distmatrix.shape[
                0] != self.graph.number_of_nodes():
            self.Warning.distance_matrix_size()
            distmatrix = None
        self.Warning.distance_matrix_size.clear()

        self.relayout_button.setDisabled(True)
        self.view.relayout(randomize=False, weight=distmatrix)

    def _on_node_label_attrs_changed(self):
        if not self.graph: return
        attributes = self.lastLabelColumns = [
            self.graph_attrs[i] for i in self.node_label_attrs
        ]
        if attributes:
            table = self.graph.items()
            if not table: return
            for i, node in enumerate(self.view.nodes):
                text = ', '.join(map(str, table[i, attributes][0].list))
                node.setText(text)
        else:
            for node in self.view.nodes:
                node.setText('')

    def _clicked_tooltip_lstbox(self):
        if not self.graph: return
        attributes = self.lastTooltipColumns = [
            self.graph_attrs[i] for i in self.tooltipAttributes
        ]
        if attributes:
            table = self.graph.items()
            if not table: return
            assert self.view.nodes
            for i, node in enumerate(self.view.nodes):
                node.setTooltip(
                    lambda row=i, attributes=attributes, table=table: '<br>'.
                    join('<b>{.name}:</b> {}'.format(
                        i[0],
                        str(i[1]).replace('<', '&lt;')) for i in zip(
                            attributes, table[row, attributes][0].list)))
        else:
            for node in self.view.nodes:
                node.setTooltip(None)

    def set_edge_labels(self):
        if self.showEdgeWeights:
            weights = (str(w or '')
                       for u, v, w in self.graph.edges(data='weight'))
        else:
            weights = ('' for i in range(self.graph.number_of_edges()))
        for edge, weight in zip(self.view.edges, weights):
            edge.setText(weight)

    def set_node_colors(self):
        if not self.graph: return
        self.lastColorColumn = self.colorCombo.currentText()
        attribute = self.colorCombo.itemData(self.colorCombo.currentIndex())
        assert not attribute or isinstance(attribute, Orange.data.Variable)
        if not attribute:
            for node in self.view.nodes:
                node.setColor(None)
            return
        table = self.graph.items()
        if not table: return
        if attribute in table.domain.class_vars:
            values = table[:, attribute].Y
            if values.ndim > 1:
                values = values.T
        elif attribute in table.domain.metas:
            values = table[:, attribute].metas[:, 0]
        elif attribute in table.domain.attributes:
            values = table[:, attribute].X[:, 0]
        else:
            raise RuntimeError("Shouldn't be able to select this column")
        if attribute.is_continuous:
            colors = CONTINUOUS_PALETTE[scale(values)]
        elif attribute.is_discrete:
            DISCRETE_PALETTE = ColorPaletteGenerator(len(attribute.values))
            colors = DISCRETE_PALETTE[values]
        for node, color in zip(self.view.nodes, colors):
            node.setColor(color)

    def set_node_sizes(self):
        attribute = self.nodeSizeCombo.itemData(
            self.nodeSizeCombo.currentIndex())
        depending_widgets = (self.invertNodeSizeCheck, self.maxNodeSizeSpin)
        for w in depending_widgets:
            w.setDisabled(not attribute)

        if not self.graph:
            return
        table = self.graph.items()
        if table is None:
            return

        try:
            values = table.get_column_view(attribute)[0]
        except Exception:
            for node in self.view.nodes:
                node.setSize(self.minNodeSize)
            return

        if self.invertNodeSize:
            values += np.nanmin(values) + 1
            values = 1 / values
        nodemin, nodemax = np.nanmin(values), np.nanmax(values)
        if nodemin == nodemax:
            # np.polyfit borks on this condition
            sizes = (self.minNodeSize for i in range(len(self.view.nodes)))
        else:
            k, n = np.polyfit([nodemin, nodemax],
                              [self.minNodeSize, self.maxNodeSize], 1)
            sizes = values * k + n
            sizes[np.isnan(sizes)] = np.nanmean(sizes)
        for node, size in zip(self.view.nodes, sizes):
            node.setSize(size)

    def set_edge_sizes(self):
        if not self.graph: return
        if self.relativeEdgeWidths:
            widths = [
                self.graph.adj[u][v].get('weight', 1)
                for u, v in self.graph.edges()
            ]
            widths = scale(widths, .7, 8)
        else:
            widths = (.7 for i in range(self.graph.number_of_edges()))
        for edge, width in zip(self.view.edges, widths):
            edge.setSize(width)

    def send_report(self):
        self.report_data("Data", self.graph.items())
        self.report_items('Graph info', [
            ("Number of vertices", self.graph.number_of_nodes()),
            ("Number of edges", self.graph.number_of_edges()),
            ("Vertices per edge", "%.3f" % self.verticesPerEdge),
            ("Edges per vertex", "%.3f" % self.edgesPerVertex),
        ])
        if self.node_color_attr or self.node_size_attr or self.node_label_attrs:
            self.report_items("Visual settings", [
                ("Vertex color", self.colorCombo.currentText()),
                ("Vertex size", str(self.nodeSizeCombo.currentText()) +
                 " (inverted)" if self.invertNodeSize else ""),
                ("Labels", ", ".join(self.graph_attrs[i].name
                                     for i in self.node_label_attrs)),
            ])
        self.report_plot("Graph", self.view)
示例#31
0
class OWMDS(OWDataProjectionWidget):
    name = "MDS"
    description = "Two-dimensional data projection by multidimensional " \
                  "scaling constructed from a distance matrix."
    icon = "icons/MDS.svg"
    keywords = ["multidimensional scaling", "multi dimensional scaling"]

    class Inputs(OWDataProjectionWidget.Inputs):
        distances = Input("Distances", DistMatrix)

    settings_version = 3

    #: Initialization type
    PCA, Random, Jitter = 0, 1, 2

    #: Refresh rate
    RefreshRate = [("Every iteration", 1), ("Every 5 steps", 5),
                   ("Every 10 steps", 10), ("Every 25 steps", 25),
                   ("Every 50 steps", 50), ("None", -1)]

    #: Runtime state
    Running, Finished, Waiting = 1, 2, 3

    max_iter = settings.Setting(300)
    initialization = settings.Setting(PCA)
    refresh_rate = settings.Setting(3)

    GRAPH_CLASS = OWMDSGraph
    graph = SettingProvider(OWMDSGraph)
    embedding_variables_names = ("mds-x", "mds-y")

    class Error(OWDataProjectionWidget.Error):
        not_enough_rows = Msg("Input data needs at least 2 rows")
        matrix_too_small = Msg("Input matrix must be at least 2x2")
        no_attributes = Msg("Data has no attributes")
        mismatching_dimensions = \
            Msg("Data and distances dimensions do not match.")
        out_of_memory = Msg("Out of memory")
        optimization_error = Msg("Error during optimization\n{}")

    def __init__(self):
        super().__init__()
        #: Input dissimilarity matrix
        self.matrix = None  # type: Optional[DistMatrix]
        #: Data table from the `self.matrix.row_items` (if present)
        self.matrix_data = None  # type: Optional[Table]
        #: Input data table
        self.signal_data = None

        self._invalidated = False
        self.embedding = None
        self.effective_matrix = None

        self.__update_loop = None
        # timer for scheduling updates
        self.__timer = QTimer(self, singleShot=True, interval=0)
        self.__timer.timeout.connect(self.__next_step)
        self.__state = OWMDS.Waiting
        self.__in_next_step = False

        self.graph.pause_drawing_pairs()

        g = self.graph.gui
        self.size_model = g.points_models[2]
        self.size_model.order = g.points_models[2].order[:1] + ("Stress", ) + \
                                g.points_models[2].order[1:]
        # self._initialize()

    def _add_controls(self):
        self._add_controls_optimization()
        super()._add_controls()
        self.graph.gui.add_control(self._effects_box,
                                   gui.hSlider,
                                   "Show similar pairs:",
                                   master=self.graph,
                                   value="connected_pairs",
                                   minValue=0,
                                   maxValue=20,
                                   createLabel=False,
                                   callback=self._on_connected_changed)

    def _add_controls_optimization(self):
        box = gui.vBox(self.controlArea, box=True)
        self.runbutton = gui.button(box,
                                    self,
                                    "Run optimization",
                                    callback=self._toggle_run)
        gui.comboBox(box,
                     self,
                     "refresh_rate",
                     label="Refresh: ",
                     orientation=Qt.Horizontal,
                     items=[t for t, _ in OWMDS.RefreshRate],
                     callback=self.__invalidate_refresh)
        hbox = gui.hBox(box, margin=0)
        gui.button(hbox, self, "PCA", callback=self.do_PCA)
        gui.button(hbox, self, "Randomize", callback=self.do_random)
        gui.button(hbox, self, "Jitter", callback=self.do_jitter)

    def set_data(self, data):
        """Set the input dataset.

        Parameters
        ----------
        data : Optional[Table]
        """
        if data is not None and len(data) < 2:
            self.Error.not_enough_rows()
            data = None
        else:
            self.Error.not_enough_rows.clear()

        self.signal_data = data

        if self.matrix is not None and data is not None and \
                len(self.matrix) == len(data):
            self.closeContext()
            self.data = data
            self.init_attr_values()
            self.openContext(data)
        else:
            self._invalidated = True

    @Inputs.distances
    def set_disimilarity(self, matrix):
        """Set the dissimilarity (distance) matrix.

        Parameters
        ----------
        matrix : Optional[Orange.misc.DistMatrix]
        """

        if matrix is not None and len(matrix) < 2:
            self.Error.matrix_too_small()
            matrix = None
        else:
            self.Error.matrix_too_small.clear()

        self.matrix = matrix
        self.matrix_data = matrix.row_items if matrix is not None else None
        self._invalidated = True

    def clear(self):
        super().clear()
        self.embedding = None
        self.effective_matrix = None
        self.graph.set_effective_matrix(None)
        self.__set_update_loop(None)
        self.__state = OWMDS.Waiting

    def _initialize(self):
        self.closeContext()
        self.clear()
        self.clear_messages()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            self.data = None
            self.init_attr_values()
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self.init_attr_values()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is self.matrix_data:
                self.data = None
        elif self.data.domain.attributes:
            preprocessed_data = MDS().preprocess(self.data)
            self.effective_matrix = Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            self.init_attr_values()
            return

        self.init_attr_values()
        self.openContext(self.data)
        self.graph.set_effective_matrix(self.effective_matrix)

    def _toggle_run(self):
        if self.__state == OWMDS.Running:
            self.stop()
            self._invalidate_output()
        else:
            self.start()

    def start(self):
        if self.__state == OWMDS.Running:
            return
        elif self.__state == OWMDS.Finished:
            # Resume/continue from a previous run
            self.__start()
        elif self.__state == OWMDS.Waiting and \
                self.effective_matrix is not None:
            self.__start()

    def stop(self):
        if self.__state == OWMDS.Running:
            self.__set_update_loop(None)

    def __start(self):
        self.graph.pause_drawing_pairs()
        X = self.effective_matrix
        init = self.embedding

        # number of iterations per single GUI update step
        _, step_size = OWMDS.RefreshRate[self.refresh_rate]
        if step_size == -1:
            step_size = self.max_iter

        def update_loop(X, max_iter, step, init):
            """
            return an iterator over successive improved MDS point embeddings.
            """
            # NOTE: this code MUST NOT call into QApplication.processEvents
            done = False
            iterations_done = 0
            oldstress = np.finfo(np.float).max
            init_type = "PCA" if self.initialization == OWMDS.PCA else "random"

            while not done:
                step_iter = min(max_iter - iterations_done, step)
                mds = MDS(dissimilarity="precomputed",
                          n_components=2,
                          n_init=1,
                          max_iter=step_iter,
                          init_type=init_type,
                          init_data=init)

                mdsfit = mds(X)
                iterations_done += step_iter

                embedding, stress = mdsfit.embedding_, mdsfit.stress_
                stress /= np.sqrt(np.sum(embedding**2, axis=1)).sum()

                if iterations_done >= max_iter:
                    done = True
                elif (oldstress - stress) < mds.params["eps"]:
                    done = True
                init = embedding
                oldstress = stress

                yield embedding, mdsfit.stress_, iterations_done / max_iter

        self.__set_update_loop(update_loop(X, self.max_iter, step_size, init))
        self.progressBarInit(processEvents=None)

    def __set_update_loop(self, loop):
        """
        Set the update `loop` coroutine.

        The `loop` is a generator yielding `(embedding, stress, progress)`
        tuples where `embedding` is a `(N, 2) ndarray` of current updated
        MDS points, `stress` is the current stress and `progress` a float
        ratio (0 <= progress <= 1)

        If an existing update coroutine loop is already in place it is
        interrupted (i.e. closed).

        .. note::
            The `loop` must not explicitly yield control flow to the event
            loop (i.e. call `QApplication.processEvents`)

        """
        if self.__update_loop is not None:
            self.__update_loop.close()
            self.__update_loop = None
            self.progressBarFinished(processEvents=None)

        self.__update_loop = loop

        if loop is not None:
            self.setBlocking(True)
            self.progressBarInit(processEvents=None)
            self.setStatusMessage("Running")
            self.runbutton.setText("Stop")
            self.__state = OWMDS.Running
            self.__timer.start()
        else:
            self.setBlocking(False)
            self.setStatusMessage("")
            self.runbutton.setText("Start")
            self.__state = OWMDS.Finished
            self.__timer.stop()

    def __next_step(self):
        if self.__update_loop is None:
            return

        assert not self.__in_next_step
        self.__in_next_step = True

        loop = self.__update_loop
        self.Error.out_of_memory.clear()
        try:
            embedding, _, progress = next(self.__update_loop)
            assert self.__update_loop is loop
        except StopIteration:
            self.__set_update_loop(None)
            self.unconditional_commit()
            self.graph.resume_drawing_pairs()
            self.graph.update_coordinates()
        except MemoryError:
            self.Error.out_of_memory()
            self.__set_update_loop(None)
            self.graph.resume_drawing_pairs()
        except Exception as exc:
            self.Error.optimization_error(str(exc))
            self.__set_update_loop(None)
            self.graph.resume_drawing_pairs()
        else:
            self.progressBarSet(100.0 * progress, processEvents=None)
            self.embedding = embedding
            self.graph.update_coordinates()
            # schedule next update
            self.__timer.start()

        self.__in_next_step = False

    def do_PCA(self):
        self.__invalidate_embedding(self.PCA)

    def do_random(self):
        self.__invalidate_embedding(self.Random)

    def do_jitter(self):
        self.__invalidate_embedding(self.Jitter)

    def __invalidate_embedding(self, initialization=PCA):
        def jitter_coord(part):
            span = np.max(part) - np.min(part)
            part += np.random.uniform(-span / 20, span / 20, len(part))

        # reset/invalidate the MDS embedding, to the default initialization
        # (Random or PCA), restarting the optimization if necessary.
        state = self.__state
        if self.__update_loop is not None:
            self.__set_update_loop(None)

        if self.effective_matrix is None:
            return

        X = self.effective_matrix

        if initialization == OWMDS.PCA:
            self.embedding = torgerson(X)
        elif initialization == OWMDS.Random:
            self.embedding = np.random.rand(len(X), 2)
        else:
            jitter_coord(self.embedding[:, 0])
            jitter_coord(self.embedding[:, 1])

        self.setup_plot()

        # restart the optimization if it was interrupted.
        if state == OWMDS.Running:
            self.__start()

    def __invalidate_refresh(self):
        state = self.__state

        if self.__update_loop is not None:
            self.__set_update_loop(None)

        # restart the optimization if it was interrupted.
        # TODO: decrease the max iteration count by the already
        # completed iterations count.
        if state == OWMDS.Running:
            self.__start()

    def handleNewSignals(self):
        if self._invalidated:
            self.graph.pause_drawing_pairs()
            self._invalidated = False
            self._initialize()
            self.__invalidate_embedding()
            self.cb_class_density.setEnabled(self.can_draw_density())
            self.start()

        super().handleNewSignals()

    def _invalidate_output(self):
        self.commit()

    def _on_connected_changed(self):
        self.graph.set_effective_matrix(self.effective_matrix)
        self.graph.update_pairs(reconnect=True)

    def setup_plot(self):
        super().setup_plot()
        if self.embedding is not None:
            self.graph.update_pairs(reconnect=True)

    def get_size_data(self):
        if self.attr_size == "Stress":
            return stress(self.embedding, self.effective_matrix)
        else:
            return super().get_size_data()

    def get_embedding(self):
        self.valid_data = np.ones(len(self.embedding), dtype=bool) \
            if self.embedding is not None else None
        return self.embedding

    def _get_projection_data(self):
        if self.embedding is None:
            return None

        if self.data is None:
            x_name, y_name = self.embedding_variables_names
            variables = ContinuousVariable(x_name), ContinuousVariable(y_name)
            return Table(Domain(variables), self.embedding)
        return super()._get_projection_data()

    @classmethod
    def migrate_settings(cls, settings_, version):
        if version < 2:
            settings_graph = {}
            for old, new in (("label_only_selected", "label_only_selected"),
                             ("symbol_opacity", "alpha_value"),
                             ("symbol_size", "point_width"), ("jitter",
                                                              "jitter_size")):
                settings_graph[new] = settings_[old]
            settings_["graph"] = settings_graph
            settings_["auto_commit"] = settings_["autocommit"]

        if version < 3:
            if "connected_pairs" in settings_:
                connected_pairs = settings_["connected_pairs"]
                settings_["graph"]["connected_pairs"] = connected_pairs

    @classmethod
    def migrate_context(cls, context, version):
        if version < 2:
            domain = context.ordered_domain
            n_domain = [t for t in context.ordered_domain if t[1] == 2]
            c_domain = [t for t in context.ordered_domain if t[1] == 1]
            context_values = {}
            for _, old_val, new_val in ((domain, "color_value", "attr_color"),
                                        (c_domain, "shape_value",
                                         "attr_shape"),
                                        (n_domain, "size_value", "attr_size"),
                                        (domain, "label_value", "attr_label")):
                tmp = context.values[old_val]
                if tmp[1] >= 0:
                    context_values[new_val] = (tmp[0], tmp[1] + 100)
                elif tmp[0] != "Stress":
                    context_values[new_val] = None
                else:
                    context_values[new_val] = tmp
            context.values = context_values

        if version < 3 and "graph" in context.values:
            values = context.values
            values["attr_color"] = values["graph"]["attr_color"]
            values["attr_size"] = values["graph"]["attr_size"]
            values["attr_shape"] = values["graph"]["attr_shape"]
            values["attr_label"] = values["graph"]["attr_label"]
示例#32
0
class RotaryEncoderModuleGUI(RotaryEncoderModule, BaseWidget):

    TITLE = 'Rotary encoder module'

    def __init__(self, parent_win=None):
        BaseWidget.__init__(self, self.TITLE, parent_win=parent_win)
        RotaryEncoderModule.__init__(self)

        self._port = ControlCombo(
            'Serial port', changed_event=self.__combo_serial_ports_changed_evt)
        self._refresh_serial_ports = ControlButton(
            '',
            icon=QtGui.QIcon(conf.REFRESH_SMALL_ICON),
            default=self.__refresh_serial_ports_btn_pressed,
            helptext="Press here to refresh the list of available devices.")

        self._connect_btn = ControlButton('Connect', checkable=True)

        self._filename = ControlText('Stream Filename', '')
        self._saveas_btn = ControlButton('Save As...')

        self._events = ControlCheckBox('Enable events')
        self._output_stream = ControlCheckBox('Output stream')
        self._stream = ControlCheckBox('Stream data')
        self._stream_file = ControlCheckBox('Stream to file')
        self._zero_btn = ControlButton('Reset position')
        self._start_reading = ControlButton('Start Reading')
        self._reset_threshs = ControlButton('Reset thresholds')
        self._thresh_lower = ControlNumber('Lower threshold (deg)',
                                           0,
                                           minimum=-360,
                                           maximum=360)
        self._thresh_upper = ControlNumber('Upper threshold (deg)',
                                           0,
                                           minimum=-360,
                                           maximum=360)
        self._graph = ControlMatplotlib('Value')
        self._clear_btn = ControlButton('Clear')

        self.set_margin(10)

        self.formset = [('_port', '_refresh_serial_ports', '_connect_btn'),
                        ('_filename', '_saveas_btn'),
                        ('_events', '_output_stream', '_stream',
                         '_stream_file', '_zero_btn'), '_start_reading',
                        ('_thresh_lower', '_thresh_upper', '_reset_threshs'),
                        '=', '_graph', '_clear_btn']

        self._stream.enabled = False
        self._stream_file.enabled = False
        self._events.enabled = False
        self._output_stream.enabled = False
        self._zero_btn.enabled = False
        self._reset_threshs.enabled = False
        self._thresh_lower.enabled = False
        self._thresh_upper.enabled = False
        self._start_reading.enabled = False

        self._connect_btn.value = self.__toggle_connection_evt
        self._saveas_btn.value = self.__prompt_savig_evt
        self._stream_file.changed_event = self.__stream_file_changed_evt
        self._events.changed_event = self.__events_changed_evt
        self._output_stream.changed_event = self.__output_stream_changed_evt
        self._thresh_upper.changed_event = self.__thresh_evt
        self._thresh_lower.changed_event = self.__thresh_evt
        self._reset_threshs.value = self.__reset_thresholds_evt
        self._zero_btn.value = self.__zero_btn_evt
        self._start_reading.value = self.__start_reading_evt
        self._graph.on_draw = self.__on_draw_evt
        self._clear_btn.value = self.__clear_btn_evt
        self._filename.changed_event = self.__filename_changed_evt

        self.history_x = []
        self.history_y = []

        self._timer = QTimer()
        self._timer.timeout.connect(self.__update_readings)

        self._fill_serial_ports()

    def _fill_serial_ports(self):
        self._port.add_item('', '')
        for n, port in enumerate(sorted(serial.tools.list_ports.comports()),
                                 1):
            self._port.add_item("{device}".format(device=port.device),
                                str(port.device))

    def __filename_changed_evt(self):
        if not self._filename.value:
            self._stream_file.value = False
            self._stream_file.enabled = False

    def __prompt_savig_evt(self):
        '''
        Opens a window for user to select where to save the csv file
        '''
        self._filename.value, _ = QFileDialog.getSaveFileName()
        if self._filename.value:
            self._stream_file.enabled = True
        else:
            self._stream_file.value = False
            self._stream_file.enabled = False

    def __stream_file_changed_evt(self):
        '''
        User wants to store rotary encoder measurements in a CSV file. Create it
        '''
        if self._stream_file.value is True:
            self._csvfile = open(self._filename.value, 'w')
            self._csvwriter = csv.writer(
                self._csvfile,
                def_text=
                'This file has all the rotary encoder data recorded during a PyBpod session.',
                columns_headers=['PC_TIME', 'DATA_TYPE', 'EVT_TIME', 'VALUE'
                                 ])  # Check if we need something else after

    def __start_reading_evt(self):
        '''
        Toggle timer
        '''
        if self._timer.isActive():
            self.disable_stream()
            self._start_reading.label = 'Start Reading'
            self._timer.stop()
        else:
            self.enable_stream()
            self.history_x = []
            self.history_y = []
            self._start_reading.label = 'Stop Reading'
            self._timer.start(30)

    def __clear_btn_evt(self):
        '''
        Clear recorded data
        '''
        self.history_x = []
        self.history_y = []
        self._graph.draw()

    def __on_draw_evt(self, figure):
        '''
        The actual draw function. Pick just the last 200 measurements in order to avoid app freezing
        '''
        axes = figure.add_subplot(111)
        axes.clear()
        totallen = len(self.history_x)
        if totallen > 200:
            x = self.history_x[totallen - 201:]
            y = self.history_y[totallen - 201:]
            axes.plot(x, y)
            if len(x) >= 2:
                x_range = [x[0], x[-1]]
                axes.plot(x_range,
                          [self._thresh_upper.value, self._thresh_upper.value],
                          linestyle='dotted',
                          color='red')
                axes.plot(x_range,
                          [self._thresh_lower.value, self._thresh_lower.value],
                          linestyle='dotted',
                          color='blue')
        else:
            axes.plot(self.history_x, self.history_y)
            if len(self.history_x) >= 2:
                x_range = [self.history_x[0], self.history_x[-1]]
                axes.plot(x_range,
                          [self._thresh_upper.value, self._thresh_upper.value],
                          linestyle='dotted',
                          color='red')
                axes.plot(x_range,
                          [self._thresh_lower.value, self._thresh_lower.value],
                          linestyle='dotted',
                          color='blue')

        self._graph.repaint()

    def __update_graph(self, readings):
        '''
        Add new data to the reading history and update the graph
        '''
        for data in readings:
            if data[0] == 'P':
                self.history_x.append(data[1])
                self.history_y.append(data[2])
        self._graph.draw()

    def __update_readings(self):
        '''
        Get new measurements and channel them to the graph or the file being written
        '''
        data = self.read_stream()

        if self._stream.value:
            self.__update_graph(data)
        if self._stream_file.value:
            self.__write_to_file(data)

    def __write_to_file(self, readings):
        '''
        Write new readings to the file
        '''
        now = datetime_now.now()
        for data in readings:
            self._csvwriter.writerow([now.strftime('%Y%m%d%H%M%S')] + data)

    def __zero_btn_evt(self):
        self.set_zero_position()

    def __reset_thresholds_evt(self):
        self._thresh_lower.value = 0
        self._thresh_upper.value = 0

    def __thresh_evt(self):
        thresholds = [
            int(self._thresh_lower.value),
            int(self._thresh_upper.value)
        ]
        self.set_thresholds(thresholds)

    def __events_changed_evt(self):
        if self._stream.value:
            self.enable_evt_transmission()
        else:
            self.disable_evt_transmission()

    def __output_stream_changed_evt(self):
        if self._stream.value:
            self.enable_module_outputstream()
        else:
            self.disable_module_outputstream()

    def __toggle_connection_evt(self):
        if not self._connect_btn.checked:
            if hasattr(self, 'arcom'):
                self.disable_stream()
                self._timer.stop()
                self.close()
            self._connect_btn.label = 'Connect'
            self._stream.enabled = False
            self._events.enabled = False
            self._output_stream.enabled = False
            self._zero_btn.enabled = False
            self._reset_threshs.enabled = False
            self._thresh_lower.enabled = False
            self._thresh_upper.enabled = False
            self._start_reading.enabled = False
            self._stream_file.enabled = False

            self._port.enabled = True
            self._refresh_serial_ports.enabled = True
        else:
            try:
                self.open(self._port.value)

                self._connect_btn.label = 'Disconnect'
                self._stream.enabled = True
                self._events.enabled = True
                self._output_stream.enabled = True
                self._zero_btn.enabled = True
                self._reset_threshs.enabled = True
                self._thresh_lower.enabled = True
                self._thresh_upper.enabled = True
                self._start_reading.enabled = True

                self._port.enabled = False
                self._refresh_serial_ports.enabled = False

                if self._filename.value:
                    self._stream_file.enabled = True
                else:
                    self._stream_file.value = False
                    self._stream_file.enabled = False
            except Exception as err:
                self.critical(str(err), "Error")
                self._connect_btn.checked = False

    def __combo_serial_ports_changed_evt(self):
        self._connect_btn.enabled = True

    def __refresh_serial_ports_btn_pressed(self):
        tmp = self._port.value
        self._port.clear()
        self._fill_serial_ports()
        self._port.value = tmp
示例#33
0
class OWSelectAttributes(widget.OWWidget):
    # pylint: disable=too-many-instance-attributes
    name = "Select Columns"
    description = "Select columns from the data table and assign them to " \
                  "data features, classes or meta variables."
    icon = "icons/SelectColumns.svg"
    priority = 100
    keywords = ["filter"]

    class Inputs:
        data = Input("Data", Table, default=True)
        features = Input("Features", AttributeList)

    class Outputs:
        data = Output("Data", Table)
        features = Output("Features", AttributeList, dynamic=False)

    want_main_area = False
    want_control_area = True

    settingsHandler = SelectAttributesDomainContextHandler()
    domain_role_hints = ContextSetting({})
    use_input_features = Setting(False)
    auto_commit = Setting(True)

    class Warning(widget.OWWidget.Warning):
        mismatching_domain = Msg("Features and data domain do not match")

    def __init__(self):
        super().__init__()
        self.data = None
        self.features = None

        # Schedule interface updates (enabled buttons) using a coalescing
        # single shot timer (complex interactions on selection and filtering
        # updates in the 'available_attrs_view')
        self.__interface_update_timer = QTimer(self, interval=0, singleShot=True)
        self.__interface_update_timer.timeout.connect(
            self.__update_interface_state)
        # The last view that has the selection for move operation's source
        self.__last_active_view = None  # type: Optional[QListView]

        def update_on_change(view):
            # Schedule interface state update on selection change in `view`
            self.__last_active_view = view
            self.__interface_update_timer.start()

        self.controlArea = QWidget(self.controlArea)
        self.layout().addWidget(self.controlArea)
        layout = QGridLayout()
        self.controlArea.setLayout(layout)
        layout.setContentsMargins(4, 4, 4, 4)
        box = gui.vBox(self.controlArea, "Available Variables",
                       addToLayout=False)

        self.available_attrs = VariablesListItemModel()
        filter_edit, self.available_attrs_view = variables_filter(
            parent=self, model=self.available_attrs)
        box.layout().addWidget(filter_edit)

        def dropcompleted(action):
            if action == Qt.MoveAction:
                self.commit()

        self.available_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.available_attrs_view))
        self.available_attrs_view.dragDropActionDidComplete.connect(dropcompleted)

        box.layout().addWidget(self.available_attrs_view)
        layout.addWidget(box, 0, 0, 3, 1)

        box = gui.vBox(self.controlArea, "Features", addToLayout=False)
        self.used_attrs = VariablesListItemModel()
        filter_edit, self.used_attrs_view = variables_filter(
            parent=self, model=self.used_attrs,
            accepted_type=(Orange.data.DiscreteVariable,
                           Orange.data.ContinuousVariable))
        self.used_attrs.rowsInserted.connect(self.__used_attrs_changed)
        self.used_attrs.rowsRemoved.connect(self.__used_attrs_changed)
        self.used_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.used_attrs_view))
        self.used_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        self.use_features_box = gui.auto_commit(
            self.controlArea, self, "use_input_features",
            "Use input features", "Always use input features",
            box=False, commit=self.__use_features_clicked,
            callback=self.__use_features_changed, addToLayout=False
        )
        self.enable_use_features_box()
        box.layout().addWidget(self.use_features_box)
        box.layout().addWidget(filter_edit)
        box.layout().addWidget(self.used_attrs_view)
        layout.addWidget(box, 0, 2, 1, 1)

        box = gui.vBox(self.controlArea, "Target Variable", addToLayout=False)
        self.class_attrs = VariablesListItemModel()
        self.class_attrs_view = VariablesListItemView(
            acceptedType=(Orange.data.DiscreteVariable,
                          Orange.data.ContinuousVariable))
        self.class_attrs_view.setModel(self.class_attrs)
        self.class_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.class_attrs_view))
        self.class_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        self.class_attrs_view.setMaximumHeight(72)
        box.layout().addWidget(self.class_attrs_view)
        layout.addWidget(box, 1, 2, 1, 1)

        box = gui.vBox(self.controlArea, "Meta Attributes", addToLayout=False)
        self.meta_attrs = VariablesListItemModel()
        self.meta_attrs_view = VariablesListItemView(
            acceptedType=Orange.data.Variable)
        self.meta_attrs_view.setModel(self.meta_attrs)
        self.meta_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.meta_attrs_view))
        self.meta_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        box.layout().addWidget(self.meta_attrs_view)
        layout.addWidget(box, 2, 2, 1, 1)

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        layout.addWidget(bbox, 0, 1, 1, 1)

        self.up_attr_button = gui.button(bbox, self, "Up",
                                         callback=partial(self.move_up, self.used_attrs_view))
        self.move_attr_button = gui.button(bbox, self, ">",
                                           callback=partial(self.move_selected,
                                                            self.used_attrs_view)
                                          )
        self.down_attr_button = gui.button(bbox, self, "Down",
                                           callback=partial(self.move_down, self.used_attrs_view))

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        layout.addWidget(bbox, 1, 1, 1, 1)

        self.up_class_button = gui.button(bbox, self, "Up",
                                          callback=partial(self.move_up, self.class_attrs_view))
        self.move_class_button = gui.button(bbox, self, ">",
                                            callback=partial(self.move_selected,
                                                             self.class_attrs_view,
                                                             exclusive=False)
                                           )
        self.down_class_button = gui.button(bbox, self, "Down",
                                            callback=partial(self.move_down, self.class_attrs_view))

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        layout.addWidget(bbox, 2, 1, 1, 1)
        self.up_meta_button = gui.button(bbox, self, "Up",
                                         callback=partial(self.move_up, self.meta_attrs_view))
        self.move_meta_button = gui.button(bbox, self, ">",
                                           callback=partial(self.move_selected,
                                                            self.meta_attrs_view)
                                          )
        self.down_meta_button = gui.button(bbox, self, "Down",
                                           callback=partial(self.move_down, self.meta_attrs_view))

        autobox = gui.auto_commit(None, self, "auto_commit", "Send")
        layout.addWidget(autobox, 3, 0, 1, 3)
        reset = gui.button(None, self, "Reset", callback=self.reset, width=120)
        autobox.layout().insertWidget(0, reset)
        autobox.layout().insertStretch(1, 20)

        layout.setRowStretch(0, 4)
        layout.setRowStretch(1, 0)
        layout.setRowStretch(2, 2)
        layout.setHorizontalSpacing(0)
        self.controlArea.setLayout(layout)

        self.output_data = None
        self.original_completer_items = []

        self.resize(600, 600)

    @property
    def features_from_data_attributes(self):
        if self.data is None or self.features is None:
            return []
        domain = self.data.domain
        return [domain[feature.name] for feature in self.features
                if feature.name in domain and domain[feature.name]
                in domain.attributes]

    def can_use_features(self):
        return bool(self.features_from_data_attributes) and \
               self.features_from_data_attributes != self.used_attrs[:]

    def __use_features_changed(self):  # Use input features check box
        # Needs a check since callback is invoked before object is created
        if not hasattr(self, "use_features_box"):
            return
        self.enable_used_attrs(not self.use_input_features)
        if self.use_input_features and self.can_use_features():
            self.use_features()
        if not self.use_input_features:
            self.enable_use_features_box()

    def __use_features_clicked(self):  # Use input features button
        self.use_features()

    def __used_attrs_changed(self):
        self.enable_use_features_box()

    @Inputs.data
    def set_data(self, data=None):
        self.update_domain_role_hints()
        self.closeContext()
        self.data = data
        if data is not None:
            self.openContext(data)
            all_vars = data.domain.variables + data.domain.metas

            var_sig = lambda attr: (attr.name, vartype(attr))

            domain_hints = {var_sig(attr): ("attribute", i)
                            for i, attr in enumerate(data.domain.attributes)}

            domain_hints.update({var_sig(attr): ("meta", i)
                                 for i, attr in enumerate(data.domain.metas)})

            if data.domain.class_vars:
                domain_hints.update(
                    {var_sig(attr): ("class", i)
                     for i, attr in enumerate(data.domain.class_vars)})

            # update the hints from context settings
            domain_hints.update(self.domain_role_hints)

            attrs_for_role = lambda role: [
                (domain_hints[var_sig(attr)][1], attr)
                for attr in all_vars if domain_hints[var_sig(attr)][0] == role]

            attributes = [
                attr for place, attr in sorted(attrs_for_role("attribute"),
                                               key=lambda a: a[0])]
            classes = [
                attr for place, attr in sorted(attrs_for_role("class"),
                                               key=lambda a: a[0])]
            metas = [
                attr for place, attr in sorted(attrs_for_role("meta"),
                                               key=lambda a: a[0])]
            available = [
                attr for place, attr in sorted(attrs_for_role("available"),
                                               key=lambda a: a[0])]

            self.used_attrs[:] = attributes
            self.class_attrs[:] = classes
            self.meta_attrs[:] = metas
            self.available_attrs[:] = available
        else:
            self.used_attrs[:] = []
            self.class_attrs[:] = []
            self.meta_attrs[:] = []
            self.available_attrs[:] = []

    def update_domain_role_hints(self):
        """ Update the domain hints to be stored in the widgets settings.
        """
        hints_from_model = lambda role, model: [
            ((attr.name, vartype(attr)), (role, i))
            for i, attr in enumerate(model)]
        hints = dict(hints_from_model("available", self.available_attrs))
        hints.update(hints_from_model("attribute", self.used_attrs))
        hints.update(hints_from_model("class", self.class_attrs))
        hints.update(hints_from_model("meta", self.meta_attrs))
        self.domain_role_hints = hints

    @Inputs.features
    def set_features(self, features):
        self.features = features

    def handleNewSignals(self):
        self.check_data()
        self.enable_used_attrs()
        self.enable_use_features_box()
        if self.use_input_features and len(self.features_from_data_attributes):
            self.enable_used_attrs(False)
            self.use_features()
        self.unconditional_commit()

    def check_data(self):
        self.Warning.mismatching_domain.clear()
        if self.data is not None and self.features is not None and \
                not len(self.features_from_data_attributes):
            self.Warning.mismatching_domain()

    def enable_used_attrs(self, enable=True):
        self.up_attr_button.setEnabled(enable)
        self.move_attr_button.setEnabled(enable)
        self.down_attr_button.setEnabled(enable)
        self.used_attrs_view.setEnabled(enable)
        self.used_attrs_view.repaint()

    def enable_use_features_box(self):
        self.use_features_box.button.setEnabled(self.can_use_features())
        enable_checkbox = bool(self.features_from_data_attributes)
        self.use_features_box.setHidden(not enable_checkbox)
        self.use_features_box.repaint()

    def use_features(self):
        attributes = self.features_from_data_attributes
        available, used = self.available_attrs[:], self.used_attrs[:]
        self.available_attrs[:] = [attr for attr in used + available
                                   if attr not in attributes]
        self.used_attrs[:] = attributes
        self.commit()

    def selected_rows(self, view):
        """ Return the selected rows in the view.
        """
        rows = view.selectionModel().selectedRows()
        model = view.model()
        if isinstance(model, QSortFilterProxyModel):
            rows = [model.mapToSource(r) for r in rows]
        return [r.row() for r in rows]

    def move_rows(self, view, rows, offset):
        model = view.model()
        newrows = [min(max(0, row + offset), len(model) - 1) for row in rows]

        for row, newrow in sorted(zip(rows, newrows), reverse=offset > 0):
            model[row], model[newrow] = model[newrow], model[row]

        selection = QItemSelection()
        for nrow in newrows:
            index = model.index(nrow, 0)
            selection.select(index, index)
        view.selectionModel().select(
            selection, QItemSelectionModel.ClearAndSelect)

        self.commit()

    def move_up(self, view):
        selected = self.selected_rows(view)
        self.move_rows(view, selected, -1)

    def move_down(self, view):
        selected = self.selected_rows(view)
        self.move_rows(view, selected, 1)

    def move_selected(self, view, exclusive=False):
        if self.selected_rows(view):
            self.move_selected_from_to(view, self.available_attrs_view)
        elif self.selected_rows(self.available_attrs_view):
            self.move_selected_from_to(self.available_attrs_view, view,
                                       exclusive)

    def move_selected_from_to(self, src, dst, exclusive=False):
        self.move_from_to(src, dst, self.selected_rows(src), exclusive)

    def move_from_to(self, src, dst, rows, exclusive=False):
        src_model = source_model(src)
        attrs = [src_model[r] for r in rows]

        for s1, s2 in reversed(list(slices(rows))):
            del src_model[s1:s2]

        dst_model = source_model(dst)

        dst_model.extend(attrs)

        self.commit()

    def __update_interface_state(self):
        last_view = self.__last_active_view
        if last_view is not None:
            self.update_interface_state(last_view)

    def update_interface_state(self, focus=None, selected=None, deselected=None):
        for view in [self.available_attrs_view, self.used_attrs_view,
                     self.class_attrs_view, self.meta_attrs_view]:
            if view is not focus and not view.hasFocus() \
                    and view.selectionModel().hasSelection():
                view.selectionModel().clear()

        def selected_vars(view):
            model = source_model(view)
            return [model[i] for i in self.selected_rows(view)]

        available_selected = selected_vars(self.available_attrs_view)
        attrs_selected = selected_vars(self.used_attrs_view)
        class_selected = selected_vars(self.class_attrs_view)
        meta_selected = selected_vars(self.meta_attrs_view)

        available_types = set(map(type, available_selected))
        all_primitive = all(var.is_primitive()
                            for var in available_types)

        move_attr_enabled = \
            ((available_selected and all_primitive) or attrs_selected) and \
            self.used_attrs_view.isEnabled()

        self.move_attr_button.setEnabled(bool(move_attr_enabled))
        if move_attr_enabled:
            self.move_attr_button.setText(">" if available_selected else "<")

        move_class_enabled = (all_primitive and available_selected) or class_selected

        self.move_class_button.setEnabled(bool(move_class_enabled))
        if move_class_enabled:
            self.move_class_button.setText(">" if available_selected else "<")
        move_meta_enabled = available_selected or meta_selected

        self.move_meta_button.setEnabled(bool(move_meta_enabled))
        if move_meta_enabled:
            self.move_meta_button.setText(">" if available_selected else "<")

        self.__last_active_view = None
        self.__interface_update_timer.stop()

    def commit(self):
        self.update_domain_role_hints()
        if self.data is not None:
            attributes = list(self.used_attrs)
            class_var = list(self.class_attrs)
            metas = list(self.meta_attrs)

            domain = Orange.data.Domain(attributes, class_var, metas)
            newdata = self.data.transform(domain)
            self.output_data = newdata
            self.Outputs.data.send(newdata)
            self.Outputs.features.send(AttributeList(attributes))
        else:
            self.output_data = None
            self.Outputs.data.send(None)
            self.Outputs.features.send(None)

    def reset(self):
        self.enable_used_attrs()
        self.use_features_box.checkbox.setChecked(False)
        if self.data is not None:
            self.available_attrs[:] = []
            self.used_attrs[:] = self.data.domain.attributes
            self.class_attrs[:] = self.data.domain.class_vars
            self.meta_attrs[:] = self.data.domain.metas
            self.update_domain_role_hints()
            self.commit()

    def send_report(self):
        if not self.data or not self.output_data:
            return
        in_domain, out_domain = self.data.domain, self.output_data.domain
        self.report_domain("Input data", self.data.domain)
        if (in_domain.attributes, in_domain.class_vars, in_domain.metas) == (
                out_domain.attributes, out_domain.class_vars, out_domain.metas):
            self.report_paragraph("Output data", "No changes.")
        else:
            self.report_domain("Output data", self.output_data.domain)
            diff = list(set(in_domain.variables + in_domain.metas) -
                        set(out_domain.variables + out_domain.metas))
            if diff:
                text = "%i (%s)" % (len(diff), ", ".join(x.name for x in diff))
                self.report_items((("Removed", text),))
示例#34
0
class OWGenes(OWWidget):
    name = "Genes"
    description = "Tool for working with genes"
    icon = "../widgets/icons/OWGeneInfo.svg"
    priority = 5
    want_main_area = True

    selected_organism: int = Setting(11)
    search_pattern: str = Setting('')
    exclude_unmatched = Setting(True)
    replace_id_with_symbol = Setting(True)
    auto_commit = Setting(True)

    settingsHandler = DomainContextHandler()
    selected_gene_col = ContextSetting(None)
    use_attr_names = ContextSetting(True)

    replaces = [
        'orangecontrib.bioinformatics.widgets.OWGeneNameMatcher.OWGeneNameMatcher'
    ]

    class Inputs:
        data_table = Input("Data", Table)

    class Outputs:
        data_table = Output("Data", Table)
        gene_matcher_results = Output("Genes", Table)

    class Information(OWWidget.Information):
        pass

    def sizeHint(self):
        return QSize(1280, 960)

    def __init__(self):
        super().__init__()
        # ATTRIBUTES #
        self.target_database = NCBI_ID

        # input data
        self.input_data = None
        self.input_genes = None
        self.tax_id = None
        self.column_candidates = []

        # input options
        self.organisms = []

        # gene matcher
        self.gene_matcher = None

        # threads
        self.threadpool = QThreadPool(self)
        self.workers = None

        # progress bar
        self.progress_bar = None

        self._timer = QTimer()
        self._timer.timeout.connect(self._apply_filter)
        self._timer.setSingleShot(True)

        # GUI SECTION #

        # Control area
        self.info_box = widgetLabel(
            widgetBox(self.controlArea, "Info", addSpace=True),
            'No data on input.\n')

        organism_box = vBox(self.controlArea, 'Organism')
        self.organism_select_combobox = comboBox(
            organism_box,
            self,
            'selected_organism',
            callback=self.on_input_option_change)

        self.get_available_organisms()
        self.organism_select_combobox.setCurrentIndex(self.selected_organism)

        box = widgetBox(self.controlArea, 'Gene IDs in the input data')
        self.gene_columns_model = itemmodels.DomainModel(
            valid_types=(StringVariable, DiscreteVariable))
        self.gene_column_combobox = comboBox(
            box,
            self,
            'selected_gene_col',
            label='Stored in data column',
            model=self.gene_columns_model,
            sendSelectedValue=True,
            callback=self.on_input_option_change)

        self.attr_names_checkbox = checkBox(
            box,
            self,
            'use_attr_names',
            'Stored as feature (column) names',
            disables=[(-1, self.gene_column_combobox)],
            callback=self.on_input_option_change)

        self.gene_column_combobox.setDisabled(bool(self.use_attr_names))

        output_box = vBox(self.controlArea, 'Output')

        # separator(output_box)
        # output_box.layout().addWidget(horizontal_line())
        # separator(output_box)
        self.exclude_radio = checkBox(output_box,
                                      self,
                                      'exclude_unmatched',
                                      'Exclude unmatched genes',
                                      callback=self.commit)

        self.replace_radio = checkBox(output_box,
                                      self,
                                      'replace_id_with_symbol',
                                      'Replace feature IDs with gene names',
                                      callback=self.commit)

        auto_commit(self.controlArea,
                    self,
                    "auto_commit",
                    "&Commit",
                    box=False)

        rubber(self.controlArea)

        # Main area
        self.filter = lineEdit(self.mainArea,
                               self,
                               'search_pattern',
                               'Filter:',
                               callbackOnType=True,
                               callback=self.handle_filter_callback)
        # rubber(self.radio_group)
        self.mainArea.layout().addWidget(self.filter)

        # set splitter
        self.splitter = QSplitter()
        self.splitter.setOrientation(Qt.Vertical)

        self.table_model = GeneInfoModel()
        self.table_view = QTableView()
        self.table_view.setAlternatingRowColors(True)
        self.table_view.viewport().setMouseTracking(True)
        self.table_view.setSortingEnabled(True)
        self.table_view.setShowGrid(False)
        self.table_view.verticalHeader().hide()
        # self.table_view.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch)

        self.unknown_model = UnknownGeneInfoModel()

        self.unknown_view = QTableView()
        self.unknown_view.setModel(self.unknown_model)
        self.unknown_view.verticalHeader().hide()
        self.unknown_view.setShowGrid(False)
        self.unknown_view.setSelectionMode(QAbstractItemView.NoSelection)
        self.unknown_view.horizontalHeader().setSectionResizeMode(
            QHeaderView.Stretch)

        self.splitter.addWidget(self.table_view)
        self.splitter.addWidget(self.unknown_view)

        self.splitter.setStretchFactor(0, 90)
        self.splitter.setStretchFactor(1, 10)

        self.mainArea.layout().addWidget(self.splitter)

    def handle_filter_callback(self):
        self._timer.stop()
        self._timer.start(500)

    def _apply_filter(self):
        # filter only if input data is present and model is populated
        if self.table_model.table is not None:
            self.table_model.update_model(
                filter_pattern=str(self.search_pattern))
            self.commit()

    def __reset_widget_state(self):
        self.table_view.clearSpans()
        self.table_view.setModel(None)
        self.table_model.clear()
        self.unknown_model.clear()
        self._update_info_box()

    def _update_info_box(self):

        if self.input_genes and self.gene_matcher:
            num_genes = len(self.gene_matcher.genes)
            known_genes = len(self.gene_matcher.get_known_genes())

            info_text = '{} genes in input data\n' \
                        '{} genes match Entrez database\n' \
                        '{} genes with match conflicts\n'.format(num_genes, known_genes, num_genes - known_genes)

        else:
            info_text = 'No data on input.'

        self.info_box.setText(info_text)

    def _progress_advance(self):
        # GUI should be updated in main thread. That's why we are calling advance method here
        if self.progress_bar:
            self.progress_bar.advance()

    def _handle_matcher_results(self):
        assert threading.current_thread() == threading.main_thread()

        if self.progress_bar:
            self.progress_bar.finish()
            self.setStatusMessage('')

        # update info box
        self._update_info_box()

        # set output options
        self.toggle_radio_options()

        # set known genes
        self.table_model.initialize(self.gene_matcher.genes)
        self.table_view.setModel(self.table_model)
        self.table_view.selectionModel().selectionChanged.connect(self.commit)
        self.table_view.setSelectionBehavior(QAbstractItemView.SelectRows)

        self.table_view.setItemDelegateForColumn(
            self.table_model.entrez_column_index,
            LinkStyledItemDelegate(self.table_view))
        v_header = self.table_view.verticalHeader()
        option = self.table_view.viewOptions()
        size = self.table_view.style().sizeFromContents(
            QStyle.CT_ItemViewItem, option, QSize(20, 20), self.table_view)

        v_header.setDefaultSectionSize(size.height() + 2)
        v_header.setMinimumSectionSize(5)
        self.table_view.horizontalHeader().setStretchLastSection(True)

        # set unknown genes
        self.unknown_model.initialize(self.gene_matcher.genes)
        self.unknown_view.verticalHeader().setStretchLastSection(True)

        self._apply_filter()

    def get_available_organisms(self):
        available_organism = sorted([(tax_id, taxonomy.name(tax_id))
                                     for tax_id in taxonomy.common_taxids()],
                                    key=lambda x: x[1])

        self.organisms = [tax_id[0] for tax_id in available_organism]
        self.organism_select_combobox.addItems(
            [tax_id[1] for tax_id in available_organism])

    def gene_names_from_table(self):
        """ Extract and return gene names from `Orange.data.Table`.
        """
        self.input_genes = []
        if self.input_data:
            if self.use_attr_names:
                self.input_genes = [
                    str(attr.name).strip()
                    for attr in self.input_data.domain.attributes
                ]
            else:
                if self.selected_gene_col is None:
                    self.selected_gene_col = self.gene_column_identifier()

                self.input_genes = [
                    str(e[self.selected_gene_col]) for e in self.input_data
                    if not np.isnan(e[self.selected_gene_col])
                ]

    def _update_gene_matcher(self):
        self.gene_names_from_table()
        self.gene_matcher = GeneMatcher(self.get_selected_organism(),
                                        case_insensitive=True)
        self.gene_matcher.genes = self.input_genes
        self.gene_matcher.organism = self.get_selected_organism()

    def get_selected_organism(self):
        return self.organisms[self.selected_organism]

    def match_genes(self):
        if self.gene_matcher:
            # init progress bar
            self.progress_bar = ProgressBar(self,
                                            iterations=len(
                                                self.gene_matcher.genes))
            # status message
            self.setStatusMessage('Gene matcher running')

            worker = Worker(self.gene_matcher.run_matcher,
                            progress_callback=True)
            worker.signals.progress.connect(self._progress_advance)
            worker.signals.finished.connect(self._handle_matcher_results)

            # move download process to worker thread
            self.threadpool.start(worker)

    def on_input_option_change(self):
        self.__reset_widget_state()
        self._update_gene_matcher()
        self.match_genes()

    def gene_column_identifier(self):
        """
        Get most suitable column that stores genes. If there are
        several suitable columns, select the one with most unique
        values. Take the best one.
        """

        # candidates -> (variable, num of unique values)
        candidates = ((col,
                       np.unique(self.input_data.get_column_view(col)[0]).size)
                      for col in self.gene_columns_model
                      if isinstance(col, DiscreteVariable)
                      or isinstance(col, StringVariable))

        best_candidate, _ = sorted(candidates, key=lambda x: x[1])[-1]
        return best_candidate

    def find_genes_location(self):
        """ Try locate the genes in the input data when we first load the data.

            Proposed rules:
                - when no suitable feature names are present, check the columns.
                - find the most suitable column, that is, the one with most unique values.

        """
        domain = self.input_data.domain
        if not domain.attributes:
            if self.selected_gene_col is None:
                self.selected_gene_col = self.gene_column_identifier()
                self.use_attr_names = False

    @Inputs.data_table
    def handle_input(self, data):
        self.closeContext()
        self.input_data = None
        self.input_genes = None
        self.__reset_widget_state()
        self.gene_columns_model.set_domain(None)
        self.selected_gene_col = None

        if data:
            self.input_data = data
            self.gene_columns_model.set_domain(self.input_data.domain)

            # check if input table has tax_id, human is used if tax_id is not found
            self.tax_id = str(self.input_data.attributes.get(TAX_ID, '9606'))
            # check for gene location. Default is that genes are attributes in the input table.
            self.use_attr_names = self.input_data.attributes.get(
                GENE_AS_ATTRIBUTE_NAME, self.use_attr_names)

            if self.tax_id in self.organisms and not self.selected_organism:
                self.selected_organism = self.organisms.index(self.tax_id)

            self.openContext(self.input_data.domain)
            self.find_genes_location()
            self.on_input_option_change()

    def commit(self):
        selection = self.table_view.selectionModel().selectedRows(
            self.table_model.entrez_column_index)

        selected_genes = [row.data() for row in selection]
        if not len(selected_genes):
            selected_genes = self.table_model.get_filtered_genes()

        gene_ids = self.get_target_ids()
        known_genes = [gid for gid in gene_ids if gid != '?']

        table = None
        gm_table = None
        if known_genes:
            # Genes are in rows (we have a column with genes).
            if not self.use_attr_names:

                if self.target_database in self.input_data.domain:
                    gene_var = self.input_data.domain[self.target_database]
                    metas = self.input_data.domain.metas
                else:
                    gene_var = StringVariable(self.target_database)
                    metas = self.input_data.domain.metas + (gene_var, )

                domain = Domain(self.input_data.domain.attributes,
                                self.input_data.domain.class_vars, metas)

                table = self.input_data.transform(domain)
                col, _ = table.get_column_view(gene_var)
                col[:] = gene_ids

                # filter selected rows
                selected_rows = [
                    row_index for row_index, row in enumerate(table)
                    if str(row[gene_var]) in selected_genes
                ]

                # handle table attributes
                table.attributes[TAX_ID] = self.get_selected_organism()
                table.attributes[GENE_AS_ATTRIBUTE_NAME] = False
                table.attributes[GENE_ID_COLUMN] = self.target_database
                table = table[selected_rows] if selected_rows else table

                if self.exclude_unmatched:
                    # create filter from selected column for genes
                    only_known = table_filter.FilterStringList(
                        gene_var, known_genes)
                    # apply filter to the data
                    table = table_filter.Values([only_known])(table)

                self.Outputs.data_table.send(table)

            # genes are are in columns (genes are features).
            else:
                domain = self.input_data.domain.copy()
                table = self.input_data.transform(domain)

                for gene in self.gene_matcher.genes:
                    if gene.input_name in table.domain:

                        table.domain[gene.input_name].attributes[self.target_database] = \
                            str(gene.ncbi_id) if gene.ncbi_id else '?'

                        if self.replace_id_with_symbol:
                            try:
                                table.domain[gene.input_name].name = str(
                                    gene.symbol)
                            except AttributeError:
                                # TODO: missing gene symbol, need to handle this?
                                pass

                # filter selected columns
                selected = [
                    column for column in table.domain.attributes
                    if self.target_database in column.attributes
                    and str(column.attributes[
                        self.target_database]) in selected_genes
                ]

                output_attrs = table.domain.attributes

                if selected:
                    output_attrs = selected

                if self.exclude_unmatched:
                    output_attrs = [
                        col for col in output_attrs
                        if col.attributes[self.target_database] in known_genes
                    ]

                domain = Domain(output_attrs, table.domain.class_vars,
                                table.domain.metas)

                table = table.from_table(domain, table)

                # handle table attributes
                table.attributes[TAX_ID] = self.get_selected_organism()
                table.attributes[GENE_AS_ATTRIBUTE_NAME] = True
                table.attributes[GENE_ID_ATTRIBUTE] = self.target_database

            gm_table = self.gene_matcher.to_data_table(
                selected_genes=selected_genes if selected_genes else None)

        self.Outputs.data_table.send(table)
        self.Outputs.gene_matcher_results.send(gm_table)

    def toggle_radio_options(self):
        self.replace_radio.setEnabled(bool(self.use_attr_names))

        if self.gene_matcher.genes:
            # enable checkbox if unknown genes are detected
            self.exclude_radio.setEnabled(
                len(self.gene_matcher.genes) != len(
                    self.gene_matcher.get_known_genes()))
            self.exclude_unmatched = len(self.gene_matcher.genes) != len(
                self.gene_matcher.get_known_genes())

    def get_target_ids(self):
        return [
            str(gene.ncbi_id) if gene.ncbi_id else '?'
            for gene in self.gene_matcher.genes
        ]
class OWtSNE(OWWidget):
    name = "t-SNE"
    description = "Two-dimensional data projection with t-SNE."
    icon = "icons/TSNE.svg"
    priority = 3055

    class Inputs:
        data = Input("Data", Orange.data.Table, default=True)
        data_subset = Input("Data Subset", Orange.data.Table)

    class Outputs:
        selected_data = Output("Selected Data",
                               Orange.data.Table,
                               default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table)

    settings_version = 2

    #: Runtime state
    Running, Finished, Waiting = 1, 2, 3

    settingsHandler = settings.DomainContextHandler()

    max_iter = settings.Setting(300)
    perplexity = settings.Setting(30)
    pca_components = settings.Setting(20)

    # output embedding role.
    NoRole, AttrRole, AddAttrRole, MetaRole = 0, 1, 2, 3

    auto_commit = settings.Setting(True)

    selection_indices = settings.Setting(None, schema_only=True)

    legend_anchor = settings.Setting(((1, 0), (1, 0)))

    graph = SettingProvider(OWMDSGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Error(OWWidget.Error):
        not_enough_rows = Msg("Input data needs at least 2 rows")
        constant_data = Msg("Input data is constant")
        no_attributes = Msg("Data has no attributes")
        out_of_memory = Msg("Out of memory")
        optimization_error = Msg("Error during optimization\n{}")

    def __init__(self):
        super().__init__()
        #: Effective data used for plot styling/annotations.
        self.data = None  # type: Optional[Orange.data.Table]
        #: Input subset data table
        self.subset_data = None  # type: Optional[Orange.data.Table]
        #: Input data table
        self.signal_data = None

        self._subset_mask = None  # type: Optional[np.ndarray]
        self.pca_data = None
        self._curve = None
        self._data_metas = None

        self.variable_x = ContinuousVariable("tsne-x")
        self.variable_y = ContinuousVariable("tsne-y")

        self.__update_loop = None
        # timer for scheduling updates
        self.__timer = QTimer(self,
                              singleShot=True,
                              interval=1,
                              timeout=self.__next_step)
        self.__state = OWtSNE.Waiting
        self.__in_next_step = False
        self.__draw_similar_pairs = False

        box = gui.vBox(self.controlArea, "t-SNE")
        form = QFormLayout(labelAlignment=Qt.AlignLeft,
                           formAlignment=Qt.AlignLeft,
                           fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow,
                           verticalSpacing=10)

        form.addRow("Max iterations:",
                    gui.spin(box, self, "max_iter", 250, 2000, step=50))

        form.addRow("Perplexity:",
                    gui.spin(box, self, "perplexity", 1, 100, step=1))

        box.layout().addLayout(form)

        gui.separator(box, 10)
        self.runbutton = gui.button(box,
                                    self,
                                    "Run",
                                    callback=self._toggle_run)

        box = gui.vBox(self.controlArea, "PCA Preprocessing")
        gui.hSlider(box,
                    self,
                    'pca_components',
                    label="Components: ",
                    minValue=2,
                    maxValue=50,
                    step=1)  #, callback=self._initialize)

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWMDSGraph(self,
                                box,
                                "MDSGraph",
                                view_box=MDSInteractiveViewBox)
        box.layout().addWidget(self.graph.plot_widget)
        self.plot = self.graph.plot_widget

        g = self.graph.gui
        box = g.point_properties_box(self.controlArea)
        self.models = g.points_models
        # Because sc data frequently has many genes,
        # showing all attributes in combo boxes can cause problems
        # QUICKFIX: Remove a separator and attributes from order
        # (leaving just the class and metas)
        for model in self.models:
            model.order = model.order[:-2]

        g.add_widgets(ids=[g.JitterSizeSlider], widget=box)

        box = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([
            g.ShowLegend, g.ToolTipShowsAll, g.ClassDensity,
            g.LabelOnlySelected
        ], box)

        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        palette = self.graph.plot_widget.palette()
        self.graph.set_palette(palette)

        gui.rubber(self.controlArea)

        self.graph.box_zoom_select(self.controlArea)

        gui.auto_commit(self.controlArea, self, "auto_commit",
                        "Send Selection", "Send Automatically")

        self.plot.getPlotItem().hideButtons()
        self.plot.setRenderHint(QPainter.Antialiasing)

        self.graph.jitter_continuous = True
        self._initialize()

    def reset_graph_data(self, *_):
        if self.data is not None:
            self.graph.rescale_data()
            self.update_graph()

    def update_colors(self):
        pass

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_regression_line(self):
        self.update_graph(reset_view=False)

    def init_attr_values(self):
        domain = self.data and len(self.data) and self.data.domain or None
        for model in self.models:
            model.set_domain(domain)
        self.graph.attr_color = self.data.domain.class_var if domain else None
        self.graph.attr_shape = None
        self.graph.attr_size = None
        self.graph.attr_label = None

    def prepare_data(self):
        pass

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.variable_x, self.variable_y, True)

    def selection_changed(self):
        self.commit()

    @Inputs.data
    @check_sql_input
    def set_data(self, data):
        """Set the input data set.

        Parameters
        ----------
        data : Optional[Orange.data.Table]
        """
        self.signal_data = data

    @Inputs.data_subset
    def set_subset_data(self, subset_data):
        """Set a subset of `data` input to highlight in the plot.

        Parameters
        ----------
        subset_data: Optional[Orange.data.Table]
        """
        self.subset_data = subset_data
        # invalidate the pen/brush when the subset is changed
        self._subset_mask = None  # type: Optional[np.ndarray]
        self.controls.graph.alpha_value.setEnabled(subset_data is None)

    def _clear(self):
        self.__set_update_loop(None)
        self.__state = OWtSNE.Waiting

    def _clear_plot(self):
        self.graph.plot_widget.clear()

    def _initialize(self):
        # clear everything
        self.closeContext()
        self._clear()
        self.Error.clear()
        self.data = None
        self.pca_data = None
        self.embedding = None
        self.init_attr_values()

        # if no data, reset plot
        if self.signal_data is None:
            return

        if len(self.signal_data) < 2:
            self.Error.not_enough_rows()
        elif not self.signal_data.domain.attributes:
            self.Error.no_attributes()
        elif np.allclose(self.signal_data.X - self.signal_data.X[0], 0):
            self.Error.constant_data()
        else:
            self.data = self.signal_data
            self.init_attr_values()

        self.openContext(self.data)

    def _toggle_run(self):
        if self.__state == OWtSNE.Running:
            self.stop()
            self._invalidate_output()
        else:
            self.start()

    def start(self):
        if not self.data or self.__state == OWtSNE.Running:
            self._update_plot()
            return
        elif self.__state in (OWtSNE.Finished, OWtSNE.Waiting):
            self.__start()

    def stop(self):
        if self.__state == OWtSNE.Running:
            self.__set_update_loop(None)

    def pca_preprocessing(self):
        if self.pca_data is not None and \
                self.pca_data.X.shape[1] == self.pca_components:
            return
        pca = Orange.projection.PCA(n_components=self.pca_components,
                                    random_state=0)
        model = pca(self.data)
        self.pca_data = model(self.data)

    def __start(self):
        self.pca_preprocessing()
        embedding = 'random' if self.embedding is None else self.embedding
        step_size = self.max_iter

        def update_loop(data, max_iter, step, embedding):
            """
            return an iterator over successive improved MDS point embeddings.
            """
            # NOTE: this code MUST NOT call into QApplication.processEvents
            done = False
            iterations_done = 0

            while not done:
                step_iter = min(max_iter - iterations_done, step)
                embedding = compute_tsne_embedding(data.X, self.perplexity,
                                                   step_iter, embedding)
                iterations_done += step_iter
                if iterations_done >= max_iter:
                    done = True

                yield embedding, iterations_done / max_iter

        self.__set_update_loop(
            update_loop(self.pca_data, self.max_iter, step_size, embedding))
        self.progressBarInit(processEvents=None)

    def __set_update_loop(self, loop):
        """
        Set the update `loop` coroutine.

        The `loop` is a generator yielding `(embedding, progress)`
        tuples where `embedding` is a `(N, 2) ndarray` of current updated
        MDS points, and `progress` a float ratio (0 <= progress <= 1)

        If an existing update coroutine loop is already in place it is
        interrupted (i.e. closed).

        .. note::
            The `loop` must not explicitly yield control flow to the event
            loop (i.e. call `QApplication.processEvents`)

        """
        if self.__update_loop is not None:
            self.__update_loop.close()
            self.__update_loop = None
            self.progressBarFinished(processEvents=None)

        self.__update_loop = loop

        if loop is not None:
            self.setBlocking(True)
            self.progressBarInit(processEvents=None)
            self.setStatusMessage("Running")
            self.runbutton.setText("Stop")
            self.__state = OWtSNE.Running
            self.__timer.start()
        else:
            self.setBlocking(False)
            self.setStatusMessage("")
            self.runbutton.setText("Start")
            self.__state = OWtSNE.Finished
            self.__timer.stop()

    def __next_step(self):
        if self.__update_loop is None:
            return

        assert not self.__in_next_step
        self.__in_next_step = True

        loop = self.__update_loop
        self.Error.out_of_memory.clear()
        self.Error.optimization_error.clear()
        try:
            embedding, progress = next(self.__update_loop)
            assert self.__update_loop is loop
        except StopIteration:
            self.__set_update_loop(None)
            self.unconditional_commit()
        except MemoryError:
            self.Error.out_of_memory()
            self.__set_update_loop(None)
        except Exception as exc:
            self.Error.optimization_error(str(exc))
            self.__set_update_loop(None)
        else:
            self.progressBarSet(100.0 * progress, processEvents=None)
            self.embedding = embedding
            self._update_plot()
            # schedule next update
            self.__timer.start()

        self.__in_next_step = False

    def __invalidate_refresh(self):
        state = self.__state

        if self.__update_loop is not None:
            self.__set_update_loop(None)

        # restart the optimization if it was interrupted.
        # TODO: decrease the max iteration count by the already
        # completed iterations count.
        if state == OWtSNE.Running:
            self.__start()

    def handleNewSignals(self):
        if self.data and self.signal_data and np.array_equal(
                self.data.X, self.signal_data.X):
            invalidated = False
            self.closeContext()
            self.data = self.signal_data
            self.init_attr_values()
            self.openContext(self.data)
        else:
            invalidated = True
            self._initialize()

        if self._subset_mask is None and self.subset_data is not None and \
                self.data is not None:
            self._subset_mask = np.in1d(self.data.ids, self.subset_data.ids)

        if invalidated:
            self.start()
        else:
            self._update_plot(new=True)
        self.unconditional_commit()

    def _invalidate_output(self):
        self.commit()

    def _update_plot(self, new=False):
        self._clear_plot()

        if self.embedding is not None:
            self._setup_plot(new=new)
        else:
            self.graph.new_data(None)

    def _setup_plot(self, new=False):
        emb_x, emb_y = self.embedding[:, 0], self.embedding[:, 1]
        coords = np.vstack((emb_x, emb_y)).T
        domain = Domain(attributes=self.data.domain.attributes +
                        (self.variable_x, self.variable_y),
                        class_vars=self.data.domain.class_vars,
                        metas=self.data.domain.metas)
        data = Table.from_numpy(domain,
                                X=np.hstack((self.data.X, coords)),
                                Y=self.data.Y,
                                metas=self.data.metas)
        subset_data = data[
            self._subset_mask] if self._subset_mask is not None else None
        self.graph.new_data(data, subset_data=subset_data, new=new)
        self.graph.update_data(self.variable_x, self.variable_y, True)

    def commit(self):
        if self.embedding is not None:
            names = get_unique_names(
                [v.name for v in self.data.domain.variables],
                ["tsne-x", "tsne-y"])
            output = embedding = Orange.data.Table.from_numpy(
                Orange.data.Domain([
                    ContinuousVariable(names[0]),
                    ContinuousVariable(names[1])
                ]), self.embedding)
        else:
            output = embedding = None

        if self.embedding is not None and self.data is not None:
            domain = self.data.domain
            domain = Orange.data.Domain(
                domain.attributes, domain.class_vars,
                domain.metas + embedding.domain.attributes)
            output = self.data.transform(domain)
            output.metas[:, -2:] = embedding.X

        selection = self.graph.get_selection()
        if output is not None and len(selection) > 0:
            selected = create_groups_table(output, self.graph.selection, False,
                                           "Group")
        else:
            selected = None
        if self.graph.selection is not None and np.max(
                self.graph.selection) > 1:
            annotated = create_groups_table(output, self.graph.selection)
        else:
            annotated = create_annotated_table(output, selection)
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(annotated)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self._clear_plot()
        self._clear()

    def send_report(self):
        if self.data is None:
            return

        def name(var):
            return var and var.name

        caption = report.render_items_vert(
            (("Color", name(self.graph.attr_color)),
             ("Label", name(self.graph.attr_label)),
             ("Shape", name(self.graph.attr_shape)),
             ("Size", name(self.graph.attr_size)),
             ("Jittering", self.graph.jitter_size != 0
              and "{} %".format(self.graph.jitter_size))))
        self.report_plot()
        if caption:
            self.report_caption(caption)
示例#36
0
class EventSpy(QObject):
    """
    A testing utility class (similar to QSignalSpy) to record events
    delivered to a QObject instance.

    Note
    ----
    Only event types can be recorded (as QEvent instances are deleted
    on delivery).

    Note
    ----
    Can only be used with a QCoreApplication running.

    Parameters
    ----------
    object : QObject
        An object whose events need to be recorded.
    etype : Union[QEvent.Type, Sequence[QEvent.Type]
        A event type (or types) that should be recorded
    """
    def __init__(self, object, etype, **kwargs):
        super().__init__(**kwargs)
        if not isinstance(object, QObject):
            raise TypeError

        self.__object = object
        try:
            len(etype)
        except TypeError:
            etypes = {etype}
        else:
            etypes = set(etype)

        self.__etypes = etypes
        self.__record = []
        self.__loop = QEventLoop()
        self.__timer = QTimer(self, singleShot=True)
        self.__timer.timeout.connect(self.__loop.quit)
        self.__object.installEventFilter(self)

    def wait(self, timeout=5000):
        """
        Start an event loop that runs until a spied event or a timeout occurred.

        Parameters
        ----------
        timeout : int
            Timeout in milliseconds.

        Returns
        -------
        res : bool
            True if the event occurred and False otherwise.

        Example
        -------
        >>> app = QCoreApplication.instance() or QCoreApplication([])
        >>> obj = QObject()
        >>> spy = EventSpy(obj, QEvent.User)
        >>> app.postEvent(obj, QEvent(QEvent.User))
        >>> spy.wait()
        True
        >>> print(spy.events())
        [1000]
        """
        count = len(self.__record)
        self.__timer.stop()
        self.__timer.setInterval(timeout)
        self.__timer.start()
        self.__loop.exec_()
        self.__timer.stop()
        return len(self.__record) != count

    def eventFilter(self, reciever, event):
        if reciever is self.__object and event.type() in self.__etypes:
            self.__record.append(event.type())
            if self.__loop.isRunning():
                self.__loop.quit()
        return super().eventFilter(reciever, event)

    def events(self):
        """
        Return a list of all (listened to) event types that occurred.

        Returns
        -------
        events : List[QEvent.Type]
        """
        return list(self.__record)
示例#37
0
class OWSelectAttributes(widget.OWWidget):
    # pylint: disable=too-many-instance-attributes
    name = "选择列(Select Columns)"
    description = "从数据表选择列, 并将它们设为特征, 目标或者元属性."
    category = "数据(Data)"
    icon = "icons/SelectColumns.svg"
    priority = 100
    keywords = ["filter", "attributes", "target", "variable", 'xuanzelie']

    class Inputs:
        data = Input("数据(Data)", Table, default=True, replaces=['Data'])
        features = Input("特征(Features)", AttributeList, replaces=['Features'])

    class Outputs:
        data = Output("数据(Data)", Table, replaces=['Data'])
        features = Output("特征(Features)",
                          AttributeList,
                          dynamic=False,
                          replaces=['Features'])

    want_main_area = False
    want_control_area = True

    settingsHandler = SelectAttributesDomainContextHandler(first_match=False)
    domain_role_hints = ContextSetting({})
    use_input_features = Setting(False)
    ignore_new_features = Setting(False)
    auto_commit = Setting(True)

    class Warning(widget.OWWidget.Warning):
        mismatching_domain = Msg("Features and data domain do not match")
        multiple_targets = Msg("Most widgets do not support multiple targets")

    def __init__(self):
        super().__init__()
        self.data = None
        self.features = None

        # Schedule interface updates (enabled buttons) using a coalescing
        # single shot timer (complex interactions on selection and filtering
        # updates in the 'available_attrs_view')
        self.__interface_update_timer = QTimer(self,
                                               interval=0,
                                               singleShot=True)
        self.__interface_update_timer.timeout.connect(
            self.__update_interface_state)
        # The last view that has the selection for move operation's source
        self.__last_active_view = None  # type: Optional[QListView]

        def update_on_change(view):
            # Schedule interface state update on selection change in `view`
            self.__last_active_view = view
            self.__interface_update_timer.start()

        new_control_area = QWidget(self.controlArea)
        self.controlArea.layout().addWidget(new_control_area)
        self.controlArea = new_control_area

        # init grid
        layout = QGridLayout()
        self.controlArea.setLayout(layout)
        layout.setContentsMargins(0, 0, 0, 0)
        box = gui.vBox(self.controlArea, "可用变量", addToLayout=False)

        self.available_attrs = VariablesListItemModel()
        filter_edit, self.available_attrs_view = variables_filter(
            parent=self, model=self.available_attrs)
        box.layout().addWidget(filter_edit)

        def dropcompleted(action):
            if action == Qt.MoveAction:
                self.commit.deferred()

        self.available_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.available_attrs_view))
        self.available_attrs_view.dragDropActionDidComplete.connect(
            dropcompleted)

        box.layout().addWidget(self.available_attrs_view)
        layout.addWidget(box, 0, 0, 3, 1)

        # 3rd column
        box = gui.vBox(self.controlArea, "特征", addToLayout=False)
        self.used_attrs = VariablesListItemModel()
        filter_edit, self.used_attrs_view = variables_filter(
            parent=self,
            model=self.used_attrs,
            accepted_type=(Orange.data.DiscreteVariable,
                           Orange.data.ContinuousVariable))
        self.used_attrs.rowsInserted.connect(self.__used_attrs_changed)
        self.used_attrs.rowsRemoved.connect(self.__used_attrs_changed)
        self.used_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.used_attrs_view))
        self.used_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        self.use_features_box = gui.auto_commit(
            self.controlArea,
            self,
            "use_input_features",
            "使用输入特征",
            "总是使用输入特征",
            box=False,
            commit=self.__use_features_clicked,
            callback=self.__use_features_changed,
            addToLayout=False)
        self.enable_use_features_box()
        box.layout().addWidget(self.use_features_box)
        box.layout().addWidget(filter_edit)
        box.layout().addWidget(self.used_attrs_view)
        layout.addWidget(box, 0, 2, 1, 1)

        box = gui.vBox(self.controlArea, "目标", addToLayout=False)
        self.class_attrs = VariablesListItemModel()
        self.class_attrs_view = VariablesListItemView(
            acceptedType=(Orange.data.DiscreteVariable,
                          Orange.data.ContinuousVariable))
        self.class_attrs_view.setModel(self.class_attrs)
        self.class_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.class_attrs_view))
        self.class_attrs_view.dragDropActionDidComplete.connect(dropcompleted)

        box.layout().addWidget(self.class_attrs_view)
        layout.addWidget(box, 1, 2, 1, 1)

        box = gui.vBox(self.controlArea, "元属性", addToLayout=False)
        self.meta_attrs = VariablesListItemModel()
        self.meta_attrs_view = VariablesListItemView(
            acceptedType=Orange.data.Variable)
        self.meta_attrs_view.setModel(self.meta_attrs)
        self.meta_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.meta_attrs_view))
        self.meta_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        box.layout().addWidget(self.meta_attrs_view)
        layout.addWidget(box, 2, 2, 1, 1)

        # 2nd column
        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        self.move_attr_button = gui.button(bbox,
                                           self,
                                           ">",
                                           callback=partial(
                                               self.move_selected,
                                               self.used_attrs_view))
        layout.addWidget(bbox, 0, 1, 1, 1)

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        self.move_class_button = gui.button(bbox,
                                            self,
                                            ">",
                                            callback=partial(
                                                self.move_selected,
                                                self.class_attrs_view))
        layout.addWidget(bbox, 1, 1, 1, 1)

        bbox = gui.vBox(self.controlArea, addToLayout=False)
        self.move_meta_button = gui.button(bbox,
                                           self,
                                           ">",
                                           callback=partial(
                                               self.move_selected,
                                               self.meta_attrs_view))
        layout.addWidget(bbox, 2, 1, 1, 1)

        # footer
        gui.button(self.buttonsArea, self, "重置", callback=self.reset)

        bbox = gui.vBox(self.buttonsArea)
        gui.checkBox(
            widget=bbox,
            master=self,
            value="ignore_new_features",
            label="Ignore new variables by default",
            tooltip="When the widget receives data with additional columns "
            "they are added to the available attributes column if "
            "<i>Ignore new variables by default</i> is checked.")

        gui.rubber(self.buttonsArea)
        gui.auto_send(self.buttonsArea, self, "auto_commit")

        layout.setRowStretch(0, 2)
        layout.setRowStretch(1, 0)
        layout.setRowStretch(2, 1)
        layout.setHorizontalSpacing(0)
        self.controlArea.setLayout(layout)

        self.output_data = None
        self.original_completer_items = []

        self.resize(600, 600)

    @property
    def features_from_data_attributes(self):
        if self.data is None or self.features is None:
            return []
        domain = self.data.domain
        return [
            domain[feature.name] for feature in self.features
            if feature.name in domain
            and domain[feature.name] in domain.attributes
        ]

    def can_use_features(self):
        return bool(self.features_from_data_attributes) and \
            self.features_from_data_attributes != self.used_attrs[:]

    def __use_features_changed(self):  # Use input features check box
        # Needs a check since callback is invoked before object is created
        if not hasattr(self, "use_features_box"):
            return
        self.enable_used_attrs(not self.use_input_features)
        if self.use_input_features and self.can_use_features():
            self.use_features()
        if not self.use_input_features:
            self.enable_use_features_box()

    @gui.deferred
    def __use_features_clicked(self):  # Use input features button
        self.use_features()

    def __used_attrs_changed(self):
        self.enable_use_features_box()

    @Inputs.data
    def set_data(self, data=None):
        self.update_domain_role_hints()
        self.closeContext()
        self.domain_role_hints = {}

        self.data = data
        if data is None:
            self.used_attrs[:] = []
            self.class_attrs[:] = []
            self.meta_attrs[:] = []
            self.available_attrs[:] = []
            return

        self.openContext(data)
        all_vars = data.domain.variables + data.domain.metas

        def attrs_for_role(role):
            selected_attrs = [
                attr for attr in all_vars if domain_hints[attr][0] == role
            ]
            return sorted(selected_attrs,
                          key=lambda attr: domain_hints[attr][1])

        domain_hints = self.restore_hints(data.domain)
        self.used_attrs[:] = attrs_for_role("attribute")
        self.class_attrs[:] = attrs_for_role("class")
        self.meta_attrs[:] = attrs_for_role("meta")
        self.available_attrs[:] = attrs_for_role("available")

        self.update_interface_state(self.class_attrs_view)

    def restore_hints(self, domain: Domain) -> Dict[Variable, Tuple[str, int]]:
        """
        Define hints for selected/unselected features.
        Rules:
        - if context available, restore new features based on checked/unchecked
          ignore_new_features, context hint should be took into account
        - in no context, restore features based on the domain (as selected)

        Parameters
        ----------
        domain
            Data domain

        Returns
        -------
        Dictionary with hints about order and model in which each feature
        should appear
        """
        domain_hints = {}
        if not self.ignore_new_features or len(self.domain_role_hints) == 0:
            # select_new_features selected or no context - restore based on domain
            domain_hints.update(
                self._hints_from_seq("attribute", domain.attributes))
            domain_hints.update(self._hints_from_seq("meta", domain.metas))
            domain_hints.update(
                self._hints_from_seq("class", domain.class_vars))
        else:
            # if context restored and ignore_new_features selected - restore
            # new features as available
            d = domain.attributes + domain.metas + domain.class_vars
            domain_hints.update(self._hints_from_seq("available", d))

        domain_hints.update(self.domain_role_hints)
        return domain_hints

    def update_domain_role_hints(self):
        """ Update the domain hints to be stored in the widgets settings.
        """
        hints = {}
        hints.update(self._hints_from_seq("available", self.available_attrs))
        hints.update(self._hints_from_seq("attribute", self.used_attrs))
        hints.update(self._hints_from_seq("class", self.class_attrs))
        hints.update(self._hints_from_seq("meta", self.meta_attrs))
        self.domain_role_hints = hints

    @staticmethod
    def _hints_from_seq(role, model):
        return [(attr, (role, i)) for i, attr in enumerate(model)]

    @Inputs.features
    def set_features(self, features):
        self.features = features

    def handleNewSignals(self):
        self.check_data()
        self.enable_used_attrs()
        self.enable_use_features_box()
        if self.use_input_features and self.features_from_data_attributes:
            self.enable_used_attrs(False)
            self.use_features()
        self.commit.now()

    def check_data(self):
        self.Warning.mismatching_domain.clear()
        if self.data is not None and self.features is not None and \
                not self.features_from_data_attributes:
            self.Warning.mismatching_domain()

    def enable_used_attrs(self, enable=True):
        self.move_attr_button.setEnabled(enable)
        self.used_attrs_view.setEnabled(enable)
        self.used_attrs_view.repaint()

    def enable_use_features_box(self):
        self.use_features_box.button.setEnabled(self.can_use_features())
        enable_checkbox = bool(self.features_from_data_attributes)
        self.use_features_box.setHidden(not enable_checkbox)
        self.use_features_box.repaint()

    def use_features(self):
        attributes = self.features_from_data_attributes
        available, used = self.available_attrs[:], self.used_attrs[:]
        self.available_attrs[:] = [
            attr for attr in used + available if attr not in attributes
        ]
        self.used_attrs[:] = attributes
        self.commit.deferred()

    @staticmethod
    def selected_rows(view):
        """ Return the selected rows in the view.
        """
        rows = view.selectionModel().selectedRows()
        model = view.model()
        if isinstance(model, QSortFilterProxyModel):
            rows = [model.mapToSource(r) for r in rows]
        return [r.row() for r in rows]

    def move_rows(self, view: QListView, offset: int, roles=(Qt.EditRole, )):
        rows = [idx.row() for idx in view.selectionModel().selectedRows()]
        model = view.model()  # type: QAbstractItemModel
        rowcount = model.rowCount()
        newrows = [min(max(0, row + offset), rowcount - 1) for row in rows]

        def itemData(index):
            return {role: model.data(index, role) for role in roles}

        for row, newrow in sorted(zip(rows, newrows), reverse=offset > 0):
            d1 = itemData(model.index(row, 0))
            d2 = itemData(model.index(newrow, 0))
            model.setItemData(model.index(row, 0), d2)
            model.setItemData(model.index(newrow, 0), d1)

        selection = QItemSelection()
        for nrow in newrows:
            index = model.index(nrow, 0)
            selection.select(index, index)
        view.selectionModel().select(selection,
                                     QItemSelectionModel.ClearAndSelect)

        self.commit.deferred()

    def move_up(self, view: QListView):
        self.move_rows(view, -1)

    def move_down(self, view: QListView):
        self.move_rows(view, 1)

    def move_selected(self, view):
        if self.selected_rows(view):
            self.move_selected_from_to(view, self.available_attrs_view)
        elif self.selected_rows(self.available_attrs_view):
            self.move_selected_from_to(self.available_attrs_view, view)

    def move_selected_from_to(self, src, dst):
        self.move_from_to(src, dst, self.selected_rows(src))

    def move_from_to(self, src, dst, rows):
        src_model = source_model(src)
        attrs = [src_model[r] for r in rows]

        for s1, s2 in reversed(list(slices(rows))):
            del src_model[s1:s2]

        dst_model = source_model(dst)

        dst_model.extend(attrs)

        self.commit.deferred()

    def __update_interface_state(self):
        last_view = self.__last_active_view
        if last_view is not None:
            self.update_interface_state(last_view)

    def update_interface_state(self, focus=None):
        for view in [
                self.available_attrs_view, self.used_attrs_view,
                self.class_attrs_view, self.meta_attrs_view
        ]:
            if view is not focus and not view.hasFocus() \
                    and view.selectionModel().hasSelection():
                view.selectionModel().clear()

        def selected_vars(view):
            model = source_model(view)
            return [model[i] for i in self.selected_rows(view)]

        available_selected = selected_vars(self.available_attrs_view)
        attrs_selected = selected_vars(self.used_attrs_view)
        class_selected = selected_vars(self.class_attrs_view)
        meta_selected = selected_vars(self.meta_attrs_view)

        available_types = set(map(type, available_selected))
        all_primitive = all(var.is_primitive() for var in available_types)

        move_attr_enabled = \
            ((available_selected and all_primitive) or attrs_selected) and \
            self.used_attrs_view.isEnabled()

        self.move_attr_button.setEnabled(bool(move_attr_enabled))
        if move_attr_enabled:
            self.move_attr_button.setText(">" if available_selected else "<")

        move_class_enabled = bool(all_primitive
                                  and available_selected) or class_selected

        self.move_class_button.setEnabled(bool(move_class_enabled))
        if move_class_enabled:
            self.move_class_button.setText(">" if available_selected else "<")
        move_meta_enabled = available_selected or meta_selected

        self.move_meta_button.setEnabled(bool(move_meta_enabled))
        if move_meta_enabled:
            self.move_meta_button.setText(">" if available_selected else "<")

        # update class_vars height
        if self.class_attrs.rowCount() == 0:
            height = 22
        else:
            height = ((self.class_attrs.rowCount() or 1) *
                      self.class_attrs_view.sizeHintForRow(0)) + 2
        self.class_attrs_view.setFixedHeight(height)

        self.__last_active_view = None
        self.__interface_update_timer.stop()

    @gui.deferred
    def commit(self):
        self.update_domain_role_hints()
        self.Warning.multiple_targets.clear()
        if self.data is not None:
            attributes = list(self.used_attrs)
            class_var = list(self.class_attrs)
            metas = list(self.meta_attrs)

            domain = Orange.data.Domain(attributes, class_var, metas)
            newdata = self.data.transform(domain)
            self.output_data = newdata
            self.Outputs.data.send(newdata)
            self.Outputs.features.send(AttributeList(attributes))
            self.Warning.multiple_targets(shown=len(class_var) > 1)
        else:
            self.output_data = None
            self.Outputs.data.send(None)
            self.Outputs.features.send(None)

    def reset(self):
        self.enable_used_attrs()
        self.use_features_box.checkbox.setChecked(False)
        if self.data is not None:
            self.available_attrs[:] = []
            self.used_attrs[:] = self.data.domain.attributes
            self.class_attrs[:] = self.data.domain.class_vars
            self.meta_attrs[:] = self.data.domain.metas
            self.update_domain_role_hints()
            self.commit.now()

    def send_report(self):
        if not self.data or not self.output_data:
            return
        in_domain, out_domain = self.data.domain, self.output_data.domain
        self.report_domain("Input data", self.data.domain)
        if (in_domain.attributes, in_domain.class_vars,
                in_domain.metas) == (out_domain.attributes,
                                     out_domain.class_vars, out_domain.metas):
            self.report_paragraph("Output data", "No changes.")
        else:
            self.report_domain("Output data", self.output_data.domain)
            diff = list(
                set(in_domain.variables + in_domain.metas) -
                set(out_domain.variables + out_domain.metas))
            if diff:
                text = "%i (%s)" % (len(diff), ", ".join(x.name for x in diff))
                self.report_items((("Removed", text), ))
示例#38
0
class OWScatterPlot(OWWidget):
    """Scatterplot visualization with explorative analysis and intelligent
    data visualization enhancements."""

    name = 'Scatter Plot'
    description = "Interactive scatter plot visualization with " \
                  "intelligent data visualization enhancements."
    icon = "icons/ScatterPlot.svg"
    priority = 140

    class Inputs:
        data = Input("Data", Table, default=True)
        data_subset = Input("Data Subset", Table)
        features = Input("Features", AttributeList)

    class Outputs:
        selected_data = Output("Selected Data", Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table)
        features = Output("Features", Table, dynamic=False)

    settings_version = 2
    settingsHandler = DomainContextHandler()

    auto_send_selection = Setting(True)
    auto_sample = Setting(True)
    toolbar_selection = Setting(0)

    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)
    selection_group = Setting(None, schema_only=True)

    graph = SettingProvider(OWScatterPlotGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Information(OWWidget.Information):
        sampled_sql = Msg("Large SQL table; showing a sample.")

    def __init__(self):
        super().__init__()

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWScatterPlotGraph(self, box, "ScatterPlot")
        box.layout().addWidget(self.graph.plot_widget)
        plot = self.graph.plot_widget

        axispen = QPen(self.palette().color(QPalette.Text))
        axis = plot.getAxis("bottom")
        axis.setPen(axispen)

        axis = plot.getAxis("left")
        axis.setPen(axispen)

        self.data = None  # Orange.data.Table
        self.subset_data = None  # Orange.data.Table
        self.data_metas_X = None  # self.data, where primitive metas are moved to X
        self.sql_data = None  # Orange.data.sql.table.SqlTable
        self.attribute_selection_list = None  # list of Orange.data.Variable
        self.__timer = QTimer(self, interval=1200)
        self.__timer.timeout.connect(self.add_data)

        common_options = dict(labelWidth=50,
                              orientation=Qt.Horizontal,
                              sendSelectedValue=True,
                              valueType=str)
        box = gui.vBox(self.controlArea, "Axis Data")
        dmod = DomainModel
        self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE)
        self.cb_attr_x = gui.comboBox(box,
                                      self,
                                      "attr_x",
                                      label="Axis x:",
                                      callback=self.update_attr,
                                      model=self.xy_model,
                                      **common_options)
        self.cb_attr_y = gui.comboBox(box,
                                      self,
                                      "attr_y",
                                      label="Axis y:",
                                      callback=self.update_attr,
                                      model=self.xy_model,
                                      **common_options)

        vizrank_box = gui.hBox(box)
        gui.separator(vizrank_box, width=common_options["labelWidth"])
        self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank(
            vizrank_box, self, "Find Informative Projections", self.set_attr)

        gui.separator(box)

        g = self.graph.gui
        g.add_widgets([g.JitterSizeSlider, g.JitterNumericValues], box)

        self.sampling = gui.auto_commit(self.controlArea,
                                        self,
                                        "auto_sample",
                                        "Sample",
                                        box="Sampling",
                                        callback=self.switch_sampling,
                                        commit=lambda: self.add_data(1))
        self.sampling.setVisible(False)

        g.point_properties_box(self.controlArea)
        self.models = [self.xy_model] + g.points_models

        box_plot_prop = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([
            g.ShowLegend, g.ShowGridLines, g.ToolTipShowsAll, g.ClassDensity,
            g.RegressionLine, g.LabelOnlySelected
        ], box_plot_prop)

        self.graph.box_zoom_select(self.controlArea)

        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        p = self.graph.plot_widget.palette()
        self.graph.set_palette(p)

        gui.auto_commit(self.controlArea, self, "auto_send_selection",
                        "Send Selection", "Send Automatically")

        self.graph.zoom_actions(self)

    def keyPressEvent(self, event):
        super().keyPressEvent(event)
        self.graph.update_tooltip(event.modifiers())

    def keyReleaseEvent(self, event):
        super().keyReleaseEvent(event)
        self.graph.update_tooltip(event.modifiers())

    def reset_graph_data(self, *_):
        if self.data is not None:
            self.graph.rescale_data()
            self.update_graph()

    @Inputs.data
    def set_data(self, data):
        self.clear_messages()
        self.Information.sampled_sql.clear()
        self.__timer.stop()
        self.sampling.setVisible(False)
        self.sql_data = None
        if isinstance(data, SqlTable):
            if data.approx_len() < 4000:
                data = Table(data)
            else:
                self.Information.sampled_sql()
                self.sql_data = data
                data_sample = data.sample_time(0.8, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
                self.sampling.setVisible(True)
                if self.auto_sample:
                    self.__timer.start()

        if data is not None and (len(data) == 0 or len(data.domain) == 0):
            data = None
        if self.data and data and self.data.checksum() == data.checksum():
            return

        self.closeContext()
        same_domain = (self.data and data and data.domain.checksum()
                       == self.data.domain.checksum())
        self.data = data
        self.data_metas_X = self.move_primitive_metas_to_X(data)

        if not same_domain:
            self.init_attr_values()
        self.vizrank.initialize()
        self.vizrank.attrs = self.data.domain.attributes if self.data is not None else []
        self.vizrank_button.setEnabled(
            self.data is not None and not self.data.is_sparse()
            and self.data.domain.class_var is not None
            and len(self.data.domain.attributes) > 1 and len(self.data) > 1)
        if self.data is not None and self.data.domain.class_var is None \
            and len(self.data.domain.attributes) > 1 and len(self.data) > 1:
            self.vizrank_button.setToolTip(
                "Data with a class variable is required.")
        else:
            self.vizrank_button.setToolTip("")
        self.openContext(self.data)

        def findvar(name, iterable):
            """Find a Orange.data.Variable in `iterable` by name"""
            for el in iterable:
                if isinstance(el, Orange.data.Variable) and el.name == name:
                    return el
            return None

        # handle restored settings from  < 3.3.9 when attr_* were stored
        # by name
        if isinstance(self.attr_x, str):
            self.attr_x = findvar(self.attr_x, self.xy_model)
        if isinstance(self.attr_y, str):
            self.attr_y = findvar(self.attr_y, self.xy_model)
        if isinstance(self.graph.attr_label, str):
            self.graph.attr_label = findvar(self.graph.attr_label,
                                            self.graph.gui.label_model)
        if isinstance(self.graph.attr_color, str):
            self.graph.attr_color = findvar(self.graph.attr_color,
                                            self.graph.gui.color_model)
        if isinstance(self.graph.attr_shape, str):
            self.graph.attr_shape = findvar(self.graph.attr_shape,
                                            self.graph.gui.shape_model)
        if isinstance(self.graph.attr_size, str):
            self.graph.attr_size = findvar(self.graph.attr_size,
                                           self.graph.gui.size_model)

    def add_data(self, time=0.4):
        if self.data and len(self.data) > 2000:
            return self.__timer.stop()
        data_sample = self.sql_data.sample_time(time, no_cache=True)
        if data_sample:
            data_sample.download_data(2000, partial=True)
            data = Table(data_sample)
            self.data = Table.concatenate((self.data, data), axis=0)
            self.data_metas_X = self.move_primitive_metas_to_X(self.data)
            self.handleNewSignals()

    def switch_sampling(self):
        self.__timer.stop()
        if self.auto_sample and self.sql_data:
            self.add_data()
            self.__timer.start()

    def move_primitive_metas_to_X(self, data):
        if data is not None:
            new_attrs = [
                a for a in data.domain.attributes + data.domain.metas
                if a.is_primitive()
            ]
            new_metas = [m for m in data.domain.metas if not m.is_primitive()]
            new_domain = Domain(new_attrs, data.domain.class_vars, new_metas)
            data = data.transform(new_domain)
        return data

    @Inputs.data_subset
    def set_subset_data(self, subset_data):
        self.warning()
        if isinstance(subset_data, SqlTable):
            if subset_data.approx_len() < AUTO_DL_LIMIT:
                subset_data = Table(subset_data)
            else:
                self.warning("Data subset does not support large Sql tables")
                subset_data = None
        self.subset_data = self.move_primitive_metas_to_X(subset_data)
        self.controls.graph.alpha_value.setEnabled(subset_data is None)

    # called when all signals are received, so the graph is updated only once
    def handleNewSignals(self):
        self.graph.new_data(self.sparse_to_dense(self.data_metas_X),
                            self.sparse_to_dense(self.subset_data))
        if self.attribute_selection_list and self.graph.domain and \
                all(attr in self.graph.domain
                        for attr in self.attribute_selection_list):
            self.attr_x = self.attribute_selection_list[0]
            self.attr_y = self.attribute_selection_list[1]
        self.attribute_selection_list = None
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line())
        self.apply_selection()
        self.unconditional_commit()

    def prepare_data(self):
        """
        Only when dealing with sparse matrices.
        GH-2152
        """
        self.graph.new_data(self.sparse_to_dense(self.data_metas_X),
                            self.sparse_to_dense(self.subset_data),
                            new=False)

    def sparse_to_dense(self, input_data=None):
        if input_data is None or not input_data.is_sparse():
            return input_data
        keys = []
        attrs = {
            self.attr_x, self.attr_y, self.graph.attr_color,
            self.graph.attr_shape, self.graph.attr_size, self.graph.attr_label
        }
        for i, attr in enumerate(input_data.domain):
            if attr in attrs:
                keys.append(i)
        new_domain = input_data.domain.select_columns(keys)
        dmx = input_data.transform(new_domain)
        dmx.X = dmx.X.toarray()
        # TODO: remove once we make sure Y is always dense.
        if sp.issparse(dmx.Y):
            dmx.Y = dmx.Y.toarray()
        return dmx

    def apply_selection(self):
        """Apply selection saved in workflow."""
        if self.data is not None and self.selection_group is not None:
            self.graph.selection = np.zeros(len(self.data), dtype=np.uint8)
            self.selection_group = [
                x for x in self.selection_group if x[0] < len(self.data)
            ]
            selection_array = np.array(self.selection_group).T
            self.graph.selection[selection_array[0]] = selection_array[1]
            self.graph.update_colors(keep_colors=True)

    @Inputs.features
    def set_shown_attributes(self, attributes):
        if attributes and len(attributes) >= 2:
            self.attribute_selection_list = attributes[:2]
        else:
            self.attribute_selection_list = None

    def init_attr_values(self):
        domain = self.data and self.data.domain
        for model in self.models:
            model.set_domain(domain)
        self.attr_x = self.xy_model[0] if self.xy_model else None
        self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \
            else self.attr_x
        self.graph.attr_color = self.data.domain.class_var if domain else None
        self.graph.attr_shape = None
        self.graph.attr_size = None
        self.graph.attr_label = None

    def set_attr(self, attr_x, attr_y):
        self.attr_x, self.attr_y = attr_x, attr_y
        self.update_attr()

    def update_attr(self):
        self.prepare_data()
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line())
        self.send_features()

    def update_colors(self):
        self.prepare_data()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_regression_line(self):
        self.update_graph(reset_view=False)

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.attr_x, self.attr_y, reset_view)

    def selection_changed(self):
        self.send_data()

    def send_data(self):
        selected = None
        selection = None
        # TODO: Implement selection for sql data
        graph = self.graph
        if isinstance(self.data, SqlTable):
            selected = self.data
        elif self.data is not None:
            selection = graph.get_selection()
            if len(selection) > 0:
                selected = self.data[selection]
        if graph.selection is not None and np.max(graph.selection) > 1:
            annotated = create_groups_table(self.data, graph.selection)
        else:
            annotated = create_annotated_table(self.data, selection)
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(annotated)

        # Store current selection in a setting that is stored in workflow
        if selection is not None and len(selection):
            self.selection_group = list(
                zip(selection, graph.selection[selection]))
        else:
            self.selection_group = None

    def send_features(self):
        features = None
        if self.attr_x or self.attr_y:
            dom = Domain([], metas=(StringVariable(name="feature"), ))
            features = Table(dom, [[self.attr_x], [self.attr_y]])
            features.name = "Features"
        self.Outputs.features.send(features)

    def commit(self):
        self.send_data()
        self.send_features()

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)

    def send_report(self):
        if self.data is None:
            return

        def name(var):
            return var and var.name

        caption = report.render_items_vert(
            (("Color", name(self.graph.attr_color)),
             ("Label", name(self.graph.attr_label)),
             ("Shape", name(self.graph.attr_shape)),
             ("Size", name(self.graph.attr_size)),
             ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete
                            or self.graph.jitter_continuous)
              and self.graph.jitter_size)))
        self.report_plot()
        if caption:
            self.report_caption(caption)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self.graph.plot_widget.getViewBox().deleteLater()
        self.graph.plot_widget.clear()

    @classmethod
    def migrate_settings(cls, settings, version):
        if version < 2 and "selection" in settings and settings["selection"]:
            settings["selection_group"] = [(a, 1)
                                           for a in settings["selection"]]
示例#39
0
class TabBarWidget(QWidget):
    """
    A tab bar widget using tool buttons as tabs.
    """
    # TODO: A uniform size box layout.

    currentChanged = Signal(int)

    def __init__(self, parent=None, **kwargs):
        QWidget.__init__(self, parent, **kwargs)
        layout = QVBoxLayout()
        layout.setContentsMargins(0, 0, 0, 0)
        layout.setSpacing(0)
        self.setLayout(layout)

        self.setSizePolicy(QSizePolicy.Fixed,
                           QSizePolicy.Expanding)
        self.__tabs = []

        self.__currentIndex = -1
        self.__changeOnHover = False

        self.__iconSize = QSize(26, 26)

        self.__group = QButtonGroup(self, exclusive=True)
        self.__group.buttonPressed[QAbstractButton].connect(
            self.__onButtonPressed
        )
        self.setMouseTracking(True)

        self.__sloppyButton = None
        self.__sloppyRegion = QRegion()
        self.__sloppyTimer = QTimer(self, singleShot=True)
        self.__sloppyTimer.timeout.connect(self.__onSloppyTimeout)

    def setChangeOnHover(self, changeOnHover):
        """
        If set to ``True`` the tab widget will change the current index when
        the mouse hovers over a tab button.

        """
        if self.__changeOnHover != changeOnHover:
            self.__changeOnHover = changeOnHover

    def changeOnHover(self):
        """
        Does the current tab index follow the mouse cursor.
        """
        return self.__changeOnHover

    def count(self):
        """
        Return the number of tabs in the widget.
        """
        return len(self.__tabs)

    def addTab(self, text, icon=None, toolTip=None):
        """
        Add a new tab and return it's index.
        """
        return self.insertTab(self.count(), text, icon, toolTip)

    def insertTab(self, index, text, icon=None, toolTip=None):
        """
        Insert a tab at `index`
        """
        button = TabButton(self, objectName="tab-button")
        button.setSizePolicy(QSizePolicy.Expanding,
                             QSizePolicy.Expanding)
        button.setIconSize(self.__iconSize)
        button.setMouseTracking(True)

        self.__group.addButton(button)

        button.installEventFilter(self)

        tab = _Tab(text, icon, toolTip, button, None, None)
        self.layout().insertWidget(index, button)

        self.__tabs.insert(index, tab)
        self.__updateTab(index)

        if self.currentIndex() == -1:
            self.setCurrentIndex(0)
        return index

    def removeTab(self, index):
        """
        Remove a tab at `index`.
        """
        if index >= 0 and index < self.count():
            self.layout().takeItem(index)
            tab = self.__tabs.pop(index)
            self.__group.removeButton(tab.button)

            tab.button.removeEventFilter(self)

            if tab.button is self.__sloppyButton:
                self.__sloppyButton = None
                self.__sloppyRegion = QRegion()

            tab.button.deleteLater()

            if self.currentIndex() == index:
                if self.count():
                    self.setCurrentIndex(max(index - 1, 0))
                else:
                    self.setCurrentIndex(-1)

    def setTabIcon(self, index, icon):
        """
        Set the `icon` for tab at `index`.
        """
        self.__tabs[index] = self.__tabs[index]._replace(icon=icon)
        self.__updateTab(index)

    def setTabToolTip(self, index, toolTip):
        """
        Set `toolTip` for tab at `index`.
        """
        self.__tabs[index] = self.__tabs[index]._replace(toolTip=toolTip)
        self.__updateTab(index)

    def setTabText(self, index, text):
        """
        Set tab `text` for tab at `index`
        """
        self.__tabs[index] = self.__tabs[index]._replace(text=text)
        self.__updateTab(index)

    def setTabPalette(self, index, palette):
        """
        Set the tab button palette.
        """
        self.__tabs[index] = self.__tabs[index]._replace(palette=palette)
        self.__updateTab(index)

    def setCurrentIndex(self, index):
        """
        Set the current tab index.
        """
        if self.__currentIndex != index:
            self.__currentIndex = index

            self.__sloppyRegion = QRegion()
            self.__sloppyButton = None

            if index != -1:
                self.__tabs[index].button.setChecked(True)

            self.currentChanged.emit(index)

    def currentIndex(self):
        """
        Return the current index.
        """
        return self.__currentIndex

    def button(self, index):
        """
        Return the `TabButton` instance for index.
        """
        return self.__tabs[index].button

    def setIconSize(self, size):
        if self.__iconSize != size:
            self.__iconSize = size
            for tab in self.__tabs:
                tab.button.setIconSize(self.__iconSize)

    def __updateTab(self, index):
        """
        Update the tab button.
        """
        tab = self.__tabs[index]
        b = tab.button

        if tab.text:
            b.setText(tab.text)

        if tab.icon is not None and not tab.icon.isNull():
            b.setIcon(tab.icon)

        if tab.palette:
            b.setPalette(tab.palette)

    def __onButtonPressed(self, button):
        for i, tab in enumerate(self.__tabs):
            if tab.button is button:
                self.setCurrentIndex(i)
                break

    def __calcSloppyRegion(self, current):
        """
        Given a current mouse cursor position return a region of the widget
        where hover/move events should change the current tab only on a
        timeout.

        """
        p1 = current + QPoint(0, 2)
        p2 = current + QPoint(0, -2)
        p3 = self.pos() + QPoint(self.width()+10, 0)
        p4 = self.pos() + QPoint(self.width()+10, self.height())
        return QRegion(QPolygon([p1, p2, p3, p4]))

    def __setSloppyButton(self, button):
        """
        Set the current sloppy button (a tab button inside sloppy region)
        and reset the sloppy timeout.

        """
        if not button.isChecked():
            self.__sloppyButton = button
            delay = self.style().styleHint(QStyle.SH_Menu_SubMenuPopupDelay, None)
            # The delay timeout is the same as used by Qt in the QMenu.
            self.__sloppyTimer.start(delay)
        else:
            self.__sloppyTimer.stop()

    def __onSloppyTimeout(self):
        if self.__sloppyButton is not None:
            button = self.__sloppyButton
            self.__sloppyButton = None
            if not button.isChecked():
                index = [tab.button for tab in self.__tabs].index(button)
                self.setCurrentIndex(index)

    def eventFilter(self, receiver, event):
        if event.type() == QEvent.MouseMove and \
                isinstance(receiver, TabButton):
            pos = receiver.mapTo(self, event.pos())
            if self.__sloppyRegion.contains(pos):
                self.__setSloppyButton(receiver)
            else:
                if not receiver.isChecked():
                    index = [tab.button for tab in self.__tabs].index(receiver)
                    self.setCurrentIndex(index)
                #also update sloppy region if mouse is moved on the same icon
                self.__sloppyRegion = self.__calcSloppyRegion(pos)

        return QWidget.eventFilter(self, receiver, event)

    def leaveEvent(self, event):
        self.__sloppyButton = None
        self.__sloppyRegion = QRegion()

        return QWidget.leaveEvent(self, event)
示例#40
0
文件: owpca.py 项目: acopar/orange3
class OWPCA(widget.OWWidget):
    name = "PCA"
    description = "Principal component analysis with a scree-diagram."
    icon = "icons/PCA.svg"
    priority = 3050
    keywords = ["principal component analysis", "linear transformation"]

    class Inputs:
        data = Input("Data", Table)

    class Outputs:
        transformed_data = Output("Transformed data", Table)
        components = Output("Components", Table)
        pca = Output("PCA", PCA, dynamic=False)
        preprocessor = Output("Preprocessor", Preprocess)

    settingsHandler = settings.DomainContextHandler()

    ncomponents = settings.Setting(2)
    variance_covered = settings.Setting(100)
    batch_size = settings.Setting(100)
    address = settings.Setting('')
    auto_update = settings.Setting(True)
    auto_commit = settings.Setting(True)
    normalize = settings.ContextSetting(True)
    decomposition_idx = settings.ContextSetting(0)
    maxp = settings.Setting(20)
    axis_labels = settings.Setting(10)

    graph_name = "plot.plotItem"

    class Warning(widget.OWWidget.Warning):
        trivial_components = widget.Msg(
            "All components of the PCA are trivial (explain 0 variance). "
            "Input data is constant (or near constant).")

    class Error(widget.OWWidget.Error):
        no_features = widget.Msg("At least 1 feature is required")
        no_instances = widget.Msg("At least 1 data instance is required")
        sparse_data = widget.Msg("Sparse data is not supported")

    def __init__(self):
        super().__init__()
        self.data = None

        self._pca = None
        self._transformed = None
        self._variance_ratio = None
        self._cumulative = None
        self._line = False
        self._init_projector()

        # Components Selection
        box = gui.vBox(self.controlArea, "Components Selection")
        form = QFormLayout()
        box.layout().addLayout(form)

        self.components_spin = gui.spin(
            box, self, "ncomponents", 1, MAX_COMPONENTS,
            callback=self._update_selection_component_spin,
            keyboardTracking=False
        )
        self.components_spin.setSpecialValueText("All")

        self.variance_spin = gui.spin(
            box, self, "variance_covered", 1, 100,
            callback=self._update_selection_variance_spin,
            keyboardTracking=False
        )
        self.variance_spin.setSuffix("%")

        form.addRow("Components:", self.components_spin)
        form.addRow("Variance covered:", self.variance_spin)

        # Incremental learning
        self.sampling_box = gui.vBox(self.controlArea, "Incremental learning")
        self.addresstext = QLineEdit(box)
        self.addresstext.setPlaceholderText('Remote server')
        if self.address:
            self.addresstext.setText(self.address)
        self.sampling_box.layout().addWidget(self.addresstext)

        form = QFormLayout()
        self.sampling_box.layout().addLayout(form)
        self.batch_spin = gui.spin(
            self.sampling_box, self, "batch_size", 50, 100000, step=50,
            keyboardTracking=False)
        form.addRow("Batch size ~ ", self.batch_spin)

        self.start_button = gui.button(
            self.sampling_box, self, "Start remote computation",
            callback=self.start, autoDefault=False,
            tooltip="Start/abort computation on the server")
        self.start_button.setEnabled(False)

        gui.checkBox(self.sampling_box, self, "auto_update",
                     "Periodically fetch model", callback=self.update_model)
        self.__timer = QTimer(self, interval=2000)
        self.__timer.timeout.connect(self.get_model)

        self.sampling_box.setVisible(remotely)

        # Decomposition
        self.decomposition_box = gui.radioButtons(
            self.controlArea, self,
            "decomposition_idx", [d.name for d in DECOMPOSITIONS],
            box="Decomposition", callback=self._update_decomposition
        )

        # Options
        self.options_box = gui.vBox(self.controlArea, "Options")
        self.normalize_box = gui.checkBox(
            self.options_box, self, "normalize",
            "Normalize data", callback=self._update_normalize
        )

        self.maxp_spin = gui.spin(
            self.options_box, self, "maxp", 1, MAX_COMPONENTS,
            label="Show only first", callback=self._setup_plot,
            keyboardTracking=False
        )

        self.controlArea.layout().addStretch()

        gui.auto_commit(self.controlArea, self, "auto_commit", "Apply",
                        checkbox_label="Apply automatically")

        self.plot = pg.PlotWidget(background="w")

        axis = self.plot.getAxis("bottom")
        axis.setLabel("Principal Components")
        axis = self.plot.getAxis("left")
        axis.setLabel("Proportion of variance")
        self.plot_horlabels = []
        self.plot_horlines = []

        self.plot.getViewBox().setMenuEnabled(False)
        self.plot.getViewBox().setMouseEnabled(False, False)
        self.plot.showGrid(True, True, alpha=0.5)
        self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0))

        self.mainArea.layout().addWidget(self.plot)
        self._update_normalize()

    def update_model(self):
        self.get_model()
        if self.auto_update and self.rpca and not self.rpca.ready():
            self.__timer.start(2000)
        else:
            self.__timer.stop()

    def update_buttons(self, sparse_data=False):
        if sparse_data:
            self.normalize = False

        buttons = self.decomposition_box.buttons
        for cls, button in zip(DECOMPOSITIONS, buttons):
            button.setDisabled(sparse_data and not cls.supports_sparse)

        if not buttons[self.decomposition_idx].isEnabled():
            # Set decomposition index to first sparse-enabled decomposition
            for i, cls in enumerate(DECOMPOSITIONS):
                if cls.supports_sparse:
                    self.decomposition_idx = i
                    break

        self._init_projector()

    def start(self):
        if 'Abort' in self.start_button.text():
            self.rpca.abort()
            self.__timer.stop()
            self.start_button.setText("Start remote computation")
        else:
            self.address = self.addresstext.text()
            with remote.server(self.address):
                from Orange.projection.pca import RemotePCA
                maxiter = (1e5 + self.data.approx_len()) / self.batch_size * 3
                self.rpca = RemotePCA(self.data, self.batch_size, int(maxiter))
            self.update_model()
            self.start_button.setText("Abort remote computation")

    @Inputs.data
    def set_data(self, data):
        self.closeContext()
        self.clear_messages()
        self.clear()
        self.start_button.setEnabled(False)
        self.information()
        self.data = None
        if isinstance(data, SqlTable):
            if data.approx_len() < AUTO_DL_LIMIT:
                data = Table(data)
            elif not remotely:
                self.information("Data has been sampled")
                data_sample = data.sample_time(1, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
            else:       # data was big and remote available
                self.sampling_box.setVisible(True)
                self.start_button.setText("Start remote computation")
                self.start_button.setEnabled(True)
        if not isinstance(data, SqlTable):
            self.sampling_box.setVisible(False)

        if isinstance(data, Table):
            if len(data.domain.attributes) == 0:
                self.Error.no_features()
                self.clear_outputs()
                return
            if len(data) == 0:
                self.Error.no_instances()
                self.clear_outputs()
                return

        self.openContext(data)
        sparse_data = data is not None and data.is_sparse()
        self.normalize_box.setDisabled(sparse_data)
        self.update_buttons(sparse_data=sparse_data)

        self.data = data
        self.fit()

    def fit(self):
        self.clear()
        self.Warning.trivial_components.clear()
        if self.data is None:
            return
        data = self.data
        self._pca_projector.preprocessors = \
            self._pca_preprocessors + ([Normalize()] if self.normalize else [])
        if not isinstance(data, SqlTable):
            pca = self._pca_projector(data)
            variance_ratio = pca.explained_variance_ratio_
            cumulative = numpy.cumsum(variance_ratio)

            if numpy.isfinite(cumulative[-1]):
                self.components_spin.setRange(0, len(cumulative))
                self._pca = pca
                self._variance_ratio = variance_ratio
                self._cumulative = cumulative
                self._setup_plot()
            else:
                self.Warning.trivial_components()

            self.unconditional_commit()

    def clear(self):
        self._pca = None
        self._transformed = None
        self._variance_ratio = None
        self._cumulative = None
        self._line = None
        self.plot_horlabels = []
        self.plot_horlines = []
        self.plot.clear()

    def clear_outputs(self):
        self.Outputs.transformed_data.send(None)
        self.Outputs.components.send(None)
        self.Outputs.pca.send(self._pca_projector)
        self.Outputs.preprocessor.send(None)

    def get_model(self):
        if self.rpca is None:
            return
        if self.rpca.ready():
            self.__timer.stop()
            self.start_button.setText("Restart (finished)")
        self._pca = self.rpca.get_state()
        if self._pca is None:
            return
        self._variance_ratio = self._pca.explained_variance_ratio_
        self._cumulative = numpy.cumsum(self._variance_ratio)
        self._setup_plot()
        self._transformed = None
        self.commit()

    def _setup_plot(self):
        self.plot.clear()
        if self._pca is None:
            return

        explained_ratio = self._variance_ratio
        explained = self._cumulative
        p = min(len(self._variance_ratio), self.maxp)

        self.plot.plot(numpy.arange(p), explained_ratio[:p],
                       pen=pg.mkPen(QColor(Qt.red), width=2),
                       antialias=True,
                       name="Variance")
        self.plot.plot(numpy.arange(p), explained[:p],
                       pen=pg.mkPen(QColor(Qt.darkYellow), width=2),
                       antialias=True,
                       name="Cumulative Variance")

        cutpos = self._nselected_components() - 1
        self._line = pg.InfiniteLine(
            angle=90, pos=cutpos, movable=True, bounds=(0, p - 1))
        self._line.setCursor(Qt.SizeHorCursor)
        self._line.setPen(pg.mkPen(QColor(Qt.black), width=2))
        self._line.sigPositionChanged.connect(self._on_cut_changed)
        self.plot.addItem(self._line)

        self.plot_horlines = (
            pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)),
            pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)))
        self.plot_horlabels = (
            pg.TextItem(color=QColor(Qt.black), anchor=(1, 0)),
            pg.TextItem(color=QColor(Qt.black), anchor=(1, 1)))
        for item in self.plot_horlabels + self.plot_horlines:
            self.plot.addItem(item)
        self._set_horline_pos()

        self.plot.setRange(xRange=(0.0, p - 1), yRange=(0.0, 1.0))
        self._update_axis()

    def _set_horline_pos(self):
        cutidx = self.ncomponents - 1
        for line, label, curve in zip(self.plot_horlines, self.plot_horlabels,
                                      (self._variance_ratio, self._cumulative)):
            y = curve[cutidx]
            line.setData([-1, cutidx], 2 * [y])
            label.setPos(cutidx, y)
            label.setPlainText("{:.3f}".format(y))

    def _on_cut_changed(self, line):
        # cut changed by means of a cut line over the scree plot.
        value = int(round(line.value()))
        self._line.setValue(value)
        current = self._nselected_components()
        components = value + 1

        if not (self.ncomponents == 0 and
                components == len(self._variance_ratio)):
            self.ncomponents = components

        self._set_horline_pos()

        if self._pca is not None:
            var = self._cumulative[components - 1]
            if numpy.isfinite(var):
                self.variance_covered = int(var * 100)

        if current != self._nselected_components():
            self._invalidate_selection()

    def _update_selection_component_spin(self):
        # cut changed by "ncomponents" spin.
        if self._pca is None:
            self._invalidate_selection()
            return

        if self.ncomponents == 0:
            # Special "All" value
            cut = len(self._variance_ratio)
        else:
            cut = self.ncomponents

        var = self._cumulative[cut - 1]
        if numpy.isfinite(var):
            self.variance_covered = int(var * 100)

        if numpy.floor(self._line.value()) + 1 != cut:
            self._line.setValue(cut - 1)

        self._invalidate_selection()

    def _update_selection_variance_spin(self):
        # cut changed by "max variance" spin.
        if self._pca is None:
            return

        cut = numpy.searchsorted(self._cumulative,
                                 self.variance_covered / 100.0) + 1
        cut = min(cut, len(self._cumulative))
        self.ncomponents = cut
        if numpy.floor(self._line.value()) + 1 != cut:
            self._line.setValue(cut - 1)
        self._invalidate_selection()

    def _update_normalize(self):
        self.fit()
        if self.data is None:
            self._invalidate_selection()

    def _init_projector(self):
        cls = DECOMPOSITIONS[self.decomposition_idx]
        self._pca_projector = cls(n_components=MAX_COMPONENTS)
        self._pca_projector.component = self.ncomponents
        self._pca_preprocessors = cls.preprocessors

    def _update_decomposition(self):
        self._init_projector()
        self._update_normalize()

    def _nselected_components(self):
        """Return the number of selected components."""
        if self._pca is None:
            return 0

        if self.ncomponents == 0:
            # Special "All" value
            max_comp = len(self._variance_ratio)
        else:
            max_comp = self.ncomponents

        var_max = self._cumulative[max_comp - 1]
        if var_max != numpy.floor(self.variance_covered / 100.0):
            cut = max_comp
            assert numpy.isfinite(var_max)
            self.variance_covered = int(var_max * 100)
        else:
            self.ncomponents = cut = numpy.searchsorted(
                self._cumulative, self.variance_covered / 100.0) + 1
        return cut

    def _invalidate_selection(self):
        self.commit()

    def _update_axis(self):
        p = min(len(self._variance_ratio), self.maxp)
        axis = self.plot.getAxis("bottom")
        d = max((p-1)//(self.axis_labels-1), 1)
        axis.setTicks([[(i, str(i+1)) for i in range(0, p, d)]])

    def commit(self):
        transformed = components = pp = None
        if self._pca is not None:
            if self._transformed is None:
                # Compute the full transform (MAX_COMPONENTS components) only once.
                self._transformed = self._pca(self.data)
            transformed = self._transformed

            domain = Domain(
                transformed.domain.attributes[:self.ncomponents],
                self.data.domain.class_vars,
                self.data.domain.metas
            )
            transformed = transformed.from_table(domain, transformed)
            # prevent caching new features by defining compute_value
            dom = Domain([ContinuousVariable(a.name, compute_value=lambda _: None)
                          for a in self._pca.orig_domain.attributes],
                         metas=[StringVariable(name='component')])
            metas = numpy.array([['PC{}'.format(i + 1)
                                  for i in range(self.ncomponents)]],
                                dtype=object).T
            components = Table(dom, self._pca.components_[:self.ncomponents],
                               metas=metas)
            components.name = 'components'

            pp = ApplyDomain(domain, "PCA")

        self._pca_projector.component = self.ncomponents
        self.Outputs.transformed_data.send(transformed)
        self.Outputs.components.send(components)
        self.Outputs.pca.send(self._pca_projector)
        self.Outputs.preprocessor.send(pp)

    def send_report(self):
        if self.data is None:
            return
        self.report_items((
            ("Decomposition", DECOMPOSITIONS[self.decomposition_idx].name),
            ("Normalize data", str(self.normalize)),
            ("Selected components", self.ncomponents),
            ("Explained variance", "{:.3f} %".format(self.variance_covered))
        ))
        self.report_plot()

    @classmethod
    def migrate_settings(cls, settings, version):
        if "variance_covered" in settings:
            # Due to the error in gh-1896 the variance_covered was persisted
            # as a NaN value, causing a TypeError in the widgets `__init__`.
            vc = settings["variance_covered"]
            if isinstance(vc, numbers.Real):
                if numpy.isfinite(vc):
                    vc = int(vc)
                else:
                    vc = 100
                settings["variance_covered"] = vc
        if settings.get("ncomponents", 0) > MAX_COMPONENTS:
            settings["ncomponents"] = MAX_COMPONENTS
示例#41
0
class CanvasView(QGraphicsView):
    """Canvas View handles the zooming.
    """
    def __init__(self, *args):
        QGraphicsView.__init__(self, *args)
        self.setAlignment(Qt.AlignTop | Qt.AlignLeft)

        self.__backgroundIcon = QIcon()

        self.__autoScroll = False
        self.__autoScrollMargin = 16
        self.__autoScrollTimer = QTimer(self)
        self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance)

        self.__scale = 10

    def setScene(self, scene):
        QGraphicsView.setScene(self, scene)
        self._ensureSceneRect(scene)

    def _ensureSceneRect(self, scene):
        r = scene.addRect(QRectF(0, 0, 400, 400))
        scene.sceneRect()
        scene.removeItem(r)

    def setAutoScrollMargin(self, margin):
        self.__autoScrollMargin = margin

    def autoScrollMargin(self):
        return self.__autoScrollMargin

    def setAutoScroll(self, enable):
        self.__autoScroll = enable

    def autoScroll(self):
        return self.__autoScroll

    def mousePressEvent(self, event):
        QGraphicsView.mousePressEvent(self, event)

    def mouseMoveEvent(self, event):
        if event.buttons() & Qt.LeftButton:
            if not self.__autoScrollTimer.isActive() and \
                    self.__shouldAutoScroll(event.pos()):
                self.__startAutoScroll()

        QGraphicsView.mouseMoveEvent(self, event)

    def mouseReleaseEvent(self, event):
        if event.button() & Qt.LeftButton:
            self.__stopAutoScroll()

        return QGraphicsView.mouseReleaseEvent(self, event)

    def reset_zoom(self):
        self.__set_zoom(10)

    def change_zoom(self, delta):
        self.__set_zoom(self.__scale + delta)

    def __set_zoom(self, scale):
        self.__scale = min(15, max(scale, 3))
        transform = QTransform()
        transform.scale(self.__scale / 10, self.__scale / 10)
        self.setTransform(transform)

    def wheelEvent(self, event: QWheelEvent):
        # use mouse position as anchor while zooming
        self.setTransformationAnchor(2)
        if event.modifiers() & Qt.ControlModifier \
                and event.buttons() == Qt.NoButton:
            delta = event.angleDelta().y()
            if QT_VERSION >= 0x050500 \
                    and event.source() != Qt.MouseEventNotSynthesized \
                    and abs(delta) < 50:
                self.change_zoom(delta / 10)
            else:
                self.change_zoom(copysign(1, delta))
        else:
            super().wheelEvent(event)

    def __shouldAutoScroll(self, pos):
        if self.__autoScroll:
            margin = self.__autoScrollMargin
            viewrect = self.contentsRect()
            rect = viewrect.adjusted(margin, margin, -margin, -margin)
            # only do auto scroll when on the viewport's margins
            return not rect.contains(pos) and viewrect.contains(pos)
        else:
            return False

    def __startAutoScroll(self):
        self.__autoScrollTimer.start(10)
        log.debug("Auto scroll timer started")

    def __stopAutoScroll(self):
        if self.__autoScrollTimer.isActive():
            self.__autoScrollTimer.stop()
            log.debug("Auto scroll timer stopped")

    def __autoScrollAdvance(self):
        """Advance the auto scroll
        """
        pos = QCursor.pos()
        pos = self.mapFromGlobal(pos)
        margin = self.__autoScrollMargin

        vvalue = self.verticalScrollBar().value()
        hvalue = self.horizontalScrollBar().value()

        vrect = QRect(0, 0, self.width(), self.height())

        # What should be the speed
        advance = 10

        # We only do auto scroll if the mouse is inside the view.
        if vrect.contains(pos):
            if pos.x() < vrect.left() + margin:
                self.horizontalScrollBar().setValue(hvalue - advance)
            if pos.y() < vrect.top() + margin:
                self.verticalScrollBar().setValue(vvalue - advance)
            if pos.x() > vrect.right() - margin:
                self.horizontalScrollBar().setValue(hvalue + advance)
            if pos.y() > vrect.bottom() - margin:
                self.verticalScrollBar().setValue(vvalue + advance)

            if self.verticalScrollBar().value() == vvalue and \
                    self.horizontalScrollBar().value() == hvalue:
                self.__stopAutoScroll()
        else:
            self.__stopAutoScroll()

        log.debug("Auto scroll advance")

    def setBackgroundIcon(self, icon):
        if not isinstance(icon, QIcon):
            raise TypeError("A QIcon expected.")

        if self.__backgroundIcon != icon:
            self.__backgroundIcon = icon
            self.viewport().update()

    def backgroundIcon(self):
        return QIcon(self.__backgroundIcon)

    def drawBackground(self, painter, rect):
        QGraphicsView.drawBackground(self, painter, rect)

        if not self.__backgroundIcon.isNull():
            painter.setClipRect(rect)
            vrect = QRect(QPoint(0, 0), self.viewport().size())
            vrect = self.mapToScene(vrect).boundingRect()

            pm = self.__backgroundIcon.pixmap(vrect.size().toSize().boundedTo(
                QSize(200, 200)))
            pmrect = QRect(QPoint(0, 0), pm.size())
            pmrect.moveCenter(vrect.center().toPoint())
            if rect.toRect().intersects(pmrect):
                painter.drawPixmap(pmrect, pm)
示例#42
0
class OWScatterPlot(OWWidget):
    """Scatterplot visualization with explorative analysis and intelligent
    data visualization enhancements."""

    name = 'Scatter Plot'
    description = "Interactive scatter plot visualization with " \
                  "intelligent data visualization enhancements."
    icon = "icons/ScatterPlot.svg"
    priority = 140

    class Inputs:
        data = Input("Data", Table, default=True)
        data_subset = Input("Data Subset", Table)
        features = Input("Features", AttributeList)

    class Outputs:
        selected_data = Output("Selected Data", Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table)
        features = Output("Features", Table, dynamic=False)

    settingsHandler = DomainContextHandler()

    auto_send_selection = Setting(True)
    auto_sample = Setting(True)
    toolbar_selection = Setting(0)

    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)
    selection = Setting(None, schema_only=True)

    graph = SettingProvider(OWScatterPlotGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Information(OWWidget.Information):
        sampled_sql = Msg("Large SQL table; showing a sample.")

    def __init__(self):
        super().__init__()

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWScatterPlotGraph(self, box, "ScatterPlot")
        box.layout().addWidget(self.graph.plot_widget)
        plot = self.graph.plot_widget

        axispen = QPen(self.palette().color(QPalette.Text))
        axis = plot.getAxis("bottom")
        axis.setPen(axispen)

        axis = plot.getAxis("left")
        axis.setPen(axispen)

        self.data = None  # Orange.data.Table
        self.subset_data = None  # Orange.data.Table
        self.data_metas_X = None  # self.data, where primitive metas are moved to X
        self.sql_data = None  # Orange.data.sql.table.SqlTable
        self.attribute_selection_list = None  # list of Orange.data.Variable
        self.__timer = QTimer(self, interval=1200)
        self.__timer.timeout.connect(self.add_data)

        common_options = dict(
            labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True,
            valueType=str)
        box = gui.vBox(self.controlArea, "Axis Data")
        dmod = DomainModel
        self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE)
        self.cb_attr_x = gui.comboBox(
            box, self, "attr_x", label="Axis x:", callback=self.update_attr,
            model=self.xy_model, **common_options)
        self.cb_attr_y = gui.comboBox(
            box, self, "attr_y", label="Axis y:", callback=self.update_attr,
            model=self.xy_model, **common_options)

        vizrank_box = gui.hBox(box)
        gui.separator(vizrank_box, width=common_options["labelWidth"])
        self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank(
            vizrank_box, self, "Find Informative Projections", self.set_attr)

        gui.separator(box)

        gui.valueSlider(
            box, self, value='graph.jitter_size', label='Jittering: ',
            values=self.jitter_sizes, callback=self.reset_graph_data,
            labelFormat=lambda x:
            "None" if x == 0 else ("%.1f %%" if x < 1 else "%d %%") % x)
        gui.checkBox(
            gui.indentedBox(box), self, 'graph.jitter_continuous',
            'Jitter numeric values', callback=self.reset_graph_data)

        self.sampling = gui.auto_commit(
            self.controlArea, self, "auto_sample", "Sample", box="Sampling",
            callback=self.switch_sampling, commit=lambda: self.add_data(1))
        self.sampling.setVisible(False)

        g = self.graph.gui
        g.point_properties_box(self.controlArea)
        self.models = [self.xy_model] + g.points_models

        box = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([g.ShowLegend, g.ShowGridLines], box)
        gui.checkBox(
            box, self, value='graph.tooltip_shows_all',
            label='Show all data on mouse hover')
        self.cb_class_density = gui.checkBox(
            box, self, value='graph.class_density', label='Show class density',
            callback=self.update_density)
        self.cb_reg_line = gui.checkBox(
            box, self, value='graph.show_reg_line',
            label='Show regression line', callback=self.update_regression_line)
        gui.checkBox(
            box, self, 'graph.label_only_selected',
            'Label only selected points', callback=self.graph.update_labels)

        self.zoom_select_toolbar = g.zoom_select_toolbar(
            gui.vBox(self.controlArea, "Zoom/Select"), nomargin=True,
            buttons=[g.StateButtonsBegin, g.SimpleSelect, g.Pan, g.Zoom,
                     g.StateButtonsEnd, g.ZoomReset]
        )
        buttons = self.zoom_select_toolbar.buttons
        buttons[g.Zoom].clicked.connect(self.graph.zoom_button_clicked)
        buttons[g.Pan].clicked.connect(self.graph.pan_button_clicked)
        buttons[g.SimpleSelect].clicked.connect(self.graph.select_button_clicked)
        buttons[g.ZoomReset].clicked.connect(self.graph.reset_button_clicked)
        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        p = self.graph.plot_widget.palette()
        self.graph.set_palette(p)

        gui.auto_commit(self.controlArea, self, "auto_send_selection",
                        "Send Selection", "Send Automatically")

        def zoom(s):
            """Zoom in/out by factor `s`."""
            viewbox = plot.getViewBox()
            # scaleBy scales the view's bounds (the axis range)
            viewbox.scaleBy((1 / s, 1 / s))

        def fit_to_view():
            viewbox = plot.getViewBox()
            viewbox.autoRange()

        zoom_in = QAction(
            "Zoom in", self, triggered=lambda: zoom(1.25)
        )
        zoom_in.setShortcuts([QKeySequence(QKeySequence.ZoomIn),
                              QKeySequence(self.tr("Ctrl+="))])
        zoom_out = QAction(
            "Zoom out", self, shortcut=QKeySequence.ZoomOut,
            triggered=lambda: zoom(1 / 1.25)
        )
        zoom_fit = QAction(
            "Fit in view", self,
            shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0),
            triggered=fit_to_view
        )
        self.addActions([zoom_in, zoom_out, zoom_fit])

    def keyPressEvent(self, event):
        super().keyPressEvent(event)
        self.graph.update_tooltip(event.modifiers())

    def keyReleaseEvent(self, event):
        super().keyReleaseEvent(event)
        self.graph.update_tooltip(event.modifiers())

    # def settingsFromWidgetCallback(self, handler, context):
    #     context.selectionPolygons = []
    #     for curve in self.graph.selectionCurveList:
    #         xs = [curve.x(i) for i in range(curve.dataSize())]
    #         ys = [curve.y(i) for i in range(curve.dataSize())]
    #         context.selectionPolygons.append((xs, ys))

    # def settingsToWidgetCallback(self, handler, context):
    #     selections = getattr(context, "selectionPolygons", [])
    #     for (xs, ys) in selections:
    #         c = SelectionCurve("")
    #         c.setData(xs,ys)
    #         c.attach(self.graph)
    #         self.graph.selectionCurveList.append(c)

    def reset_graph_data(self, *_):
        if self.data is not None:
            self.graph.rescale_data()
            self.update_graph()

    @Inputs.data
    def set_data(self, data):
        self.clear_messages()
        self.Information.sampled_sql.clear()
        self.__timer.stop()
        self.sampling.setVisible(False)
        self.sql_data = None
        if isinstance(data, SqlTable):
            if data.approx_len() < 4000:
                data = Table(data)
            else:
                self.Information.sampled_sql()
                self.sql_data = data
                data_sample = data.sample_time(0.8, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
                self.sampling.setVisible(True)
                if self.auto_sample:
                    self.__timer.start()

        if data is not None and (len(data) == 0 or len(data.domain) == 0):
            data = None
        if self.data and data and self.data.checksum() == data.checksum():
            return

        self.closeContext()
        same_domain = (self.data and data and
                       data.domain.checksum() == self.data.domain.checksum())
        self.data = data
        self.data_metas_X = self.move_primitive_metas_to_X(data)

        if not same_domain:
            self.init_attr_values()
        self.vizrank.initialize()
        self.vizrank.attrs = self.data.domain.attributes if self.data is not None else []
        self.vizrank_button.setEnabled(
            self.data is not None and not self.data.is_sparse() and
            self.data.domain.class_var is not None and
            len(self.data.domain.attributes) > 1 and len(self.data) > 1)
        if self.data is not None and self.data.domain.class_var is None \
            and len(self.data.domain.attributes) > 1 and len(self.data) > 1:
            self.vizrank_button.setToolTip(
                "Data with a class variable is required.")
        else:
            self.vizrank_button.setToolTip("")
        self.openContext(self.data)

        def findvar(name, iterable):
            """Find a Orange.data.Variable in `iterable` by name"""
            for el in iterable:
                if isinstance(el, Orange.data.Variable) and el.name == name:
                    return el
            return None

        # handle restored settings from  < 3.3.9 when attr_* were stored
        # by name
        if isinstance(self.attr_x, str):
            self.attr_x = findvar(self.attr_x, self.xy_model)
        if isinstance(self.attr_y, str):
            self.attr_y = findvar(self.attr_y, self.xy_model)
        if isinstance(self.graph.attr_label, str):
            self.graph.attr_label = findvar(
                self.graph.attr_label, self.graph.gui.label_model)
        if isinstance(self.graph.attr_color, str):
            self.graph.attr_color = findvar(
                self.graph.attr_color, self.graph.gui.color_model)
        if isinstance(self.graph.attr_shape, str):
            self.graph.attr_shape = findvar(
                self.graph.attr_shape, self.graph.gui.shape_model)
        if isinstance(self.graph.attr_size, str):
            self.graph.attr_size = findvar(
                self.graph.attr_size, self.graph.gui.size_model)

    def add_data(self, time=0.4):
        if self.data and len(self.data) > 2000:
            return self.__timer.stop()
        data_sample = self.sql_data.sample_time(time, no_cache=True)
        if data_sample:
            data_sample.download_data(2000, partial=True)
            data = Table(data_sample)
            self.data = Table.concatenate((self.data, data), axis=0)
            self.data_metas_X = self.move_primitive_metas_to_X(self.data)
            self.handleNewSignals()

    def switch_sampling(self):
        self.__timer.stop()
        if self.auto_sample and self.sql_data:
            self.add_data()
            self.__timer.start()

    def move_primitive_metas_to_X(self, data):
        if data is not None:
            new_attrs = [a for a in data.domain.attributes + data.domain.metas
                         if a.is_primitive()]
            new_metas = [m for m in data.domain.metas if not m.is_primitive()]
            new_domain = Domain(new_attrs, data.domain.class_vars, new_metas)
            data = data.transform(new_domain)
        return data

    @Inputs.data_subset
    def set_subset_data(self, subset_data):
        self.warning()
        if isinstance(subset_data, SqlTable):
            if subset_data.approx_len() < AUTO_DL_LIMIT:
                subset_data = Table(subset_data)
            else:
                self.warning("Data subset does not support large Sql tables")
                subset_data = None
        self.subset_data = self.move_primitive_metas_to_X(subset_data)
        self.controls.graph.alpha_value.setEnabled(subset_data is None)

    # called when all signals are received, so the graph is updated only once
    def handleNewSignals(self):
        self.graph.new_data(self.sparse_to_dense(self.data_metas_X),
                            self.sparse_to_dense(self.subset_data))
        if self.attribute_selection_list and self.graph.domain and \
                all(attr in self.graph.domain
                        for attr in self.attribute_selection_list):
            self.attr_x = self.attribute_selection_list[0]
            self.attr_y = self.attribute_selection_list[1]
        self.attribute_selection_list = None
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line())
        self.apply_selection()
        self.unconditional_commit()

    def prepare_data(self):
        """
        Only when dealing with sparse matrices.
        GH-2152
        """
        self.graph.new_data(self.sparse_to_dense(self.data_metas_X),
                            self.sparse_to_dense(self.subset_data),
                            new=False)

    def sparse_to_dense(self, input_data=None):
        if input_data is None or not input_data.is_sparse():
            return input_data
        keys = []
        attrs = {self.attr_x,
                 self.attr_y,
                 self.graph.attr_color,
                 self.graph.attr_shape,
                 self.graph.attr_size,
                 self.graph.attr_label}
        for i, attr in enumerate(input_data.domain):
            if attr in attrs:
                keys.append(i)
        new_domain = input_data.domain.select_columns(keys)
        dmx = input_data.transform(new_domain)
        dmx.X = dmx.X.toarray()
        # TODO: remove once we make sure Y is always dense.
        if sp.issparse(dmx.Y):
            dmx.Y = dmx.Y.toarray()
        return dmx

    def apply_selection(self):
        """Apply selection saved in workflow."""
        if self.data is not None and self.selection is not None:
            self.graph.selection = np.zeros(len(self.data), dtype=np.uint8)
            self.selection = [x for x in self.selection if x < len(self.data)]
            self.graph.selection[self.selection] = 1
            self.graph.update_colors(keep_colors=True)

    @Inputs.features
    def set_shown_attributes(self, attributes):
        if attributes and len(attributes) >= 2:
            self.attribute_selection_list = attributes[:2]
        else:
            self.attribute_selection_list = None

    def get_shown_attributes(self):
        return self.attr_x, self.attr_y

    def init_attr_values(self):
        domain = self.data and self.data.domain
        for model in self.models:
            model.set_domain(domain)
        self.attr_x = self.xy_model[0] if self.xy_model else None
        self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \
            else self.attr_x
        self.graph.attr_color = domain and self.data.domain.class_var or None
        self.graph.attr_shape = None
        self.graph.attr_size = None
        self.graph.attr_label = None

    def set_attr(self, attr_x, attr_y):
        self.attr_x, self.attr_y = attr_x, attr_y
        self.update_attr()

    def update_attr(self):
        self.prepare_data()
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line())
        self.send_features()

    def update_colors(self):
        self.prepare_data()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_regression_line(self):
        self.update_graph(reset_view=False)

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.attr_x, self.attr_y, reset_view)

    def selection_changed(self):
        self.send_data()

    @staticmethod
    def create_groups_table(data, selection):
        if data is None:
            return None
        names = [var.name for var in data.domain.variables + data.domain.metas]
        name = get_next_name(names, "Selection group")
        metas = data.domain.metas + (
            DiscreteVariable(
                name,
                ["Unselected"] + ["G{}".format(i + 1)
                                  for i in range(np.max(selection))]),
        )
        domain = Domain(data.domain.attributes, data.domain.class_vars, metas)
        table = data.transform(domain)
        table.metas[:, len(data.domain.metas):] = \
            selection.reshape(len(data), 1)
        return table

    def send_data(self):
        selected = None
        selection = None
        # TODO: Implement selection for sql data
        graph = self.graph
        if isinstance(self.data, SqlTable):
            selected = self.data
        elif self.data is not None:
            selection = graph.get_selection()
            if len(selection) > 0:
                selected = self.data[selection]
        if graph.selection is not None and np.max(graph.selection) > 1:
            annotated = self.create_groups_table(self.data, graph.selection)
        else:
            annotated = create_annotated_table(self.data, selection)
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(annotated)

        # Store current selection in a setting that is stored in workflow
        if self.selection is not None and len(selection):
            self.selection = list(selection)

    def send_features(self):
        features = None
        if self.attr_x or self.attr_y:
            dom = Domain([], metas=(StringVariable(name="feature"),))
            features = Table(dom, [[self.attr_x], [self.attr_y]])
            features.name = "Features"
        self.Outputs.features.send(features)

    def commit(self):
        self.send_data()
        self.send_features()

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)

    def send_report(self):
        if self.data is None:
            return
        def name(var):
            return var and var.name
        caption = report.render_items_vert((
            ("Color", name(self.graph.attr_color)),
            ("Label", name(self.graph.attr_label)),
            ("Shape", name(self.graph.attr_shape)),
            ("Size", name(self.graph.attr_size)),
            ("Jittering", (self.attr_x.is_discrete or
                           self.attr_y.is_discrete or
                           self.graph.jitter_continuous) and
             self.graph.jitter_size)))
        self.report_plot()
        if caption:
            self.report_caption(caption)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self.graph.plot_widget.getViewBox().deleteLater()
        self.graph.plot_widget.clear()
示例#43
0
class CanvasView(QGraphicsView):
    """Canvas View handles the zooming.
    """

    def __init__(self, *args):
        QGraphicsView.__init__(self, *args)
        self.setAlignment(Qt.AlignTop | Qt.AlignLeft)

        self.__backgroundIcon = QIcon()

        self.__autoScroll = False
        self.__autoScrollMargin = 16
        self.__autoScrollTimer = QTimer(self)
        self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance)

    def setScene(self, scene):
        QGraphicsView.setScene(self, scene)
        self._ensureSceneRect(scene)

    def _ensureSceneRect(self, scene):
        r = scene.addRect(QRectF(0, 0, 400, 400))
        scene.sceneRect()
        scene.removeItem(r)

    def setAutoScrollMargin(self, margin):
        self.__autoScrollMargin = margin

    def autoScrollMargin(self):
        return self.__autoScrollMargin

    def setAutoScroll(self, enable):
        self.__autoScroll = enable

    def autoScroll(self):
        return self.__autoScroll

    def mousePressEvent(self, event):
        QGraphicsView.mousePressEvent(self, event)

    def mouseMoveEvent(self, event):
        if event.buttons() & Qt.LeftButton:
            if not self.__autoScrollTimer.isActive() and \
                    self.__shouldAutoScroll(event.pos()):
                self.__startAutoScroll()

        QGraphicsView.mouseMoveEvent(self, event)

    def mouseReleaseEvent(self, event):
        if event.button() & Qt.LeftButton:
            self.__stopAutoScroll()

        return QGraphicsView.mouseReleaseEvent(self, event)

    def __shouldAutoScroll(self, pos):
        if self.__autoScroll:
            margin = self.__autoScrollMargin
            viewrect = self.contentsRect()
            rect = viewrect.adjusted(margin, margin, -margin, -margin)
            # only do auto scroll when on the viewport's margins
            return not rect.contains(pos) and viewrect.contains(pos)
        else:
            return False

    def __startAutoScroll(self):
        self.__autoScrollTimer.start(10)
        log.debug("Auto scroll timer started")

    def __stopAutoScroll(self):
        if self.__autoScrollTimer.isActive():
            self.__autoScrollTimer.stop()
            log.debug("Auto scroll timer stopped")

    def __autoScrollAdvance(self):
        """Advance the auto scroll
        """
        pos = QCursor.pos()
        pos = self.mapFromGlobal(pos)
        margin = self.__autoScrollMargin

        vvalue = self.verticalScrollBar().value()
        hvalue = self.horizontalScrollBar().value()

        vrect = QRect(0, 0, self.width(), self.height())

        # What should be the speed
        advance = 10

        # We only do auto scroll if the mouse is inside the view.
        if vrect.contains(pos):
            if pos.x() < vrect.left() + margin:
                self.horizontalScrollBar().setValue(hvalue - advance)
            if pos.y() < vrect.top() + margin:
                self.verticalScrollBar().setValue(vvalue - advance)
            if pos.x() > vrect.right() - margin:
                self.horizontalScrollBar().setValue(hvalue + advance)
            if pos.y() > vrect.bottom() - margin:
                self.verticalScrollBar().setValue(vvalue + advance)

            if self.verticalScrollBar().value() == vvalue and \
                    self.horizontalScrollBar().value() == hvalue:
                self.__stopAutoScroll()
        else:
            self.__stopAutoScroll()

        log.debug("Auto scroll advance")

    def setBackgroundIcon(self, icon):
        if not isinstance(icon, QIcon):
            raise TypeError("A QIcon expected.")

        if self.__backgroundIcon != icon:
            self.__backgroundIcon = icon
            self.viewport().update()

    def backgroundIcon(self):
        return QIcon(self.__backgroundIcon)

    def drawBackground(self, painter, rect):
        QGraphicsView.drawBackground(self, painter, rect)

        if not self.__backgroundIcon.isNull():
            painter.setClipRect(rect)
            vrect = QRect(QPoint(0, 0), self.viewport().size())
            vrect = self.mapToScene(vrect).boundingRect()

            pm = self.__backgroundIcon.pixmap(
                vrect.size().toSize().boundedTo(QSize(200, 200))
            )
            pmrect = QRect(QPoint(0, 0), pm.size())
            pmrect.moveCenter(vrect.center().toPoint())
            if rect.toRect().intersects(pmrect):
                painter.drawPixmap(pmrect, pm)
示例#44
0
文件: owmds.py 项目: astaric/orange3
class OWMDS(OWWidget):
    name = "MDS"
    description = "Two-dimensional data projection by multidimensional " \
                  "scaling constructed from a distance matrix."
    icon = "icons/MDS.svg"

    class Inputs:
        data = Input("Data", Orange.data.Table, default=True)
        distances = Input("Distances", Orange.misc.DistMatrix)
        data_subset = Input("Data Subset", Orange.data.Table)

    class Outputs:
        selected_data = Output("Selected Data", Orange.data.Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table)

    settings_version = 2

    #: Initialization type
    PCA, Random = 0, 1

    #: Refresh rate
    RefreshRate = [
        ("Every iteration", 1),
        ("Every 5 steps", 5),
        ("Every 10 steps", 10),
        ("Every 25 steps", 25),
        ("Every 50 steps", 50),
        ("None", -1)
    ]

    #: Runtime state
    Running, Finished, Waiting = 1, 2, 3

    settingsHandler = settings.DomainContextHandler()

    max_iter = settings.Setting(300)
    initialization = settings.Setting(PCA)
    refresh_rate = settings.Setting(3)

    # output embedding role.
    NoRole, AttrRole, AddAttrRole, MetaRole = 0, 1, 2, 3

    auto_commit = settings.Setting(True)

    selection_indices = settings.Setting(None, schema_only=True)

    #: Percentage of all pairs displayed (ranges from 0 to 20)
    connected_pairs = settings.Setting(5)

    legend_anchor = settings.Setting(((1, 0), (1, 0)))

    graph = SettingProvider(OWMDSGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Error(OWWidget.Error):
        not_enough_rows = Msg("Input data needs at least 2 rows")
        matrix_too_small = Msg("Input matrix must be at least 2x2")
        no_attributes = Msg("Data has no attributes")
        mismatching_dimensions = \
            Msg("Data and distances dimensions do not match.")
        out_of_memory = Msg("Out of memory")
        optimization_error = Msg("Error during optimization\n{}")

    def __init__(self):
        super().__init__()
        #: Input dissimilarity matrix
        self.matrix = None  # type: Optional[Orange.misc.DistMatrix]
        #: Effective data used for plot styling/annotations. Can be from the
        #: input signal (`self.signal_data`) or the input matrix
        #: (`self.matrix.data`)
        self.data = None  # type: Optional[Orange.data.Table]
        #: Input subset data table
        self.subset_data = None  # type: Optional[Orange.data.Table]
        #: Data table from the `self.matrix.row_items` (if present)
        self.matrix_data = None  # type: Optional[Orange.data.Table]
        #: Input data table
        self.signal_data = None

        self._similar_pairs = None
        self._subset_mask = None  # type: Optional[np.ndarray]
        self._invalidated = False
        self.effective_matrix = None
        self._curve = None

        self.variable_x = ContinuousVariable("mds-x")
        self.variable_y = ContinuousVariable("mds-y")

        self.__update_loop = None
        # timer for scheduling updates
        self.__timer = QTimer(self, singleShot=True, interval=0)
        self.__timer.timeout.connect(self.__next_step)
        self.__state = OWMDS.Waiting
        self.__in_next_step = False
        self.__draw_similar_pairs = False

        box = gui.vBox(self.controlArea, "MDS Optimization")
        form = QFormLayout(
            labelAlignment=Qt.AlignLeft,
            formAlignment=Qt.AlignLeft,
            fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow,
            verticalSpacing=10
        )

        form.addRow(
            "Max iterations:",
            gui.spin(box, self, "max_iter", 10, 10 ** 4, step=1))

        form.addRow(
            "Initialization:",
            gui.radioButtons(box, self, "initialization", btnLabels=("PCA (Torgerson)", "Random"),
                             callback=self.__invalidate_embedding))

        box.layout().addLayout(form)
        form.addRow(
            "Refresh:",
            gui.comboBox(box, self, "refresh_rate", items=[t for t, _ in OWMDS.RefreshRate],
                         callback=self.__invalidate_refresh))
        gui.separator(box, 10)
        self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run)

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWMDSGraph(self, box, "MDSGraph", view_box=MDSInteractiveViewBox)
        box.layout().addWidget(self.graph.plot_widget)
        self.plot = self.graph.plot_widget

        g = self.graph.gui
        box = g.point_properties_box(self.controlArea)
        self.models = g.points_models
        self.size_model = self.models[2]
        self.label_model = self.models[3]
        self.size_model.order = \
            self.size_model.order[:1] + ("Stress", ) + self.models[2].order[1:]

        gui.hSlider(box, self, "connected_pairs", label="Show similar pairs:", minValue=0,
                    maxValue=20, createLabel=False, callback=self._on_connected_changed)
        g.add_widgets(ids=[g.JitterSizeSlider], widget=box)

        box = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([g.ShowLegend,
                       g.ToolTipShowsAll,
                       g.ClassDensity,
                       g.LabelOnlySelected], box)

        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        palette = self.graph.plot_widget.palette()
        self.graph.set_palette(palette)

        gui.rubber(self.controlArea)

        self.graph.box_zoom_select(self.controlArea)

        gui.auto_commit(box, self, "auto_commit", "Send Selected",
                        checkbox_label="Send selected automatically",
                        box=None)

        self.plot.getPlotItem().hideButtons()
        self.plot.setRenderHint(QPainter.Antialiasing)

        self.graph.jitter_continuous = True
        self._initialize()

    def reset_graph_data(self, *_):
        if self.data is not None:
            self.graph.rescale_data()
            self.update_graph()
        self.connect_pairs()

    def update_colors(self):
        pass

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_regression_line(self):
        self.update_graph(reset_view=False)

    def init_attr_values(self):
        self.graph.set_domain(self.data)

    def prepare_data(self):
        pass

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.variable_x, self.variable_y, True)

    def selection_changed(self):
        self.commit()

    @Inputs.data
    @check_sql_input
    def set_data(self, data):
        """Set the input dataset.

        Parameters
        ----------
        data : Optional[Orange.data.Table]
        """
        if data is not None and len(data) < 2:
            self.Error.not_enough_rows()
            data = None
        else:
            self.Error.not_enough_rows.clear()

        self.signal_data = data

        if self.matrix is not None and data is not None and len(self.matrix) == len(data):
            self.closeContext()
            self.data = data
            self.init_attr_values()
            self.openContext(data)
        else:
            self._invalidated = True

    @Inputs.distances
    def set_disimilarity(self, matrix):
        """Set the dissimilarity (distance) matrix.

        Parameters
        ----------
        matrix : Optional[Orange.misc.DistMatrix]
        """

        if matrix is not None and len(matrix) < 2:
            self.Error.matrix_too_small()
            matrix = None
        else:
            self.Error.matrix_too_small.clear()

        self.matrix = matrix
        self.matrix_data = matrix.row_items if matrix is not None else None
        self._invalidated = True

    @Inputs.data_subset
    def set_subset_data(self, subset_data):
        """Set a subset of `data` input to highlight in the plot.

        Parameters
        ----------
        subset_data: Optional[Orange.data.Table]
        """
        self.subset_data = subset_data
        # invalidate the pen/brush when the subset is changed
        self._subset_mask = None  # type: Optional[np.ndarray]
        self.controls.graph.alpha_value.setEnabled(subset_data is None)

    def _clear(self):
        self._similar_pairs = None

        self.__set_update_loop(None)
        self.__state = OWMDS.Waiting

    def _clear_plot(self):
        self.graph.plot_widget.clear()

    def _initialize(self):
        # clear everything
        self.closeContext()
        self._clear()
        self.Error.clear()
        self.data = None
        self.effective_matrix = None
        self.embedding = None
        self.init_attr_values()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self._update_plot()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is self.matrix_data:
                self.data = None
        elif self.data.domain.attributes:
            preprocessed_data = Orange.projection.MDS().preprocess(self.data)
            self.effective_matrix = Orange.distance.Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            return

        self.init_attr_values()
        self.openContext(self.data)

    def _toggle_run(self):
        if self.__state == OWMDS.Running:
            self.stop()
            self._invalidate_output()
        else:
            self.start()

    def start(self):
        if self.__state == OWMDS.Running:
            return
        elif self.__state == OWMDS.Finished:
            # Resume/continue from a previous run
            self.__start()
        elif self.__state == OWMDS.Waiting and \
                self.effective_matrix is not None:
            self.__start()

    def stop(self):
        if self.__state == OWMDS.Running:
            self.__set_update_loop(None)

    def __start(self):
        self.__draw_similar_pairs = False
        X = self.effective_matrix
        init = self.embedding

        # number of iterations per single GUI update step
        _, step_size = OWMDS.RefreshRate[self.refresh_rate]
        if step_size == -1:
            step_size = self.max_iter

        def update_loop(X, max_iter, step, init):
            """
            return an iterator over successive improved MDS point embeddings.
            """
            # NOTE: this code MUST NOT call into QApplication.processEvents
            done = False
            iterations_done = 0
            oldstress = np.finfo(np.float).max
            init_type = "PCA" if self.initialization == OWMDS.PCA else "random"

            while not done:
                step_iter = min(max_iter - iterations_done, step)
                mds = Orange.projection.MDS(
                    dissimilarity="precomputed", n_components=2,
                    n_init=1, max_iter=step_iter,
                    init_type=init_type, init_data=init)

                mdsfit = mds(X)
                iterations_done += step_iter

                embedding, stress = mdsfit.embedding_, mdsfit.stress_
                stress /= np.sqrt(np.sum(embedding ** 2, axis=1)).sum()

                if iterations_done >= max_iter:
                    done = True
                elif (oldstress - stress) < mds.params["eps"]:
                    done = True
                init = embedding
                oldstress = stress

                yield embedding, mdsfit.stress_, iterations_done / max_iter

        self.__set_update_loop(update_loop(X, self.max_iter, step_size, init))
        self.progressBarInit(processEvents=None)

    def __set_update_loop(self, loop):
        """
        Set the update `loop` coroutine.

        The `loop` is a generator yielding `(embedding, stress, progress)`
        tuples where `embedding` is a `(N, 2) ndarray` of current updated
        MDS points, `stress` is the current stress and `progress` a float
        ratio (0 <= progress <= 1)

        If an existing update coroutine loop is already in place it is
        interrupted (i.e. closed).

        .. note::
            The `loop` must not explicitly yield control flow to the event
            loop (i.e. call `QApplication.processEvents`)

        """
        if self.__update_loop is not None:
            self.__update_loop.close()
            self.__update_loop = None
            self.progressBarFinished(processEvents=None)

        self.__update_loop = loop

        if loop is not None:
            self.setBlocking(True)
            self.progressBarInit(processEvents=None)
            self.setStatusMessage("Running")
            self.runbutton.setText("Stop")
            self.__state = OWMDS.Running
            self.__timer.start()
        else:
            self.setBlocking(False)
            self.setStatusMessage("")
            self.runbutton.setText("Start")
            self.__state = OWMDS.Finished
            self.__timer.stop()

    def __next_step(self):
        if self.__update_loop is None:
            return

        assert not self.__in_next_step
        self.__in_next_step = True

        loop = self.__update_loop
        self.Error.out_of_memory.clear()
        try:
            embedding, _, progress = next(self.__update_loop)
            assert self.__update_loop is loop
        except StopIteration:
            self.__set_update_loop(None)
            self.unconditional_commit()
            self.__draw_similar_pairs = True
            self._update_plot()
        except MemoryError:
            self.Error.out_of_memory()
            self.__set_update_loop(None)
            self.__draw_similar_pairs = True
        except Exception as exc:
            self.Error.optimization_error(str(exc))
            self.__set_update_loop(None)
            self.__draw_similar_pairs = True
        else:
            self.progressBarSet(100.0 * progress, processEvents=None)
            self.embedding = embedding
            self._update_plot()
            # schedule next update
            self.__timer.start()

        self.__in_next_step = False

    def __invalidate_embedding(self):
        # reset/invalidate the MDS embedding, to the default initialization
        # (Random or PCA), restarting the optimization if necessary.
        if self.embedding is None:
            return
        state = self.__state
        if self.__update_loop is not None:
            self.__set_update_loop(None)

        X = self.effective_matrix

        if self.initialization == OWMDS.PCA:
            self.embedding = torgerson(X)
        else:
            self.embedding = np.random.rand(len(X), 2)

        self._update_plot()

        # restart the optimization if it was interrupted.
        if state == OWMDS.Running:
            self.__start()

    def __invalidate_refresh(self):
        state = self.__state

        if self.__update_loop is not None:
            self.__set_update_loop(None)

        # restart the optimization if it was interrupted.
        # TODO: decrease the max iteration count by the already
        # completed iterations count.
        if state == OWMDS.Running:
            self.__start()

    def handleNewSignals(self):
        if self._invalidated:
            self.__draw_similar_pairs = False
            self._invalidated = False
            self._initialize()
            self.start()

        if self._subset_mask is None and self.subset_data is not None and \
                self.data is not None:
            self._subset_mask = np.in1d(self.data.ids, self.subset_data.ids)

        self._update_plot(new=True)
        self.unconditional_commit()

    def _invalidate_output(self):
        self.commit()

    def _on_connected_changed(self):
        self._similar_pairs = None
        self.connect_pairs()

    def _update_plot(self, new=False):
        self._clear_plot()

        if self.embedding is not None:
            self._setup_plot(new=new)
        else:
            self.graph.new_data(None)

    def connect_pairs(self):
        if self._curve:
            self.graph.plot_widget.removeItem(self._curve)
        if not (self.connected_pairs and self.__draw_similar_pairs):
            return
        emb_x, emb_y = self.graph.get_xy_data_positions(
            self.variable_x, self.variable_y, self.graph.valid_data)
        if self._similar_pairs is None:
            # This code requires storing lower triangle of X (n x n / 2
            # doubles), n x n / 2 * 2 indices to X, n x n / 2 indices for
            # argsort result. If this becomes an issue, it can be reduced to
            # n x n argsort indices by argsorting the entire X. Then we
            # take the first n + 2 * p indices. We compute their coordinates
            # i, j in the original matrix. We keep those for which i < j.
            # n + 2 * p will suffice to exclude the diagonal (i = j). If the
            # number of those for which i < j is smaller than p, we instead
            # take i > j. Among those that remain, we take the first p.
            # Assuming that MDS can't show so many points that memory could
            # become an issue, I preferred using simpler code.
            m = self.effective_matrix
            n = len(m)
            p = min(n * (n - 1) // 2 * self.connected_pairs // 100,
                    MAX_N_PAIRS * self.connected_pairs // 20)
            indcs = np.triu_indices(n, 1)
            sorted = np.argsort(m[indcs])[:p]
            self._similar_pairs = fpairs = np.empty(2 * p, dtype=int)
            fpairs[::2] = indcs[0][sorted]
            fpairs[1::2] = indcs[1][sorted]
        emb_x_pairs = emb_x[self._similar_pairs].reshape((-1, 2))
        emb_y_pairs = emb_y[self._similar_pairs].reshape((-1, 2))

        # Filter out zero distance lines (in embedding coords).
        # Null (zero length) line causes bad rendering artifacts
        # in Qt when using the raster graphics system (see gh-issue: 1668).
        (x1, x2), (y1, y2) = (emb_x_pairs.T, emb_y_pairs.T)
        pairs_mask = ~(np.isclose(x1, x2) & np.isclose(y1, y2))
        emb_x_pairs = emb_x_pairs[pairs_mask, :]
        emb_y_pairs = emb_y_pairs[pairs_mask, :]
        self._curve = pg.PlotCurveItem(
            emb_x_pairs.ravel(), emb_y_pairs.ravel(),
            pen=pg.mkPen(0.8, width=2, cosmetic=True),
            connect="pairs", antialias=True)
        self.graph.plot_widget.addItem(self._curve)

    def _setup_plot(self, new=False):
        emb_x, emb_y = self.embedding[:, 0], self.embedding[:, 1]
        coords = np.vstack((emb_x, emb_y)).T

        data = self.data
        attributes = data.domain.attributes + (self.variable_x, self.variable_y)
        domain = Domain(attributes=attributes,
                        class_vars=data.domain.class_vars,
                        metas=data.domain.metas)
        data = Table.from_numpy(domain, X=hstack((data.X, coords)),
                                Y=data.Y, metas=data.metas)
        subset_data = data[self._subset_mask] if self._subset_mask is not None else None
        self.graph.new_data(data, subset_data=subset_data, new=new)
        self.graph.update_data(self.variable_x, self.variable_y, True)
        self.connect_pairs()

    def commit(self):
        if self.embedding is not None:
            names = get_unique_names([v.name for v in self.data.domain.variables],
                                     ["mds-x", "mds-y"])
            output = embedding = Orange.data.Table.from_numpy(
                Orange.data.Domain([ContinuousVariable(names[0]), ContinuousVariable(names[1])]),
                self.embedding
            )
        else:
            output = embedding = None

        if self.embedding is not None and self.data is not None:
            domain = self.data.domain
            domain = Orange.data.Domain(domain.attributes,
                                        domain.class_vars,
                                        domain.metas + embedding.domain.attributes)
            output = self.data.transform(domain)
            output.metas[:, -2:] = embedding.X

        selection = self.graph.get_selection()
        if output is not None and len(selection) > 0:
            selected = output[selection]
        else:
            selected = None
        if self.graph.selection is not None and np.max(self.graph.selection) > 1:
            annotated = create_groups_table(output, self.graph.selection)
        else:
            annotated = create_annotated_table(output, selection)
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(annotated)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self._clear_plot()
        self._clear()

    def send_report(self):
        if self.data is None:
            return

        def name(var):
            return var and var.name

        caption = report.render_items_vert((
            ("Color", name(self.graph.attr_color)),
            ("Label", name(self.graph.attr_label)),
            ("Shape", name(self.graph.attr_shape)),
            ("Size", name(self.graph.attr_size)),
            ("Jittering", self.graph.jitter_size != 0 and "{} %".format(self.graph.jitter_size))))
        self.report_plot()
        if caption:
            self.report_caption(caption)

    @classmethod
    def migrate_settings(cls, settings_, version):
        if version < 2:
            settings_graph = {}
            for old, new in (("label_only_selected", "label_only_selected"),
                             ("symbol_opacity", "alpha_value"),
                             ("symbol_size", "point_width"),
                             ("jitter", "jitter_size")):
                settings_graph[new] = settings_[old]
            settings_["graph"] = settings_graph
            settings_["auto_commit"] = settings_["autocommit"]


    @classmethod
    def migrate_context(cls, context, version):
        if version < 2:
            domain = context.ordered_domain
            n_domain = [t for t in context.ordered_domain if t[1] == 2]
            c_domain = [t for t in context.ordered_domain if t[1] == 1]
            context_values_graph = {}
            for _, old_val, new_val in ((domain, "color_value", "attr_color"),
                                        (c_domain, "shape_value", "attr_shape"),
                                        (n_domain, "size_value", "attr_size"),
                                        (domain, "label_value", "attr_label")):
                tmp = context.values[old_val]
                if tmp[1] >= 0:
                    context_values_graph[new_val] = (tmp[0], tmp[1] + 100)
                elif tmp[0] != "Stress":
                    context_values_graph[new_val] = None
                else:
                    context_values_graph[new_val] = tmp
            context.values["graph"] = context_values_graph
示例#45
0
class OWLouvainClustering(widget.OWWidget):
    name = 'Louvain Clustering'
    description = 'Detects communities in a network of nearest neighbors.'
    icon = 'icons/LouvainClustering.svg'
    priority = 2110

    want_main_area = False

    settingsHandler = DomainContextHandler()

    class Inputs:
        data = Input('Data', Table, default=True)

    if Graph is not None:
        class Outputs:
            annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table, default=True)
            graph = Output('Network', Graph)
    else:
        class Outputs:
            annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table, default=True)

    apply_pca = ContextSetting(True)
    pca_components = ContextSetting(_DEFAULT_PCA_COMPONENTS)
    metric_idx = ContextSetting(0)
    k_neighbors = ContextSetting(_DEFAULT_K_NEIGHBORS)
    resolution = ContextSetting(1.)
    auto_commit = Setting(False)

    class Information(widget.OWWidget.Information):
        modified = Msg("Press commit to recompute clusters and send new data")

    class Error(widget.OWWidget.Error):
        empty_dataset = Msg('No features in data')
        general_error = Msg('Error occured during clustering\n{}')

    def __init__(self):
        super().__init__()

        self.data = None  # type: Optional[Table]
        self.preprocessed_data = None  # type: Optional[Table]
        self.pca_projection = None  # type: Optional[Table]
        self.graph = None  # type: Optional[nx.Graph]
        self.partition = None  # type: Optional[np.array]
        # Use a executor with a single worker, to limit CPU overcommitment for
        # cancelled tasks. The method does not have a fine cancellation
        # granularity so we assure that there are not N - 1 jobs executing
        # for no reason only to be thrown away. It would be better to use the
        # global pool but implement a limit on jobs from this source.
        self.__executor = futures.ThreadPoolExecutor(max_workers=1)
        self.__task = None   # type: Optional[TaskState]
        self.__invalidated = False
        # coalescing commit timer
        self.__commit_timer = QTimer(self, singleShot=True)
        self.__commit_timer.timeout.connect(self.commit)

        pca_box = gui.vBox(self.controlArea, 'PCA Preprocessing')
        self.apply_pca_cbx = gui.checkBox(
            pca_box, self, 'apply_pca', label='Apply PCA preprocessing',
            callback=self._invalidate_graph,
        )  # type: QCheckBox
        self.pca_components_slider = gui.hSlider(
            pca_box, self, 'pca_components', label='Components: ', minValue=2,
            maxValue=_MAX_PCA_COMPONENTS,
            callback=self._invalidate_pca_projection, tracking=False
        )  # type: QSlider

        graph_box = gui.vBox(self.controlArea, 'Graph parameters')
        self.metric_combo = gui.comboBox(
            graph_box, self, 'metric_idx', label='Distance metric',
            items=[m[0] for m in METRICS], callback=self._invalidate_graph,
            orientation=Qt.Horizontal,
        )  # type: gui.OrangeComboBox
        self.k_neighbors_spin = gui.spin(
            graph_box, self, 'k_neighbors', minv=1, maxv=_MAX_K_NEIGBOURS,
            label='k neighbors', controlWidth=80, alignment=Qt.AlignRight,
            callback=self._invalidate_graph,
        )  # type: gui.SpinBoxWFocusOut
        self.resolution_spin = gui.hSlider(
            graph_box, self, 'resolution', minValue=0, maxValue=5., step=1e-1,
            label='Resolution', intOnly=False, labelFormat='%.1f',
            callback=self._invalidate_partition, tracking=False,
        )  # type: QSlider
        self.resolution_spin.parent().setToolTip(
            'The resolution parameter affects the number of clusters to find. '
            'Smaller values tend to produce more clusters and larger values '
            'retrieve less clusters.'
        )
        self.apply_button = gui.auto_commit(
            self.controlArea, self, 'auto_commit', 'Apply', box=None,
            commit=lambda: self.commit(),
            callback=lambda: self._on_auto_commit_changed(),
        )  # type: QWidget

    def _invalidate_pca_projection(self):
        self.pca_projection = None
        if not self.apply_pca:
            return

        self._invalidate_graph()
        self._set_modified(True)

    def _invalidate_graph(self):
        self.graph = None
        self._invalidate_partition()
        self._set_modified(True)

    def _invalidate_partition(self):
        self.partition = None
        self._invalidate_output()
        self.Information.modified()
        self._set_modified(True)

    def _invalidate_output(self):
        self.__invalidated = True
        if self.__task is not None:
            self.__cancel_task(wait=False)

        if self.auto_commit:
            self.__commit_timer.start()
        else:
            self.__set_state_ready()

    def _set_modified(self, state):
        """
        Mark the widget (GUI) as containing modified state.
        """
        if self.data is None:
            # does not apply when we have no data
            state = False
        elif self.auto_commit:
            # does not apply when auto commit is on
            state = False
        self.Information.modified(shown=state)

    def _on_auto_commit_changed(self):
        if self.auto_commit and self.__invalidated:
            self.commit()

    def cancel(self):
        """Cancel any running jobs."""
        self.__cancel_task(wait=False)
        self.__set_state_ready()

    def commit(self):
        self.__commit_timer.stop()
        self.__invalidated = False
        self._set_modified(False)
        self.Error.clear()

        # Cancel current running task
        self.__cancel_task(wait=False)

        if self.data is None:
            self.__set_state_ready()
            return

        # Make sure the dataset is ok
        if len(self.data.domain.attributes) < 1:
            self.Error.empty_dataset()
            self.__set_state_ready()
            return

        if self.partition is not None:
            self.__set_state_ready()
            self._send_data()
            return

        # Preprocess the dataset
        if self.preprocessed_data is None:
            louvain = Louvain(random_state=0)
            self.preprocessed_data = louvain.preprocess(self.data)

        state = TaskState(self)

        # Prepare/assemble the task(s) to run; reuse partial results
        if self.apply_pca:
            if self.pca_projection is not None:
                data = self.pca_projection
                pca_components = None
            else:
                data = self.preprocessed_data
                pca_components = self.pca_components
        else:
            data = self.preprocessed_data
            pca_components = None

        if self.graph is not None:
            # run on graph only; no need to do PCA and k-nn search ...
            graph = self.graph
            k_neighbors = metric = None
        else:
            k_neighbors, metric = self.k_neighbors, METRICS[self.metric_idx][1]
            graph = None

        if graph is None:
            task = partial(
                run_on_data, data, pca_components=pca_components,
                k_neighbors=k_neighbors, metric=metric,
                resolution=self.resolution, state=state
            )
        else:
            task = partial(
                run_on_graph, graph, resolution=self.resolution, state=state
            )

        self.__set_state_busy()
        self.__start_task(task, state)

    @Slot(object)
    def __set_partial_results(self, result):
        # type: (Tuple[str, Any]) -> None
        which, res = result
        if which == "pca_projection":
            assert isinstance(res, Table) and len(res) == len(self.data)
            self.pca_projection = res
        elif which == "graph":
            assert isinstance(res, nx.Graph)
            self.graph = res
        elif which == "partition":
            assert isinstance(res, np.ndarray)
            self.partition = res
        else:
            assert False, which

    @Slot(object)
    def __on_done(self, future):
        # type: (Future['Results']) -> None
        assert future.done()
        assert self.__task is not None
        assert self.__task.future is future
        assert self.__task.watcher.future() is future
        self.__task, task = None, self.__task
        task.deleteLater()

        self.__set_state_ready()
        try:
            result = future.result()
        except Exception as err:  # pylint: disable=broad-except
            self.Error.general_error(str(err), exc_info=True)
        else:
            self.__set_results(result)

    @Slot(str)
    def setStatusMessage(self, text):
        super().setStatusMessage(text)

    @Slot(float)
    def progressBarSet(self, value, *a, **kw):
        super().progressBarSet(value, *a, **kw)

    def __set_state_ready(self):
        self.progressBarFinished()
        self.setBlocking(False)
        self.setStatusMessage("")

    def __set_state_busy(self):
        self.progressBarInit()
        self.setBlocking(True)

    def __start_task(self, task, state):
        # type: (Callable[[], Any], TaskState) -> None
        assert self.__task is None
        state.status_changed.connect(self.setStatusMessage)
        state.progress_changed.connect(self.progressBarSet)
        state.partial_result_ready.connect(self.__set_partial_results)
        state.watcher.done.connect(self.__on_done)
        state.start(self.__executor, task)
        state.setParent(self)
        self.__task = state

    def __cancel_task(self, wait=True):
        # Cancel and dispose of the current task
        if self.__task is not None:
            state, self.__task = self.__task, None
            state.cancel()
            state.partial_result_ready.disconnect(self.__set_partial_results)
            state.status_changed.disconnect(self.setStatusMessage)
            state.progress_changed.disconnect(self.progressBarSet)
            state.watcher.done.disconnect(self.__on_done)
            if wait:
                futures.wait([state.future])
                state.deleteLater()
            else:
                w = FutureWatcher(state.future, parent=state)
                w.done.connect(state.deleteLater)

    def __set_results(self, results):
        # type: ('Results') -> None
        # NOTE: All of these have already been set by __set_partial_results,
        # we double check that they are aliases
        if results.pca_projection is not None:
            assert self.pca_components == results.pca_components
            assert self.pca_projection is results.pca_projection
            self.pca_projection = results.pca_projection
        if results.graph is not None:
            assert results.metric == METRICS[self.metric_idx][1]
            assert results.k_neighbors == self.k_neighbors
            assert self.graph is results.graph
            self.graph = results.graph
        if results.partition is not None:
            assert results.resolution == self.resolution
            assert self.partition is results.partition
            self.partition = results.partition
        self._send_data()

    def _send_data(self):
        if self.partition is None or self.data is None:
            return
        domain = self.data.domain
        # Compute the frequency of each cluster index
        counts = np.bincount(self.partition)
        indices = np.argsort(counts)[::-1]
        index_map = {n: o for n, o in zip(indices, range(len(indices)))}
        new_partition = list(map(index_map.get, self.partition))

        cluster_var = DiscreteVariable(
            get_unique_names(domain, 'Cluster'),
            values=['C%d' % (i + 1) for i, _ in enumerate(np.unique(new_partition))]
        )

        new_domain = add_columns(domain, metas=[cluster_var])
        new_table = self.data.transform(new_domain)
        new_table.get_column_view(cluster_var)[0][:] = new_partition
        self.Outputs.annotated_data.send(new_table)

        if Graph is not None:
            graph = Graph(self.graph)
            graph.set_items(new_table)
            self.Outputs.graph.send(graph)

    @Inputs.data
    def set_data(self, data):
        self.closeContext()
        self.Error.clear()

        prev_data, self.data = self.data, data
        self.openContext(self.data)

        # If X hasn't changed, there's no reason to recompute clusters
        if prev_data and self.data and np.array_equal(self.data.X, prev_data.X):
            if self.auto_commit:
                self._send_data()
            return

        # Clear the outputs
        self.Outputs.annotated_data.send(None)
        if Graph is not None:
            self.Outputs.graph.send(None)

        # Clear internal state
        self.clear()
        self._invalidate_pca_projection()
        if self.data is None:
            return

        # Can't have more PCA components than the number of attributes
        n_attrs = len(data.domain.attributes)
        self.pca_components_slider.setMaximum(min(_MAX_PCA_COMPONENTS, n_attrs))
        self.pca_components_slider.setValue(min(_DEFAULT_PCA_COMPONENTS, n_attrs))
        # Can't have more k neighbors than there are data points
        self.k_neighbors_spin.setMaximum(min(_MAX_K_NEIGBOURS, len(data) - 1))
        self.k_neighbors_spin.setValue(min(_DEFAULT_K_NEIGHBORS, len(data) - 1))

        self.commit()

    def clear(self):
        self.__cancel_task(wait=False)
        self.preprocessed_data = None
        self.pca_projection = None
        self.graph = None
        self.partition = None
        self.Error.clear()
        self.Information.modified.clear()

    def onDeleteWidget(self):
        self.__cancel_task(wait=True)
        self.__executor.shutdown(True)
        self.clear()
        self.data = None
        super().onDeleteWidget()

    def send_report(self):
        pca = report.bool_str(self.apply_pca)
        if self.apply_pca:
            pca += report.plural(', {number} component{s}', self.pca_components)

        self.report_items((
            ('PCA preprocessing', pca),
            ('Metric', METRICS[self.metric_idx][0]),
            ('k neighbors', self.k_neighbors),
            ('Resolution', self.resolution),
        ))
示例#46
0
class WidgetManager(QObject):
    """
    OWWidget instance manager class.

    This class handles the lifetime of OWWidget instances in a
    :class:`WidgetsScheme`.

    """
    #: A new OWWidget was created and added by the manager.
    widget_for_node_added = Signal(SchemeNode, QWidget)

    #: An OWWidget was removed, hidden and will be deleted when appropriate.
    widget_for_node_removed = Signal(SchemeNode, QWidget)

    class ProcessingState(enum.IntEnum):
        """Widget processing state flags"""
        #: Signal manager is updating/setting the widget's inputs
        InputUpdate = 1
        #: Widget has entered a blocking state (OWWidget.isBlocking)
        BlockingUpdate = 2
        #: Widget has entered processing state
        ProcessingUpdate = 4
        #: Widget is still in the process of initialization
        Initializing = 8

    InputUpdate, BlockingUpdate, ProcessingUpdate, Initializing = ProcessingState

    #: Widget initialization states
    Delayed = namedtuple(
        "Delayed", ["node"])
    PartiallyInitialized = namedtuple(
        "Materializing",
        ["node", "partially_initialized_widget"])
    Materialized = namedtuple(
        "Materialized",
        ["node", "widget"])

    class CreationPolicy(enum.Enum):
        """Widget Creation Policy"""
        #: Widgets are scheduled to be created from the event loop, or when
        #: first accessed with `widget_for_node`
        Normal = "Normal"
        #: Widgets are created immediately when added to the workflow model
        Immediate = "Immediate"
        #: Widgets are created only when first accessed with `widget_for_node`
        OnDemand = "OnDemand"

    Normal, Immediate, OnDemand = CreationPolicy

    def __init__(self, parent=None):
        QObject.__init__(self, parent)
        self.__scheme = None
        self.__signal_manager = None
        self.__widgets = []
        self.__initstate_for_node = {}
        self.__creation_policy = WidgetManager.Normal
        #: a queue of all nodes whose widgets are scheduled for
        #: creation/initialization
        self.__init_queue = deque()  # type: Deque[SchemeNode]
        #: Timer for scheduling widget initialization
        self.__init_timer = QTimer(self, interval=0, singleShot=True)
        self.__init_timer.timeout.connect(self.__create_delayed)

        #: A mapping of SchemeNode -> OWWidget (note: a mapping is only added
        #: after the widget is actually created)
        self.__widget_for_node = {}
        #: a mapping of OWWidget -> SchemeNode
        self.__node_for_widget = {}

        # Widgets that were 'removed' from the scheme but were at
        # the time in an input update loop and could not be deleted
        # immediately
        self.__delay_delete = set()

        #: Deleted/removed during creation/initialization.
        self.__delete_after_create = []

        #: processing state flags for all widgets (including the ones
        #: in __delay_delete).
        #: Note: widgets which have not yet been created do not have an entry
        self.__widget_processing_state = {}

        # Tracks the widget in the update loop by the SignalManager
        self.__updating_widget = None

    def set_scheme(self, scheme):
        """
        Set the :class:`WidgetsScheme` instance to manage.
        """
        self.__scheme = scheme
        self.__signal_manager = scheme.findChild(SignalManager)

        self.__signal_manager.processingStarted[SchemeNode].connect(
            self.__on_processing_started
        )
        self.__signal_manager.processingFinished[SchemeNode].connect(
            self.__on_processing_finished
        )
        scheme.node_added.connect(self.add_widget_for_node)
        scheme.node_removed.connect(self.remove_widget_for_node)
        scheme.runtime_env_changed.connect(self.__on_env_changed)
        scheme.installEventFilter(self)

    def scheme(self):
        """
        Return the scheme instance on which this manager is installed.
        """
        return self.__scheme

    def signal_manager(self):
        """
        Return the signal manager in use on the :func:`scheme`.
        """
        return self.__signal_manager

    def widget_for_node(self, node):
        """
        Return the OWWidget instance for the scheme node.
        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Delayed):
            # Create the widget now if it is still pending
            state = self.__materialize(state)
            return state.widget
        elif isinstance(state, WidgetManager.PartiallyInitialized):
            widget = state.partially_initialized_widget
            log.warning("WidgetManager.widget_for_node: "
                        "Accessing a partially created widget instance. "
                        "This is most likely a result of explicit "
                        "QApplication.processEvents call from the '%s.%s' "
                        "widgets __init__.",
                        type(widget).__module__, type(widget).__name__)
            return widget
        elif isinstance(state, WidgetManager.Materialized):
            return state.widget
        else:
            assert False

    def node_for_widget(self, widget):
        """
        Return the SchemeNode instance for the OWWidget.

        Raise a KeyError if the widget does not map to a node in the scheme.
        """
        return self.__node_for_widget[widget]

    def widget_properties(self, node):
        """
        Return the current widget properties/settings.

        Parameters
        ----------
        node : SchemeNode

        Returns
        -------
        settings : dict
        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Materialized):
            return state.widget.settingsHandler.pack_data(state.widget)
        else:
            return node.properties

    def set_creation_policy(self, policy):
        """
        Set the widget creation policy

        Parameters
        ----------
        policy : WidgetManager.CreationPolicy
        """
        if self.__creation_policy != policy:
            self.__creation_policy = policy

            if self.__creation_policy == WidgetManager.Immediate:
                self.__init_timer.stop()
                while self.__init_queue:
                    state = self.__init_queue.popleft()
                    self.__materialize(state)
            elif self.__creation_policy == WidgetManager.Normal:
                if not self.__init_timer.isActive() and self.__init_queue:
                    self.__init_timer.start()
            elif self.__creation_policy == WidgetManager.OnDemand:
                self.__init_timer.stop()
            else:
                assert False

    def creation_policy(self):
        """
        Return the current widget creation policy

        Returns
        -------
        policy: WidgetManager.CreationPolicy
        """
        return self.__creation_policy

    def add_widget_for_node(self, node):
        """
        Create a new OWWidget instance for the corresponding scheme node.
        """
        state = WidgetManager.Delayed(node)
        self.__initstate_for_node[node] = state

        if self.__creation_policy == WidgetManager.Immediate:
            self.__initstate_for_node[node] = self.__materialize(state)
        elif self.__creation_policy == WidgetManager.Normal:
            self.__init_queue.append(state)
            if not self.__init_timer.isActive():
                self.__init_timer.start()
        elif self.__creation_policy == WidgetManager.OnDemand:
            self.__init_queue.append(state)

    def __materialize(self, state):
        # Create and initialize an OWWidget for a Delayed
        # widget initialization
        assert isinstance(state, WidgetManager.Delayed)
        if state in self.__init_queue:
            self.__init_queue.remove(state)

        node = state.node

        widget = self.create_widget_instance(node)

        self.__widgets.append(widget)
        self.__widget_for_node[node] = widget
        self.__node_for_widget[widget] = node

        self.__initialize_widget_state(node, widget)

        state = WidgetManager.Materialized(node, widget)
        self.__initstate_for_node[node] = state
        self.widget_for_node_added.emit(node, widget)

        return state

    def remove_widget_for_node(self, node):
        """
        Remove the OWWidget instance for node.
        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Delayed):
            del self.__initstate_for_node[node]
            self.__init_queue.remove(state)
        elif isinstance(state, WidgetManager.Materialized):
            # Update the node's stored settings/properties dict before
            # removing the widget.
            # TODO: Update/sync whenever the widget settings change.
            node.properties = self._widget_settings(state.widget)
            self.__widgets.remove(state.widget)
            del self.__initstate_for_node[node]
            del self.__widget_for_node[node]
            del self.__node_for_widget[state.widget]
            node.title_changed.disconnect(state.widget.setCaption)
            state.widget.progressBarValueChanged.disconnect(node.set_progress)

            self.widget_for_node_removed.emit(node, state.widget)
            self._delete_widget(state.widget)
        elif isinstance(state, WidgetManager.PartiallyInitialized):
            widget = state.partially_initialized_widget
            raise RuntimeError(
                "A widget/node {} was removed while being initialized. "
                "This is most likely a result of an explicit "
                "QApplication.processEvents call from the '{}.{}' "
                "widgets __init__.\n"
                .format(state.node.title, type(widget).__module__,
                        type(widget).__init__))

    def _widget_settings(self, widget):
        return widget.settingsHandler.pack_data(widget)

    def _delete_widget(self, widget):
        """
        Delete the OWBaseWidget instance.
        """
        widget.close()

        # Save settings to user global settings.
        widget.saveSettings()

        # Notify the widget it will be deleted.
        widget.onDeleteWidget()

        if self.__widget_processing_state[widget] != 0:
            # If the widget is in an update loop and/or blocking we
            # delay the scheduled deletion until the widget is done.
            self.__delay_delete.add(widget)
        else:
            widget.deleteLater()
            del self.__widget_processing_state[widget]

    def create_widget_instance(self, node):
        """
        Create a OWWidget instance for the node.
        """
        desc = node.description
        klass = widget = None
        initialized = False
        error = None
        # First try to actually retrieve the class.
        try:
            klass = name_lookup(desc.qualified_name)
        except (ImportError, AttributeError):
            sys.excepthook(*sys.exc_info())
            error = "Could not import {0!r}\n\n{1}".format(
                node.description.qualified_name, traceback.format_exc()
            )
        except Exception:
            sys.excepthook(*sys.exc_info())
            error = "An unexpected error during import of {0!r}\n\n{1}".format(
                node.description.qualified_name, traceback.format_exc()
            )

        if klass is None:
            widget = mock_error_owwidget(node, error)
            initialized = True

        if widget is None:
            log.info("WidgetManager: Creating '%s.%s' instance '%s'.",
                     klass.__module__, klass.__name__, node.title)

            widget = klass.__new__(
                klass,
                None,
                captionTitle=node.title,
                signal_manager=self.signal_manager(),
                stored_settings=node.properties,
                # NOTE: env is a view of the real env and reflects
                # changes to the environment.
                env=self.scheme().runtime_env()
            )
            initialized = False

        # Init the node/widget mapping and state before calling __init__
        # Some OWWidgets might already send data in the constructor
        # (should this be forbidden? Raise a warning?) triggering the signal
        # manager which would request the widget => node mapping or state
        # Furthermore they can (though they REALLY REALLY REALLY should not)
        # explicitly call qApp.processEvents.
        assert node not in self.__widget_for_node
        self.__widget_for_node[node] = widget
        self.__node_for_widget[widget] = node
        self.__widget_processing_state[widget] = WidgetManager.Initializing
        self.__initstate_for_node[node] = \
            WidgetManager.PartiallyInitialized(node, widget)

        if not initialized:
            try:
                widget.__init__()
            except Exception:
                sys.excepthook(*sys.exc_info())
                msg = traceback.format_exc()
                msg = "Could not create {0!r}\n\n{1}".format(
                    node.description.name, msg
                )
                # remove state tracking for widget ...
                del self.__widget_for_node[node]
                del self.__node_for_widget[widget]
                del self.__widget_processing_state[widget]

                # ... and substitute it with a mock error widget.
                widget = mock_error_owwidget(node, msg)
                self.__widget_for_node[node] = widget
                self.__node_for_widget[widget] = node
                self.__widget_processing_state[widget] = 0
                self.__initstate_for_node[node] = \
                    WidgetManager.Materialized(node, widget)

        self.__initstate_for_node[node] = \
            WidgetManager.Materialized(node, widget)
        # Clear Initializing flag
        self.__widget_processing_state[widget] &= ~WidgetManager.Initializing

        node.title_changed.connect(widget.setCaption)

        # Widget's info/warning/error messages.
        widget.messageActivated.connect(self.__on_widget_state_changed)
        widget.messageDeactivated.connect(self.__on_widget_state_changed)

        # Widget's statusTip
        node.set_status_message(widget.statusMessage())
        widget.statusMessageChanged.connect(node.set_status_message)

        # Widget's progress bar value state.
        widget.progressBarValueChanged.connect(node.set_progress)

        # Widget processing state (progressBarInit/Finished)
        # and the blocking state.
        widget.processingStateChanged.connect(
            self.__on_processing_state_changed
        )
        widget.blockingStateChanged.connect(self.__on_blocking_state_changed)

        if widget.isBlocking():
            # A widget can already enter blocking state in __init__
            self.__widget_processing_state[widget] |= self.BlockingUpdate

        if widget.processingState != 0:
            # It can also start processing (initialization of resources, ...)
            self.__widget_processing_state[widget] |= self.ProcessingUpdate
            node.set_processing_state(1)
            node.set_progress(widget.progressBarValue)

        # Install a help shortcut on the widget
        help_shortcut = QShortcut(QKeySequence("F1"), widget)
        help_shortcut.activated.connect(self.__on_help_request)

        # Up shortcut (activate/open parent)
        up_shortcut = QShortcut(
            QKeySequence(Qt.ControlModifier + Qt.Key_Up), widget)
        up_shortcut.activated.connect(self.__on_activate_parent)

        # Call setters only after initialization.
        widget.setWindowIcon(
            icon_loader.from_description(desc).get(desc.icon)
        )
        widget.setCaption(node.title)

        # Schedule an update with the signal manager, due to the cleared
        # implicit Initializing flag
        self.signal_manager()._update()

        return widget

    def node_processing_state(self, node):
        """
        Return the processing state flags for the node.

        Same as `manager.widget_processing_state(manger.widget_for_node(node))`

        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Materialized):
            return self.__widget_processing_state[state.widget]
        elif isinstance(state, WidgetManager.PartiallyInitialized):
            return self.__widget_processing_state[state.partially_initialized_widget]
        else:
            return WidgetManager.Initializing

    def widget_processing_state(self, widget):
        """
        Return the processing state flags for the widget.

        The state is an bitwise or of `InputUpdate` and `BlockingUpdate`.

        """
        return self.__widget_processing_state[widget]

    def __create_delayed(self):
        if self.__init_queue:
            state = self.__init_queue.popleft()
            node = state.node
            self.__initstate_for_node[node] = self.__materialize(state)

        if self.__creation_policy == WidgetManager.Normal and \
                self.__init_queue:
            # restart the timer if pending widgets still in the queue
            self.__init_timer.start()

    def eventFilter(self, receiver, event):
        if event.type() == QEvent.Close and receiver is self.__scheme:
            self.signal_manager().stop()

            # Notify the widget instances.
            for widget in list(self.__widget_for_node.values()):
                widget.close()
                widget.saveSettings()
                widget.onDeleteWidget()

            event.accept()
            return True

        return QObject.eventFilter(self, receiver, event)

    def __on_help_request(self):
        """
        Help shortcut was pressed. We send a `QWhatsThisClickedEvent` to
        the scheme and hope someone responds to it.

        """
        # Sender is the QShortcut, and parent the OWBaseWidget
        widget = self.sender().parent()
        try:
            node = self.node_for_widget(widget)
        except KeyError:
            pass
        else:
            qualified_name = node.description.qualified_name
            help_url = "help://search?" + urlencode({"id": qualified_name})
            event = QWhatsThisClickedEvent(help_url)
            QCoreApplication.sendEvent(self.scheme(), event)

    def __on_activate_parent(self):
        """
        Activate parent shortcut was pressed.
        """
        event = ActivateParentEvent()
        QCoreApplication.sendEvent(self.scheme(), event)

    def __initialize_widget_state(self, node, widget):
        """
        Initialize the tracked info/warning/error message state.
        """
        for message_group in widget.message_groups:
            message = user_message_from_state(message_group)
            if message:
                node.set_state_message(message)

    def __on_widget_state_changed(self, msg):
        """
        The OWBaseWidget info/warning/error state has changed.
        """
        widget = msg.group.widget
        try:
            node = self.node_for_widget(widget)
        except KeyError:
            pass
        else:
            self.__initialize_widget_state(node, widget)

    def __on_processing_state_changed(self, state):
        """
        A widget processing state has changed (progressBarInit/Finished)
        """
        widget = self.sender()
        try:
            node = self.node_for_widget(widget)
        except KeyError:
            return

        if state:
            self.__widget_processing_state[widget] |= self.ProcessingUpdate
        else:
            self.__widget_processing_state[widget] &= ~self.ProcessingUpdate
        self.__update_node_processing_state(node)

    def __on_processing_started(self, node):
        """
        Signal manager entered the input update loop for the node.
        """
        widget = self.widget_for_node(node)
        # Remember the widget instance. The node and the node->widget mapping
        # can be removed between this and __on_processing_finished.
        self.__updating_widget = widget
        self.__widget_processing_state[widget] |= self.InputUpdate
        self.__update_node_processing_state(node)

    def __on_processing_finished(self, node):
        """
        Signal manager exited the input update loop for the node.
        """
        widget = self.__updating_widget
        self.__widget_processing_state[widget] &= ~self.InputUpdate

        if widget in self.__node_for_widget:
            self.__update_node_processing_state(node)
        elif widget in self.__delay_delete:
            self.__try_delete(widget)
        else:
            raise ValueError("%r is not managed" % widget)

        self.__updating_widget = None

    def __on_blocking_state_changed(self, state):
        """
        OWWidget blocking state has changed.
        """
        if not state:
            # schedule an update pass.
            self.signal_manager()._update()

        widget = self.sender()
        if state:
            self.__widget_processing_state[widget] |= self.BlockingUpdate
        else:
            self.__widget_processing_state[widget] &= ~self.BlockingUpdate

        if widget in self.__node_for_widget:
            node = self.node_for_widget(widget)
            self.__update_node_processing_state(node)

        elif widget in self.__delay_delete:
            self.__try_delete(widget)

    def __update_node_processing_state(self, node):
        """
        Update the `node.processing_state` to reflect the widget state.
        """
        state = self.node_processing_state(node)
        node.set_processing_state(1 if state else 0)

    def __try_delete(self, widget):
        if self.__widget_processing_state[widget] == 0:
            self.__delay_delete.remove(widget)
            widget.deleteLater()
            del self.__widget_processing_state[widget]

    def __on_env_changed(self, key, newvalue, oldvalue):
        # Notify widgets of a runtime environment change
        for widget in self.__widget_for_node.values():
            widget.workflowEnvChanged(key, newvalue, oldvalue)
示例#47
0
class VizRankDialog(QDialog, ProgressBarMixin, WidgetMessagesMixin):
    """
    Base class for VizRank dialogs, providing a GUI with a table and a button,
    and the skeleton for managing the evaluation of visualizations.

    Derived classes must provide methods

    - `iterate_states` for generating combinations (e.g. pairs of attritutes),
    - `compute_score(state)` for computing the score of a combination,
    - `row_for_state(state)` that returns a list of items inserted into the
       table for the given state.

    and, optionally,

    - `state_count` that returns the number of combinations (used for progress
       bar)
    - `on_selection_changed` that handles event triggered when the user selects
      a table row. The method should emit signal
      `VizRankDialog.selectionChanged(object)`.
    - `bar_length` returns the length of the bar corresponding to the score.

    The class provides a table and a button. A widget constructs a single
    instance of this dialog in its `__init__`, like (in Sieve) by using a
    convenience method :obj:`add_vizrank`::

        self.vizrank, self.vizrank_button = SieveRank.add_vizrank(
            box, self, "Score Combinations", self.set_attr)

    When the widget receives new data, it must call the VizRankDialog's
    method :obj:`VizRankDialog.initialize()` to clear the GUI and reset the
    state.

    Clicking the Start button calls method `run` (and renames the button to
    Pause). Run sets up a progress bar by getting the number of combinations
    from :obj:`VizRankDialog.state_count()`. It restores the paused state
    (if any) and calls generator :obj:`VizRankDialog.iterate_states()`. For
    each generated state, it calls :obj:`VizRankDialog.score(state)`, which
    must return the score (lower is better) for this state. If the returned
    state is not `None`, the data returned by `row_for_state` is inserted at
    the appropriate place in the table.

    Args:
        master (Orange.widget.OWWidget): widget to which the dialog belongs

    Attributes:
        master (Orange.widget.OWWidget): widget to which the dialog belongs
        captionTitle (str): the caption for the dialog. This can be a class
          attribute. `captionTitle` is used by the `ProgressBarMixin`.
    """

    captionTitle = ""

    processingStateChanged = Signal(int)
    progressBarValueChanged = Signal(float)
    messageActivated = Signal(Msg)
    messageDeactivated = Signal(Msg)
    selectionChanged = Signal(object)

    class Information(WidgetMessagesMixin.Information):
        nothing_to_rank = Msg("There is nothing to rank.")

    def __init__(self, master):
        """Initialize the attributes and set up the interface"""
        QDialog.__init__(self, master, windowTitle=self.captionTitle)
        WidgetMessagesMixin.__init__(self)
        self.setLayout(QVBoxLayout())

        self.insert_message_bar()
        self.layout().insertWidget(0, self.message_bar)
        self.master = master

        self.keep_running = False
        self.scheduled_call = None
        self.saved_state = None
        self.saved_progress = 0
        self.scores = []
        self.add_to_model = queue.Queue()

        self.update_timer = QTimer(self)
        self.update_timer.timeout.connect(self._update)
        self.update_timer.setInterval(200)

        self._thread = None
        self._worker = None

        self.filter = QLineEdit()
        self.filter.setPlaceholderText("Filter ...")
        self.filter.textChanged.connect(self.filter_changed)
        self.layout().addWidget(self.filter)
        # Remove focus from line edit
        self.setFocus(Qt.ActiveWindowFocusReason)

        self.rank_model = QStandardItemModel(self)
        self.model_proxy = QSortFilterProxyModel(
            self, filterCaseSensitivity=False)
        self.model_proxy.setSourceModel(self.rank_model)
        self.rank_table = view = QTableView(
            selectionBehavior=QTableView.SelectRows,
            selectionMode=QTableView.SingleSelection,
            showGrid=False,
            editTriggers=gui.TableView.NoEditTriggers)
        if self._has_bars:
            view.setItemDelegate(TableBarItem())
        else:
            view.setItemDelegate(HorizontalGridDelegate())
        view.setModel(self.model_proxy)
        view.selectionModel().selectionChanged.connect(
            self.on_selection_changed)
        view.horizontalHeader().setStretchLastSection(True)
        view.horizontalHeader().hide()
        self.layout().addWidget(view)

        self.button = gui.button(
            self, self, "Start", callback=self.toggle, default=True)

    @property
    def _has_bars(self):
        return type(self).bar_length is not VizRankDialog.bar_length

    @classmethod
    def add_vizrank(cls, widget, master, button_label, set_attr_callback):
        """
        Equip the widget with VizRank button and dialog, and monkey patch the
        widget's `closeEvent` and `hideEvent` to close/hide the vizrank, too.

        Args:
            widget (QWidget): the widget into whose layout to insert the button
            master (Orange.widgets.widget.OWWidget): the master widget
            button_label: the label for the button
            set_attr_callback: the callback for setting the projection chosen
                in the vizrank

        Returns:
            tuple with Vizrank dialog instance and push button
        """
        # Monkey patching could be avoided by mixing-in the class (not
        # necessarily a good idea since we can make a mess of multiple
        # defined/derived closeEvent and hideEvent methods). Furthermore,
        # per-class patching would be better than per-instance, but we don't
        # want to mess with meta-classes either.

        vizrank = cls(master)
        button = gui.button(
            widget, master, button_label, callback=vizrank.reshow,
            enabled=False)
        vizrank.selectionChanged.connect(lambda args: set_attr_callback(*args))

        master_close_event = master.closeEvent
        master_hide_event = master.hideEvent
        master_delete_event = master.onDeleteWidget

        def closeEvent(event):
            vizrank.close()
            master_close_event(event)

        def hideEvent(event):
            vizrank.hide()
            master_hide_event(event)

        def deleteEvent():
            vizrank.keep_running = False
            if vizrank._thread is not None and vizrank._thread.isRunning():
                vizrank._thread.quit()
                vizrank._thread.wait()

            master_delete_event()

        master.closeEvent = closeEvent
        master.hideEvent = hideEvent
        master.onDeleteWidget = deleteEvent
        return vizrank, button

    def reshow(self):
        """Put the widget on top of all windows
        """
        self.show()
        self.raise_()
        self.activateWindow()

    def initialize(self):
        """
        Clear and initialize the dialog.

        This method must be called by the widget when the data is reset,
        e.g. from `set_data` handler.
        """
        if self._thread is not None and self._thread.isRunning():
            self.keep_running = False
            self._thread.quit()
            self._thread.wait()
        self.keep_running = False
        self.scheduled_call = None
        self.saved_state = None
        self.saved_progress = 0
        self.update_timer.stop()
        self.progressBarFinished()
        self.scores = []
        self._update_model()  # empty queue
        self.rank_model.clear()
        self.button.setText("Start")
        self.button.setEnabled(self.check_preconditions())
        self._thread = QThread(self)
        self._worker = Worker(self)
        self._worker.moveToThread(self._thread)
        self._worker.stopped.connect(self._thread.quit)
        self._worker.stopped.connect(self._select_first_if_none)
        self._worker.stopped.connect(self._stopped)
        self._worker.done.connect(self._done)
        self._thread.started.connect(self._worker.do_work)

    def filter_changed(self, text):
        self.model_proxy.setFilterFixedString(text)

    def stop_and_reset(self, reset_method=None):
        if self.keep_running:
            self.scheduled_call = reset_method or self.initialize
            self.keep_running = False
        else:
            self.initialize()

    def check_preconditions(self):
        """Check whether there is sufficient data for ranking."""
        return True

    def on_selection_changed(self, selected, deselected):
        """
        Set the new visualization in the widget when the user select a
        row in the table.

        If derived class does not reimplement this, the table gives the
        information but the user can't click it to select the visualization.

        Args:
            selected: the index of the selected item
            deselected: the index of the previously selected item
        """
        pass

    def iterate_states(self, initial_state):
        """
        Generate all possible states (e.g. attribute combinations) for the
        given data. The content of the generated states is specific to the
        visualization.

        This method must be defined in the derived classes.

        Args:
            initial_state: initial state; None if this is the first call
        """
        raise NotImplementedError

    def state_count(self):
        """
        Return the number of states for the progress bar.

        Derived classes should implement this to ensure the proper behaviour of
        the progress bar"""
        return 0

    def compute_score(self, state):
        """
        Abstract method for computing the score for the given state. Smaller
        scores are better.

        Args:
            state: the state, e.g. the combination of attributes as generated
                by :obj:`state_count`.
        """
        raise NotImplementedError

    def bar_length(self, score):
        """Compute the bar length (between 0 and 1) corresponding to the score.
        Return `None` if the score cannot be normalized.
        """
        return None

    def row_for_state(self, score, state):
        """
        Abstract method that return the items that are inserted into the table.

        Args:
            score: score, computed by :obj:`compute_score`
            state: the state, e.g. combination of attributes
            """
        raise NotImplementedError

    def _select_first_if_none(self):
        if not self.rank_table.selectedIndexes():
            self.rank_table.selectRow(0)

    def _done(self):
        self.button.setText("Finished")
        self.button.setEnabled(False)
        self.keep_running = False
        self.saved_state = None

    def _stopped(self):
        self.update_timer.stop()
        self.progressBarFinished()
        self._update_model()
        self.stopped()
        if self.scheduled_call:
            self.scheduled_call()

    def _update(self):
        self._update_model()
        self._update_progress()

    def _update_progress(self):
        self.progressBarSet(int(self.saved_progress * 100 / max(1, self.state_count())))

    def _update_model(self):
        try:
            while True:
                pos, row_items = self.add_to_model.get_nowait()
                self.rank_model.insertRow(pos, row_items)
        except queue.Empty:
            pass

    def toggle(self):
        """Start or pause the computation."""
        self.keep_running = not self.keep_running
        if self.keep_running:
            self.button.setText("Pause")
            self.progressBarInit()
            self.update_timer.start()
            self.before_running()
            self._thread.start()
        else:
            self.button.setText("Continue")
            self._thread.quit()
            # Need to sync state (the worker must read the keep_running
            # state and stop) for reliable restart.
            self._thread.wait()

    def before_running(self):
        """Code that is run before running vizrank in its own thread"""
        pass

    def stopped(self):
        """Code that is run after stopping the vizrank thread"""
        pass
示例#48
0
class VizRankDialog(QDialog, ProgressBarMixin, WidgetMessagesMixin):
    """
    Base class for VizRank dialogs, providing a GUI with a table and a button,
    and the skeleton for managing the evaluation of visualizations.

    Derived classes must provide methods

    - `iterate_states` for generating combinations (e.g. pairs of attritutes),
    - `compute_score(state)` for computing the score of a combination,
    - `row_for_state(state)` that returns a list of items inserted into the
       table for the given state.

    and, optionally,

    - `state_count` that returns the number of combinations (used for progress
       bar)
    - `on_selection_changed` that handles event triggered when the user selects
      a table row. The method should emit signal
      `VizRankDialog.selectionChanged(object)`.
    - `bar_length` returns the length of the bar corresponding to the score.

    The class provides a table and a button. A widget constructs a single
    instance of this dialog in its `__init__`, like (in Sieve) by using a
    convenience method :obj:`add_vizrank`::

        self.vizrank, self.vizrank_button = SieveRank.add_vizrank(
            box, self, "Score Combinations", self.set_attr)

    When the widget receives new data, it must call the VizRankDialog's
    method :obj:`VizRankDialog.initialize()` to clear the GUI and reset the
    state.

    Clicking the Start button calls method `run` (and renames the button to
    Pause). Run sets up a progress bar by getting the number of combinations
    from :obj:`VizRankDialog.state_count()`. It restores the paused state
    (if any) and calls generator :obj:`VizRankDialog.iterate_states()`. For
    each generated state, it calls :obj:`VizRankDialog.score(state)`, which
    must return the score (lower is better) for this state. If the returned
    state is not `None`, the data returned by `row_for_state` is inserted at
    the appropriate place in the table.

    Args:
        master (Orange.widget.OWWidget): widget to which the dialog belongs

    Attributes:
        master (Orange.widget.OWWidget): widget to which the dialog belongs
        captionTitle (str): the caption for the dialog. This can be a class
          attribute. `captionTitle` is used by the `ProgressBarMixin`.
    """

    captionTitle = ""

    processingStateChanged = Signal(int)
    progressBarValueChanged = Signal(float)
    messageActivated = Signal(Msg)
    messageDeactivated = Signal(Msg)
    selectionChanged = Signal(object)

    class Information(WidgetMessagesMixin.Information):
        nothing_to_rank = Msg("There is nothing to rank.")

    def __init__(self, master):
        """Initialize the attributes and set up the interface"""
        QDialog.__init__(self, master, windowTitle=self.captionTitle)
        WidgetMessagesMixin.__init__(self)
        self.setLayout(QVBoxLayout())

        self.insert_message_bar()
        self.layout().insertWidget(0, self.message_bar)
        self.master = master

        self.keep_running = False
        self.scheduled_call = None
        self.saved_state = None
        self.saved_progress = 0
        self.scores = []
        self.add_to_model = queue.Queue()

        self.update_timer = QTimer(self)
        self.update_timer.timeout.connect(self._update)
        self.update_timer.setInterval(200)

        self._thread = None
        self._worker = None

        self.filter = QLineEdit()
        self.filter.setPlaceholderText("Filter ...")
        self.filter.textChanged.connect(self.filter_changed)
        self.layout().addWidget(self.filter)
        # Remove focus from line edit
        self.setFocus(Qt.ActiveWindowFocusReason)

        self.rank_model = QStandardItemModel(self)
        self.model_proxy = QSortFilterProxyModel(self)
        self.model_proxy.setSourceModel(self.rank_model)
        self.rank_table = view = QTableView(
            selectionBehavior=QTableView.SelectRows,
            selectionMode=QTableView.SingleSelection,
            showGrid=False)
        if self._has_bars:
            view.setItemDelegate(TableBarItem())
        else:
            view.setItemDelegate(HorizontalGridDelegate())
        view.setModel(self.model_proxy)
        view.selectionModel().selectionChanged.connect(
            self.on_selection_changed)
        view.horizontalHeader().setStretchLastSection(True)
        view.horizontalHeader().hide()
        self.layout().addWidget(view)

        self.button = gui.button(
            self, self, "Start", callback=self.toggle, default=True)

    @property
    def _has_bars(self):
        return type(self).bar_length is not VizRankDialog.bar_length

    @classmethod
    def add_vizrank(cls, widget, master, button_label, set_attr_callback):
        """
        Equip the widget with VizRank button and dialog, and monkey patch the
        widget's `closeEvent` and `hideEvent` to close/hide the vizrank, too.

        Args:
            widget (QWidget): the widget into whose layout to insert the button
            master (Orange.widgets.widget.OWWidget): the master widget
            button_label: the label for the button
            set_attr_callback: the callback for setting the projection chosen
                in the vizrank

        Returns:
            tuple with Vizrank dialog instance and push button
        """
        # Monkey patching could be avoided by mixing-in the class (not
        # necessarily a good idea since we can make a mess of multiple
        # defined/derived closeEvent and hideEvent methods). Furthermore,
        # per-class patching would be better than per-instance, but we don't
        # want to mess with meta-classes either.

        vizrank = cls(master)
        button = gui.button(
            widget, master, button_label, callback=vizrank.reshow,
            enabled=False)
        vizrank.selectionChanged.connect(lambda args: set_attr_callback(*args))

        master_close_event = master.closeEvent
        master_hide_event = master.hideEvent
        master_delete_event = master.onDeleteWidget

        def closeEvent(event):
            vizrank.close()
            master_close_event(event)

        def hideEvent(event):
            vizrank.hide()
            master_hide_event(event)

        def deleteEvent():
            vizrank.keep_running = False
            if vizrank._thread is not None and vizrank._thread.isRunning():
                vizrank._thread.quit()
                vizrank._thread.wait()

            master_delete_event()

        master.closeEvent = closeEvent
        master.hideEvent = hideEvent
        master.onDeleteWidget = deleteEvent
        return vizrank, button

    def reshow(self):
        """Put the widget on top of all windows
        """
        self.show()
        self.raise_()
        self.activateWindow()

    def initialize(self):
        """
        Clear and initialize the dialog.

        This method must be called by the widget when the data is reset,
        e.g. from `set_data` handler.
        """
        if self._thread is not None and self._thread.isRunning():
            self.keep_running = False
            self._thread.quit()
            self._thread.wait()
        self.keep_running = False
        self.scheduled_call = None
        self.saved_state = None
        self.saved_progress = 0
        self.update_timer.stop()
        self.progressBarFinished()
        self.scores = []
        self._update_model()  # empty queue
        self.rank_model.clear()
        self.button.setText("Start")
        self.button.setEnabled(self.check_preconditions())
        self._thread = QThread(self)
        self._worker = Worker(self)
        self._worker.moveToThread(self._thread)
        self._worker.stopped.connect(self._thread.quit)
        self._worker.stopped.connect(self._select_first_if_none)
        self._worker.stopped.connect(self._stopped)
        self._worker.done.connect(self._done)
        self._thread.started.connect(self._worker.do_work)

    def filter_changed(self, text):
        self.model_proxy.setFilterFixedString(text)

    def stop_and_reset(self, reset_method=None):
        if self.keep_running:
            self.scheduled_call = reset_method or self.initialize
            self.keep_running = False
        else:
            self.initialize()

    def check_preconditions(self):
        """Check whether there is sufficient data for ranking."""
        return True

    def on_selection_changed(self, selected, deselected):
        """
        Set the new visualization in the widget when the user select a
        row in the table.

        If derived class does not reimplement this, the table gives the
        information but the user can't click it to select the visualization.

        Args:
            selected: the index of the selected item
            deselected: the index of the previously selected item
        """
        pass

    def iterate_states(self, initial_state):
        """
        Generate all possible states (e.g. attribute combinations) for the
        given data. The content of the generated states is specific to the
        visualization.

        This method must be defined in the derived classes.

        Args:
            initial_state: initial state; None if this is the first call
        """
        raise NotImplementedError

    def state_count(self):
        """
        Return the number of states for the progress bar.

        Derived classes should implement this to ensure the proper behaviour of
        the progress bar"""
        return 0

    def compute_score(self, state):
        """
        Abstract method for computing the score for the given state. Smaller
        scores are better.

        Args:
            state: the state, e.g. the combination of attributes as generated
                by :obj:`state_count`.
        """
        raise NotImplementedError

    def bar_length(self, score):
        """Compute the bar length (between 0 and 1) corresponding to the score.
        Return `None` if the score cannot be normalized.
        """
        return None

    def row_for_state(self, score, state):
        """
        Abstract method that return the items that are inserted into the table.

        Args:
            score: score, computed by :obj:`compute_score`
            state: the state, e.g. combination of attributes
            """
        raise NotImplementedError

    def _select_first_if_none(self):
        if not self.rank_table.selectedIndexes():
            self.rank_table.selectRow(0)

    def _done(self):
        self.button.setText("Finished")
        self.button.setEnabled(False)
        self.keep_running = False
        self.saved_state = None

    def _stopped(self):
        self.update_timer.stop()
        self.progressBarFinished()
        self._update_model()
        self.stopped()
        if self.scheduled_call:
            self.scheduled_call()

    def _update(self):
        self._update_model()
        self._update_progress()

    def _update_progress(self):
        self.progressBarSet(int(self.saved_progress * 100 / max(1, self.state_count())))

    def _update_model(self):
        try:
            while True:
                pos, row_items = self.add_to_model.get_nowait()
                self.rank_model.insertRow(pos, row_items)
        except queue.Empty:
            pass

    def toggle(self):
        """Start or pause the computation."""
        self.keep_running = not self.keep_running
        if self.keep_running:
            self.button.setText("Pause")
            self.progressBarInit()
            self.update_timer.start()
            self.before_running()
            self._thread.start()
        else:
            self.button.setText("Continue")
            self._thread.quit()
            # Need to sync state (the worker must read the keep_running
            # state and stop) for reliable restart.
            self._thread.wait()

    def before_running(self):
        """Code that is run before running vizrank in its own thread"""
        pass

    def stopped(self):
        """Code that is run after stopping the vizrank thread"""
        pass
示例#49
0
class CanvasView(QGraphicsView):
    """Canvas View handles the zooming.
    """

    def __init__(self, *args):
        super().__init__(*args)
        self.setAlignment(Qt.AlignTop | Qt.AlignLeft)

        self.__backgroundIcon = QIcon()

        self.__autoScroll = False
        self.__autoScrollMargin = 16
        self.__autoScrollTimer = QTimer(self)
        self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance)

        # scale factor accumulating partial increments from wheel events
        self.__zoomLevel = 100
        # effective scale level(rounded to whole integers)
        self.__effectiveZoomLevel = 100

        self.__zoomInAction = QAction(
            self.tr("Zoom in"), self, objectName="action-zoom-in",
            shortcut=QKeySequence.ZoomIn,
            triggered=self.zoomIn,
        )

        self.__zoomOutAction = QAction(
            self.tr("Zoom out"), self, objectName="action-zoom-out",
            shortcut=QKeySequence.ZoomOut,
            triggered=self.zoomOut
        )
        self.__zoomResetAction = QAction(
            self.tr("Reset Zoom"), self, objectName="action-zoom-reset",
            triggered=self.zoomReset,
            shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0)
        )

    def setScene(self, scene):
        super().setScene(scene)
        self._ensureSceneRect(scene)

    def _ensureSceneRect(self, scene):
        r = scene.addRect(QRectF(0, 0, 400, 400))
        scene.sceneRect()
        scene.removeItem(r)

    def setAutoScrollMargin(self, margin):
        self.__autoScrollMargin = margin

    def autoScrollMargin(self):
        return self.__autoScrollMargin

    def setAutoScroll(self, enable):
        self.__autoScroll = enable

    def autoScroll(self):
        return self.__autoScroll

    def mousePressEvent(self, event):
        super().mousePressEvent(event)

    def mouseMoveEvent(self, event):
        if event.buttons() & Qt.LeftButton:
            if not self.__autoScrollTimer.isActive() and \
                    self.__shouldAutoScroll(event.pos()):
                self.__startAutoScroll()
        super().mouseMoveEvent(event)

    def mouseReleaseEvent(self, event):
        if event.button() & Qt.LeftButton:
            self.__stopAutoScroll()
        return super().mouseReleaseEvent(event)

    def wheelEvent(self, event: QWheelEvent):
        if event.modifiers() & Qt.ControlModifier \
                and event.buttons() == Qt.NoButton:
            delta = event.angleDelta().y()
            # use mouse position as anchor while zooming
            anchor = self.transformationAnchor()
            self.setTransformationAnchor(QGraphicsView.AnchorUnderMouse)
            self.__setZoomLevel(self.__zoomLevel + 10 * delta / 120)
            self.setTransformationAnchor(anchor)
            event.accept()
        else:
            super().wheelEvent(event)

    def zoomIn(self):
        self.__setZoomLevel(self.__zoomLevel + 10)

    def zoomOut(self):
        self.__setZoomLevel(self.__zoomLevel - 10)

    def zoomReset(self):
        """
        Reset the zoom level.
        """
        self.__setZoomLevel(100)

    def zoomLevel(self):
        # type: () -> float
        """
        Return the current zoom level.

        Level is expressed in percentages; 100 is unscaled, 50 is half size, ...
        """
        return self.__effectiveZoomLevel

    def setZoomLevel(self, level):
        self.__setZoomLevel(level)

    def __setZoomLevel(self, scale):
        self.__zoomLevel = max(30, min(scale, 300))
        scale = round(self.__zoomLevel)
        self.__zoomOutAction.setEnabled(scale != 30)
        self.__zoomInAction.setEnabled(scale != 300)
        if self.__effectiveZoomLevel != scale:
            self.__effectiveZoomLevel = scale
            transform = QTransform()
            transform.scale(scale / 100, scale / 100)
            self.setTransform(transform)
            self.zoomLevelChanged.emit(scale)

    zoomLevelChanged = Signal(float)
    zoomLevel_ = Property(
        float, zoomLevel, setZoomLevel, notify=zoomLevelChanged
    )

    def __shouldAutoScroll(self, pos):
        if self.__autoScroll:
            margin = self.__autoScrollMargin
            viewrect = self.contentsRect()
            rect = viewrect.adjusted(margin, margin, -margin, -margin)
            # only do auto scroll when on the viewport's margins
            return not rect.contains(pos) and viewrect.contains(pos)
        else:
            return False

    def __startAutoScroll(self):
        self.__autoScrollTimer.start(10)
        log.debug("Auto scroll timer started")

    def __stopAutoScroll(self):
        if self.__autoScrollTimer.isActive():
            self.__autoScrollTimer.stop()
            log.debug("Auto scroll timer stopped")

    def __autoScrollAdvance(self):
        """Advance the auto scroll
        """
        pos = QCursor.pos()
        pos = self.mapFromGlobal(pos)
        margin = self.__autoScrollMargin

        vvalue = self.verticalScrollBar().value()
        hvalue = self.horizontalScrollBar().value()

        vrect = QRect(0, 0, self.width(), self.height())

        # What should be the speed
        advance = 10

        # We only do auto scroll if the mouse is inside the view.
        if vrect.contains(pos):
            if pos.x() < vrect.left() + margin:
                self.horizontalScrollBar().setValue(hvalue - advance)
            if pos.y() < vrect.top() + margin:
                self.verticalScrollBar().setValue(vvalue - advance)
            if pos.x() > vrect.right() - margin:
                self.horizontalScrollBar().setValue(hvalue + advance)
            if pos.y() > vrect.bottom() - margin:
                self.verticalScrollBar().setValue(vvalue + advance)

            if self.verticalScrollBar().value() == vvalue and \
                    self.horizontalScrollBar().value() == hvalue:
                self.__stopAutoScroll()
        else:
            self.__stopAutoScroll()

        log.debug("Auto scroll advance")

    def setBackgroundIcon(self, icon):
        if not isinstance(icon, QIcon):
            raise TypeError("A QIcon expected.")

        if self.__backgroundIcon != icon:
            self.__backgroundIcon = icon
            self.viewport().update()

    def backgroundIcon(self):
        return QIcon(self.__backgroundIcon)

    def drawBackground(self, painter, rect):
        super().drawBackground(painter, rect)

        if not self.__backgroundIcon.isNull():
            painter.setClipRect(rect)
            vrect = QRect(QPoint(0, 0), self.viewport().size())
            vrect = self.mapToScene(vrect).boundingRect()

            pm = self.__backgroundIcon.pixmap(
                vrect.size().toSize().boundedTo(QSize(200, 200))
            )
            pmrect = QRect(QPoint(0, 0), pm.size())
            pmrect.moveCenter(vrect.center().toPoint())
            if rect.toRect().intersects(pmrect):
                painter.drawPixmap(pmrect, pm)
class SignalManager(QObject):
    """
    SignalManager handles the runtime signal propagation for a :class:`.Scheme`
    instance.

    Note
    ----
    If a scheme instance is passed as a parent to the constructor it is also
    set as the workflow model.
    """
    class State(enum.IntEnum):
        """
        SignalManager state flags.

        .. seealso:: :func:`SignalManager.state()`
        """
        #: The manager is running, i.e. it propagates signals
        Running = 0
        #: The manager is stopped. It does not track node output changes,
        #: and does not deliver signals to dependent nodes
        Stopped = 1
        #: The manager is paused. It still tracks node output changes, but
        #: does not deliver new signals to dependent nodes. The pending signals
        #: will be delivered once it enters Running state again
        Paused = 2

    #: The manager is running, i.e. it propagates signals
    Running = State.Running
    #: The manager is stopped. It does not track node ouput changes,
    #: and does not deliver signals to dependent nodes
    Stopped = State.Stopped
    #: The manager is paused. It still tracks node output changes, but
    #: does not deliver new signals to dependent nodes. The pending signals
    #: will be delivered once it enters Running state again
    Paused = State.Paused

    # unused; back-compatibility
    Error = 3

    class RuntimeState(enum.IntEnum):
        """
        SignalManager runtime state.

        See Also
        --------
        SignalManager.runtime_state
        """
        #: Waiting, idle state. The signal queue is empty
        Waiting = 0
        #: ...
        Processing = 1

    Waiting = RuntimeState.Waiting
    Processing = RuntimeState.Processing

    #: Emitted when the state of the signal manager changes.
    stateChanged = pyqtSignal(int)
    #: Emitted when signals are added to the queue.
    updatesPending = pyqtSignal()
    #: Emitted right before a `SchemeNode` instance has its inputs updated.
    processingStarted = pyqtSignal([], [SchemeNode])
    #: Emitted right after a `SchemeNode` instance has had its inputs updated.
    processingFinished = pyqtSignal([], [SchemeNode])
    #: Emitted when `SignalManager`'s runtime state changes.
    runtimeStateChanged = pyqtSignal(int)

    def __init__(self, parent=None, *, max_running=None, **kwargs):
        # type: (Optional[QObject], Optional[int], Any) -> None
        super().__init__(parent, **kwargs)
        self.__workflow = None  # type: Optional[Scheme]
        self.__input_queue = []  # type: List[Signal]

        # mapping a node to its current outputs
        self.__node_outputs = {
        }  # type: Dict[SchemeNode, DefaultDict[OutputSignal, _OutputState]]

        self.__state = SignalManager.Running
        self.__runtime_state = SignalManager.Waiting

        self.__update_timer = QTimer(self, interval=100, singleShot=True)
        self.__update_timer.timeout.connect(self.__process_next)
        self.__max_running = max_running
        if isinstance(parent, Scheme):
            self.set_workflow(parent)

    def _can_process(self):  # type: () -> bool
        """
        Return a bool indicating if the manger can enter the main
        processing loop.

        """
        return self.__state not in [SignalManager.Error, SignalManager.Stopped]

    def workflow(self):
        # type: () -> Optional[Scheme]
        """
        Return the :class:`Scheme` instance.
        """
        return self.__workflow

    #: Alias
    scheme = workflow

    def set_workflow(self, workflow):
        # type: (Scheme) -> None
        """
        Set the workflow model.

        Parameters
        ----------
        workflow : Scheme
        """
        if workflow is self.__workflow:
            return

        if self.__workflow is not None:
            for node in self.__workflow.nodes:
                node.state_changed.disconnect(self._update)
            for link in self.__workflow.links:
                link.enabled_changed.disconnect(self.__on_link_enabled_changed)

            self.__workflow.node_added.disconnect(self.__on_node_added)
            self.__workflow.node_removed.disconnect(self.__on_node_removed)
            self.__workflow.link_added.disconnect(self.__on_link_added)
            self.__workflow.link_removed.disconnect(self.__on_link_removed)
            self.__workflow.removeEventFilter(self)
            self.__node_outputs = {}
            self.__input_queue = []

        self.__workflow = workflow

        if workflow is not None:
            workflow.node_added.connect(self.__on_node_added)
            workflow.node_removed.connect(self.__on_node_removed)
            workflow.link_added.connect(self.__on_link_added)
            workflow.link_removed.connect(self.__on_link_removed)
            for node in workflow.nodes:
                self.__node_outputs[node] = defaultdict(_OutputState)
                node.state_changed.connect(self._update)

            for link in workflow.links:
                link.enabled_changed.connect(self.__on_link_enabled_changed)
            workflow.installEventFilter(self)

    def has_pending(self):  # type: () -> bool
        """
        Does the manager have any signals to deliver?
        """
        return bool(self.__input_queue)

    def start(self):  # type: () -> None
        """
        Start the update loop.

        Note
        ----
        The updates will not happen until the control reaches the Qt event
        loop.
        """
        if self.__state != SignalManager.Running:
            self.__state = SignalManager.Running
            self.stateChanged.emit(SignalManager.Running)
            self._update()

    def stop(self):  # type: () -> None
        """
        Stop the update loop.

        Note
        ----
        If the `SignalManager` is currently in `process_queues` it will
        still update all current pending signals, but will not re-enter
        until `start()` is called again.
        """
        if self.__state != SignalManager.Stopped:
            self.__state = SignalManager.Stopped
            self.stateChanged.emit(SignalManager.Stopped)
            self.__update_timer.stop()

    def pause(self):  # type: () -> None
        """
        Pause the delivery of signals.
        """
        if self.__state != SignalManager.Paused:
            self.__state = SignalManager.Paused
            self.stateChanged.emit(SignalManager.Paused)
            self.__update_timer.stop()

    def resume(self):
        # type: () -> None
        """
        Resume the delivery of signals.
        """
        if self.__state == SignalManager.Paused:
            self.__state = SignalManager.Running
            self.stateChanged.emit(self.__state)
            self._update()

    def step(self):
        # type: () -> None
        """
        Deliver signals to a single node (only applicable while the `state()`
        is `Paused`).
        """
        if self.__state == SignalManager.Paused:
            self.process_queued()

    def state(self):
        # type: () -> State
        """
        Return the current state.

        Return
        ------
        state : SignalManager.State
        """
        return self.__state

    def _set_runtime_state(self, state):
        # type: (Union[RuntimeState, int]) -> None
        """
        Set the runtime state.

        Should only be called by `SignalManager` implementations.
        """
        if self.__runtime_state != state:
            self.__runtime_state = state
            self.runtimeStateChanged.emit(self.__runtime_state)

    def runtime_state(self):
        # type: () -> RuntimeState
        """
        Return the runtime state. This can be `SignalManager.Waiting`
        or `SignalManager.Processing`.

        """
        return self.__runtime_state

    def __on_node_removed(self, node):
        # type: (SchemeNode) -> None
        # remove all pending input signals for node so we don't get
        # stale references in process_node.
        # NOTE: This does not remove output signals for this node. In
        # particular the final 'None' will be delivered to the sink
        # nodes even after the source node is no longer in the scheme.
        log.info("Removing pending signals for '%s'.", node.title)
        self.remove_pending_signals(node)

        del self.__node_outputs[node]
        node.state_changed.disconnect(self._update)

    def __on_node_added(self, node):
        # type: (SchemeNode) -> None
        self.__node_outputs[node] = defaultdict(_OutputState)
        # schedule update pass on state change
        node.state_changed.connect(self._update)

    def __on_link_added(self, link):
        # type: (SchemeLink) -> None
        # push all current source values to the sink
        link.set_runtime_state(SchemeLink.Empty)
        state = self.__node_outputs[link.source_node][link.source_channel]
        link.set_runtime_state_flag(
            SchemeLink.Invalidated,
            bool(state.flags & _OutputState.Invalidated))
        if link.enabled:
            log.info("Scheduling signal data update for '%s'.", link)
            self._schedule(self.signals_on_link(link))
            self._update()

        link.enabled_changed.connect(self.__on_link_enabled_changed)

    def __on_link_removed(self, link):
        # type: (SchemeLink) -> None
        # purge all values in sink's queue
        log.info("Scheduling signal data purge (%s).", link)
        self.purge_link(link)
        link.enabled_changed.disconnect(self.__on_link_enabled_changed)

    def __on_link_enabled_changed(self, enabled):
        if enabled:
            link = self.sender()
            log.info("Link %s enabled. Scheduling signal data update.", link)
            self._schedule(self.signals_on_link(link))

    def signals_on_link(self, link):
        # type: (SchemeLink) -> List[Signal]
        """
        Return :class:`Signal` instances representing the current values
        present on the `link`.
        """
        items = self.link_contents(link)
        signals = []

        for key, value in items.items():
            signals.append(Signal(link, value, key))

        return signals

    def link_contents(self, link):
        # type: (SchemeLink) -> Dict[Any, Any]
        """
        Return the contents on the `link`.
        """
        node, channel = link.source_node, link.source_channel

        if node in self.__node_outputs:
            return self.__node_outputs[node][channel].outputs
        else:
            # if the the node was already removed its tracked outputs in
            # __node_outputs are cleared, however the final 'None' signal
            # deliveries for the link are left in the _input_queue.
            pending = [sig for sig in self.__input_queue if sig.link is link]
            return {sig.id: sig.value for sig in pending}

    def send(self, node, channel, value, id):
        # type: (SchemeNode, OutputSignal, Any, Any) -> None
        """
        Send the `value` with `id` on an output `channel` from node.

        Schedule the signal delivery to all dependent nodes

        Parameters
        ----------
        node : SchemeNode
            The originating node.
        channel : OutputSignal
            The nodes output on which the value is sent.
        value : Any
            The value to send,
        id : Any
            Signal id.
        """
        if self.__workflow is None:
            raise RuntimeError("'send' called with no workflow!.")

        log.debug("%r sending %r (id: %r) on channel %r", node.title,
                  type(value), id, channel.name)

        scheme = self.__workflow

        state = self.__node_outputs[node][channel]
        state.outputs[id] = value

        # clear invalidated flag
        if state.flags & _OutputState.Invalidated:
            log.debug("%r clear invalidated flag on channel %r", node.title,
                      channel.name)
            state.flags &= ~_OutputState.Invalidated

        links = filter(
            is_enabled,
            scheme.find_links(source_node=node, source_channel=channel))
        signals = []
        for link in links:
            signals.append(Signal(link, value, id))
            link.set_runtime_state_flag(SchemeLink.Invalidated, False)

        self._schedule(signals)

    def invalidate(self, node, channel):
        # type: (SchemeNode, OutputSignal) -> None
        """
        Invalidate the `channel` on `node`.

        The channel is effectively considered changed but unavailable until
        a new value is sent via `send`. While this state is set the dependent
        nodes will not be updated.

        All links originating with this node/channel will be marked with
        `SchemeLink.Invalidated` flag until a new value is sent with `send`.

        Parameters
        ----------
        node: SchemeNode
            The originating node.
        channel: OutputSignal
            The channel to invalidate.


        .. versionadded:: 0.1.8
        """
        log.debug("%r invalidating channel %r", node.title, channel.name)
        self.__node_outputs[node][channel].flags |= _OutputState.Invalidated
        if self.__workflow is None:
            return
        links = self.__workflow.find_links(source_node=node,
                                           source_channel=channel)
        for link in links:
            link.set_runtime_state(link.runtime_state() | link.Invalidated)

    def purge_link(self, link):
        # type: (SchemeLink) -> None
        """
        Purge the link (send None for all ids currently present)
        """
        contents = self.link_contents(link)
        ids = contents.keys()
        signals = [Signal(link, None, id) for id in ids]

        self._schedule(signals)

    def _schedule(self, signals):
        # type: (List[Signal]) -> None
        """
        Schedule a list of :class:`Signal` for delivery.
        """
        self.__input_queue.extend(signals)

        for link in {sig.link for sig in signals}:
            # update the SchemeLink's runtime state flags
            contents = self.link_contents(link)
            if any(value is not None for value in contents.values()):
                state = SchemeLink.Active
            else:
                state = SchemeLink.Empty
            link.set_runtime_state(state | SchemeLink.Pending)

        for node in {sig.link.sink_node
                     for sig in signals}:  # type: SchemeNode
            # update the SchemeNodes's runtime state flags
            node.set_state_flags(SchemeNode.Pending, True)

        if signals:
            self.updatesPending.emit()

        self._update()

    def _update_link(self, link):
        # type: (SchemeLink) -> None
        """
        Schedule update of a single link.
        """
        signals = self.signals_on_link(link)
        self._schedule(signals)

    def process_queued(self, max_nodes=None):
        # type: (Any) -> None
        """
        Process queued signals.

        Take the first eligible node from the pending input queue and deliver
        all scheduled signals.
        """
        if not (max_nodes is None or max_nodes == 1):
            warnings.warn(
                "`max_nodes` is deprecated and will be removed in the future",
                FutureWarning,
                stacklevel=2)

        if self.__runtime_state == SignalManager.Processing:
            raise RuntimeError("Cannot re-enter 'process_queued'")

        if not self._can_process():
            raise RuntimeError("Can't process in state %i" % self.__state)

        self.process_next()

    def process_next(self):
        # type: () -> bool
        """
        Process queued signals.

        Take the first eligible node from the pending input queue and deliver
        all scheduled signals for it and return `True`.

        If no node is eligible for update do nothing and return `False`.
        """
        return self.__process_next_helper(use_max_active=False)

    def process_node(self, node):
        # type: (SchemeNode) -> None
        """
        Process pending input signals for `node`.
        """
        assert self.__runtime_state != SignalManager.Processing

        signals_in = self.pending_input_signals(node)
        self.remove_pending_signals(node)

        signals_in = self.compress_signals(signals_in)

        log.debug("Processing %r, sending %i signals.", node.title,
                  len(signals_in))
        # Clear the link's pending flag.
        for link in {sig.link for sig in signals_in}:
            link.set_runtime_state(link.runtime_state() & ~SchemeLink.Pending)

        def process_dynamic(signals):
            # type: (List[Signal]) -> List[Signal]
            """
            Process dynamic signals; Update the link's dynamic_enabled flag if
            the value is valid; replace values that do not type check with
            `None`
            """
            res = []
            for sig in signals:
                # Check and update the dynamic link state
                link = sig.link
                if sig.link.is_dynamic():
                    enabled = can_enable_dynamic(link, sig.value)
                    link.set_dynamic_enabled(enabled)
                    if not enabled:
                        # Send None instead (clear the link)
                        sig = Signal(link, None, sig.id)
                res.append(sig)
            return res

        signals_in = process_dynamic(signals_in)
        assert ({sig.link
                 for sig in self.__input_queue
                 }.intersection({sig.link
                                 for sig in signals_in}) == set([]))

        self._set_runtime_state(SignalManager.Processing)
        self.processingStarted.emit()
        self.processingStarted[SchemeNode].emit(node)
        try:
            self.send_to_node(node, signals_in)
        finally:
            node.set_state_flags(SchemeNode.Pending, False)
            self.processingFinished.emit()
            self.processingFinished[SchemeNode].emit(node)
            self._set_runtime_state(SignalManager.Waiting)

    def compress_signals(self, signals):
        # type: (List[Signal]) -> List[Signal]
        """
        Compress a list of :class:`Signal` instances to be delivered.

        Before the signal values are delivered to the sink node they can be
        optionally `compressed`, i.e. values can be merged or dropped
        depending on the execution semantics.

        The input list is in the order that the signals were enqueued.

        The base implementation returns the list unmodified.

        Parameters
        ----------
        signals : List[Signal]

        Return
        ------
        signals : List[Signal]
        """
        return signals

    def send_to_node(self, node, signals):
        # type: (SchemeNode, List[Signal]) -> None
        """
        Abstract. Reimplement in subclass.

        Send/notify the `node` instance (or whatever object/instance it is a
        representation of) that it has new inputs as represented by the
        `signals` list).

        Parameters
        ----------
        node : SchemeNode
        signals : List[Signal]
        """
        raise NotImplementedError

    def is_pending(self, node):
        # type: (SchemeNode) -> bool
        """
        Is `node` (class:`SchemeNode`) scheduled for processing (i.e.
        it has incoming pending signals).

        Parameters
        ----------
        node : SchemeNode

        Returns
        -------
        pending : bool
        """
        return node in [signal.link.sink_node for signal in self.__input_queue]

    def pending_nodes(self):
        # type: () -> List[SchemeNode]
        """
        Return a list of pending nodes.

        The nodes are returned in the order they were enqueued for
        signal delivery.

        Returns
        -------
        nodes : List[SchemeNode]
        """
        return list(unique(sig.link.sink_node for sig in self.__input_queue))

    def pending_input_signals(self, node):
        # type: (SchemeNode) -> List[Signal]
        """
        Return a list of pending input signals for node.
        """
        return [
            signal for signal in self.__input_queue
            if node is signal.link.sink_node
        ]

    def remove_pending_signals(self, node):
        # type: (SchemeNode) -> None
        """
        Remove pending signals for `node`.
        """
        for signal in self.pending_input_signals(node):
            try:
                self.__input_queue.remove(signal)
            except ValueError:
                pass

    def __nodes(self):
        # type: () -> Sequence[SchemeNode]
        return self.__workflow.nodes if self.__workflow else []

    def blocking_nodes(self):
        # type: () -> List[SchemeNode]
        """
        Return a list of nodes in a blocking state.
        """
        return [node for node in self.__nodes() if self.is_blocking(node)]

    def invalidated_nodes(self):
        # type: () -> List[SchemeNode]
        """
        Return a list of invalidated nodes.

        .. versionadded:: 0.1.8
        """
        return [
            node for node in self.__nodes()
            if self.has_invalidated_outputs(node) or self.is_invalidated(node)
        ]

    def active_nodes(self):
        # type: () -> List[SchemeNode]
        """
        Return a list of active nodes.

        .. versionadded:: 0.1.8
        """
        return [node for node in self.__nodes() if self.is_active(node)]

    def is_blocking(self, node):
        # type: (SchemeNode) -> bool
        """
        Is the node in `blocking` state.

        Is it currently in a state where will produce new outputs and
        therefore no signals should be delivered to dependent nodes until
        it does so. Also no signals will be delivered to the node until
        it exits this state.

        The default implementation returns False.

        .. deprecated:: 0.1.8
            Use a combination of `is_invalidated` and `is_ready`.
        """
        return False

    def is_ready(self, node: SchemeNode) -> bool:
        """
        Is the node in a state where it can receive inputs.

        Re-implement this method in as subclass to prevent specific nodes from
        being considered for input update (e.g. they are still initializing
        runtime resources, executing a non-interruptable task, ...)

        Note that whenever the implicit state changes the
        `post_update_request` should be called.

        The default implementation returns the state of the node's
        `SchemeNode.NotReady` flag.

        Parameters
        ----------
        node: SchemeNode
        """
        return not node.test_state_flags(SchemeNode.NotReady)

    def is_invalidated(self, node: SchemeNode) -> bool:
        """
        Is the node marked as invalidated.

        Parameters
        ----------
        node : SchemeNode

        Returns
        -------
        state: bool
        """
        return node.test_state_flags(SchemeNode.Invalidated)

    def has_invalidated_outputs(self, node):
        # type: (SchemeNode) -> bool
        """
        Does node have any explicitly invalidated outputs.

        Parameters
        ----------
        node: SchemeNode

        Returns
        -------
        state: bool

        See also
        --------
        invalidate


        .. versionadded:: 0.1.8
        """
        out = self.__node_outputs.get(node)
        if out is not None:
            return any(state.flags & _OutputState.Invalidated
                       for state in out.values())
        else:
            return False

    def has_invalidated_inputs(self, node):
        # type: (SchemeNode) -> bool
        """
        Does the node have any immediate ancestor with invalidated outputs.

        Parameters
        ----------
        node : SchemeNode

        Returns
        -------
        state: bool

        Note
        ----
        The node's ancestors are only computed over enabled links.


        .. versionadded:: 0.1.8
        """
        if self.__workflow is None:
            return False
        workflow = self.__workflow
        return any(
            self.has_invalidated_outputs(link.source_node)
            for link in workflow.find_links(sink_node=node)
            if link.is_enabled())

    def is_active(self, node):
        # type: (SchemeNode) -> bool
        """
        Is the node considered active (executing a task).

        Parameters
        ----------
        node: SchemeNode

        Returns
        -------
        active: bool
        """
        return bool(node.state() & SchemeNode.Running)

    def node_update_front(self):
        # type: () -> Sequence[SchemeNode]
        """
        Return a list of nodes on the update front, i.e. nodes scheduled for
        an update that have no ancestor which is either itself scheduled
        for update or is in a blocking state).

        Note
        ----
        The node's ancestors are only computed over enabled links.
        """
        if self.__workflow is None:
            return []
        workflow = self.__workflow
        expand = partial(expand_node, workflow)

        components = strongly_connected_components(workflow.nodes, expand)
        node_scc = {node: scc for scc in components for node in scc}

        def isincycle(node):  # type: (SchemeNode) -> bool
            return len(node_scc[node]) > 1

        def dependents(node):  # type: (SchemeNode) -> List[SchemeNode]
            return dependent_nodes(workflow, node)

        # A list of all nodes currently active/executing a non-interruptable
        # task.
        blocking_nodes = set(self.blocking_nodes())
        # nodes marked as having invalidated outputs (not yet available)
        invalidated_nodes = set(self.invalidated_nodes())

        #: transitive invalidated nodes (including the legacy self.is_blocked
        #: behaviour - blocked nodes are both invalidated and cannot receive
        #: new inputs)
        invalidated_ = reduce(
            set.union,
            map(dependents, invalidated_nodes | blocking_nodes),
            set([]),
        )  # type: Set[SchemeNode]

        pending = self.pending_nodes()
        pending_ = set()
        for n in pending:
            depend = set(dependents(n))
            if isincycle(n):
                # a pending node in a cycle would would have a circular
                # dependency on itself, preventing any progress being made
                # by the workflow execution.
                cc = node_scc[n]
                depend -= set(cc)
            pending_.update(depend)

        def has_invalidated_ancestor(node):  # type: (SchemeNode) -> bool
            return node in invalidated_

        def has_pending_ancestor(node):  # type: (SchemeNode) -> bool
            return node in pending_

        #: nodes that are eligible for update.
        ready = list(
            filter(
                lambda node: not has_pending_ancestor(node) and
                not has_invalidated_ancestor(node) and not self.is_blocking(
                    node), pending))
        return ready

    @Slot()
    def __process_next(self):
        if not self.__state == SignalManager.Running:
            log.debug("Received 'UpdateRequest' while not in 'Running' state")
            return

        if self.__runtime_state == SignalManager.Processing:
            # This happens if QCoreApplication.processEvents is called from
            # the input handlers. A `__process_next` must be rescheduled when
            # exiting process_queued.
            log.warning("Received 'UpdateRequest' while in 'process_queued'. "
                        "An update will be re-scheduled when exiting the "
                        "current update.")
            return

        if not self.__input_queue:
            return

        if self.__process_next_helper(use_max_active=True):
            # Schedule another update (will be a noop if nothing to do).
            self._update()

    def __process_next_helper(self, use_max_active=True) -> bool:
        eligible = [n for n in self.node_update_front() if self.is_ready(n)]
        if not eligible:
            return False
        max_active = self.max_active()
        nactive = len(set(self.active_nodes()) | set(self.blocking_nodes()))

        log.debug(
            "Process next, queued signals: %i, nactive: %i "
            "(max_active: %i)", len(self.__input_queue), nactive, max_active)
        _ = lambda nodes: list(map(attrgetter('title'), nodes))
        log.debug("Pending nodes: %s", _(self.pending_nodes()))
        log.debug("Blocking nodes: %s", _(self.blocking_nodes()))
        log.debug("Invalidated nodes: %s", _(self.invalidated_nodes()))
        log.debug("Nodes ready for update: %s", _(eligible))

        # Select an node that is already running (effectively cancelling
        # already executing tasks that are immediately updatable)
        selected_node = None  # type: Optional[SchemeNode]
        for node in eligible:
            if self.is_active(node):
                selected_node = node
                break

        # Return if over committed, except in the case that the selected_node
        # is already active.
        if use_max_active and nactive >= max_active and selected_node is None:
            return False

        if selected_node is None:
            selected_node = eligible[0]

        self.process_node(selected_node)
        return True

    def _update(self):  # type: () -> None
        """
        Schedule processing at a later time.
        """
        if self.__state == SignalManager.Running and \
                not self.__update_timer.isActive():
            self.__update_timer.start()

    def post_update_request(self):
        """
        Schedule an update pass.

        Call this method whenever:

        * a node's outputs change (note that this is already done by `send`)
        * any change in the node that influences its eligibility to be picked
          for an input update (is_ready, is_blocking ...).

        Multiple update requests are merged into one.
        """
        self._update()

    def set_max_active(self, val: int) -> None:
        if self.__max_running != val:
            self.__max_running = val
            self._update()

    def max_active(self) -> int:
        value = self.__max_running  # type: Optional[int]
        if value is None:
            value = mapping_get(os.environ, "MAX_ACTIVE_NODES", int, None)
        if value is None:
            s = QSettings()
            s.beginGroup(__name__)
            value = s.value("max-active-nodes", defaultValue=1, type=int)

        if value < 0:
            ccount = os.cpu_count()
            if ccount is None:
                return 1
            else:
                return max(1, ccount + value)
        else:
            return max(1, value)
示例#51
0
class OWFilter(widget.OWWidget):
    name = "Filter"
    icon = 'icons/Filter.svg'
    description = "Filter cells/genes"

    class Inputs:
        data = widget.Input("Data", Orange.data.Table)

    class Outputs:
        data = widget.Output("Data", Orange.data.Table)

    class Warning(widget.OWWidget.Warning):
        invalid_range = widget.Msg(
            "Negative values in input data.\n"
            "This filter only makes sense for non-negative measurements"
            "where 0 indicates a lack (of) and/or a neutral reading."
        )
        sampling_in_effect = widget.Msg(
            "Too many data points to display.\n"
            "Sampling {} of {} data points."
        )

    #: Filter mode.
    #: Filter out rows/columns or 'zap' data values in range.
    Cells, Genes, Data = Cells, Genes, Data

    settings_version = 2

    #: The selected filter mode
    selected_filter_type = settings.Setting(Cells)  # type: int

    #: Augment the violin plot with a dot plot (strip plot) of the (non-zero)
    #: measurement counts in Cells/Genes mode or data matrix values in Data
    #: mode.
    display_dotplot = settings.Setting(True)  # type: bool

    #: Is min/max range selection enable
    limit_lower_enabled = settings.Setting(True)  # type: bool
    limit_upper_enabled = settings.Setting(True)  # type: bool

    #: The lower and upper selection limit for each filter type
    thresholds = settings.Setting({
        Cells: (0, 2 ** 31 - 1),
        Genes: (0, 2 ** 31 - 1),
        Data: (0.0, 2.0 ** 31 - 1)
    })  # type: Dict[int, Tuple[float, float]]

    auto_commit = settings.Setting(True)   # type: bool

    def __init__(self):
        super().__init__()
        self.data = None      # type: Optional[Orange.data.Table]
        self._counts = None   # type: Optional[np.ndarray]

        box = gui.widgetBox(self.controlArea, "Info")
        self._info = QLabel(box, wordWrap=True)
        self._info.setText("No data in input\n")

        box.layout().addWidget(self._info)

        box = gui.widgetBox(self.controlArea, "Filter Type")
        rbg = QButtonGroup(box, exclusive=True)
        for id_ in [Cells, Genes, Data]:
            name, _, tip = FilterInfo[id_]
            b = QRadioButton(
                name, toolTip=tip, checked=id_ == self.selected_filter_type
            )
            box.layout().addWidget(b)
            rbg.addButton(b, id_)
        rbg.buttonClicked[int].connect(self.set_filter_type)

        box = gui.widgetBox(self.controlArea, "View")
        self._showpoints = gui.checkBox(
            box, self, "display_dotplot", "Show data points",
            callback=self._update_dotplot
        )
        form = QFormLayout(
            labelAlignment=Qt.AlignLeft,
            formAlignment=Qt.AlignLeft,
            fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow
        )
        self._filter_box = box = gui.widgetBox(
            self.controlArea, "Filter", orientation=form
        )  # type: QGroupBox

        self.threshold_stacks = (
            QStackedWidget(enabled=self.limit_lower_enabled),
            QStackedWidget(enabled=self.limit_upper_enabled),
        )
        finfo = np.finfo(np.float64)
        for filter_ in [Cells, Genes, Data]:
            if filter_ in {Cells, Genes}:
                minimum = 0.0
                ndecimals = 1
            else:
                minimum = finfo.min
                ndecimals = 3
            spinlower = QDoubleSpinBox(
                self, minimum=minimum, maximum=finfo.max, decimals=ndecimals,
                keyboardTracking=False,
            )
            spinupper = QDoubleSpinBox(
                self, minimum=minimum, maximum=finfo.max, decimals=ndecimals,
                keyboardTracking=False,
            )

            lower, upper = self.thresholds[filter_]

            spinlower.setValue(lower)
            spinupper.setValue(upper)

            self.threshold_stacks[0].addWidget(spinlower)
            self.threshold_stacks[1].addWidget(spinupper)

            spinlower.valueChanged.connect(self._limitchanged)
            spinupper.valueChanged.connect(self._limitchanged)

        self.threshold_stacks[0].setCurrentIndex(self.selected_filter_type)
        self.threshold_stacks[1].setCurrentIndex(self.selected_filter_type)

        self.limit_lower_enabled_cb = cb = QCheckBox(
            "Min", checked=self.limit_lower_enabled
        )
        cb.toggled.connect(self.set_lower_limit_enabled)
        cb.setAttribute(Qt.WA_LayoutUsesWidgetRect, True)
        form.addRow(cb, self.threshold_stacks[0])

        self.limit_upper_enabled_cb = cb = QCheckBox(
            "Max", checked=self.limit_upper_enabled
        )
        cb.toggled.connect(self.set_upper_limit_enabled)
        cb.setAttribute(Qt.WA_LayoutUsesWidgetRect, True)
        form.addRow(cb, self.threshold_stacks[1])

        self.controlArea.layout().addStretch(10)

        gui.auto_commit(self.controlArea, self, "auto_commit", "Commit")

        self._view = pg.GraphicsView()
        self._view.enableMouse(False)
        self._view.setAntialiasing(True)
        self._plot = plot = ViolinPlot()
        self._plot.setDataPointsVisible(self.display_dotplot)
        self._plot.setSelectionMode(
            (ViolinPlot.Low if self.limit_lower_enabled else 0) |
            (ViolinPlot.High if self.limit_upper_enabled else 0)
        )
        self._plot.selectionEdited.connect(self._limitchanged_plot)
        self._view.setCentralWidget(self._plot)
        self._plot.setTitle("Detected genes")

        left = self._plot.getAxis("left")  # type: pg.AxisItem
        left.setLabel("Detected genes")
        bottom = self._plot.getAxis("bottom")  # type: pg.AxisItem
        bottom.hide()
        plot.setMouseEnabled(False, False)
        plot.hideButtons()
        self.mainArea.layout().addWidget(self._view)

        # Coalescing commit timer
        self._committimer = QTimer(self, singleShot=True)
        self._committimer.timeout.connect(self.commit)

        self.addAction(
            QAction("Select All", self, shortcut=QKeySequence.SelectAll,
                    triggered=self._select_all)
        )

    def sizeHint(self):
        sh = super().sizeHint()  # type: QSize
        return sh.expandedTo(QSize(800, 600))

    def set_filter_type(self, type_):
        if self.selected_filter_type != type_:
            assert type_ in (Cells, Genes, Data), str(type_)
            self.selected_filter_type = type_
            self.threshold_stacks[0].setCurrentIndex(type_)
            self.threshold_stacks[1].setCurrentIndex(type_)
            if self.data is not None:
                self._setup(self.data, type_)
                self._schedule_commit()

    def filter_type(self):
        return self.selected_filter_type

    def set_upper_limit_enabled(self, enabled):
        if enabled != self.limit_upper_enabled:
            self.limit_upper_enabled = enabled
            self.threshold_stacks[1].setEnabled(enabled)
            self.limit_upper_enabled_cb.setChecked(enabled)
            self._update_filter()
            self._schedule_commit()

    def set_lower_limit_enabled(self, enabled):
        if enabled != self.limit_lower_enabled:
            self.limit_lower_enabled = enabled
            self.threshold_stacks[0].setEnabled(enabled)
            self.limit_lower_enabled_cb.setChecked(enabled)
            self._update_filter()
            self._schedule_commit()

    def _update_filter(self):
        mode = 0
        if self.limit_lower_enabled:
            mode |= ViolinPlot.Low
        if self.limit_upper_enabled:
            mode |= ViolinPlot.High
        self._plot.setSelectionMode(mode)
        self._update_info()
        self._schedule_commit()

    def _is_filter_enabled(self):
        return self.limit_lower_enabled or self.limit_upper_enabled

    @Inputs.data
    def set_data(self, data):
        # type: (Optional[Orange.data.Table]) -> None
        self.clear()
        self.data = data
        if data is not None:
            if np.any(data.X < 0):
                self.Warning.invalid_range()
            self._setup(data, self.filter_type())

        self.unconditional_commit()

    def clear(self):
        self._plot.clear()
        self.data = None
        self._counts = None
        self._update_info()
        self.Warning.clear()

    def _update_info(self):
        text = []
        if self.data is None:
            text += ["No data on input.\n"]
        else:
            N, M = len(self.data), len(self.data.domain.attributes)
            text = []
            text += [
                "Data with {N} cell{Np} and {M} gene{Mp}"
                .format(N=N, Np="s" if N != 1 else "",
                        M=M, Mp="s" if N != 1 else "")
            ]
            if self._is_filter_enabled() and \
                    self.filter_type() in [Cells, Genes]:
                mask = np.ones(self._counts.shape, dtype=bool)
                if self.limit_lower_enabled:
                    mask &= self.limit_lower <= self._counts

                if self.limit_upper_enabled:
                    mask &= self._counts <= self.limit_upper

                n = np.count_nonzero(mask)
                subject = "cell" if self.filter_type() == Cells else "gene"
                if n == 0:
                    text += ["All {}s filtered out".format(subject)]
                else:
                    text += [
                        "{} {subject}{s} in selection"
                        .format(n, subject=subject, s="s" if n != 1 else "")
                    ]
            else:
                text += [""]
        self._info.setText("\n".join(text))

    def _select_all(self):
        self.limit_lower = 0
        self.limit_upper = 2 ** 31 - 1
        self._limitchanged()

    def _setup(self, data, filter_type):
        self._plot.clear()
        self._counts = None
        title = None
        sample_range = None

        if filter_type in [Cells, Genes]:
            if filter_type == Cells:
                axis = 1
                title = "Cell Filter"
                axis_label = "Detected Genes"
            else:
                axis = 0
                title = "Gene Filter"
                axis_label = "Detected Cells"

            mask = (data.X != 0) & (np.isfinite(data.X))
            counts = np.count_nonzero(mask, axis=axis)
            x = counts
            self._counts = counts
            self.Warning.sampling_in_effect.clear()
        elif filter_type == Data:
            x = data.X.ravel()
            x = x[np.isfinite(x)]
            self._counts = x
            MAX_DISPLAY_SIZE = 20000
            if x.size > MAX_DISPLAY_SIZE:
                self.Warning.sampling_in_effect(MAX_DISPLAY_SIZE, x.size)
                # tails to preserve exactly
                tails = 1
                assert x.flags.owndata
                x.sort()
                x1, x2, x3 = x[:tails], x[tails:x.size - tails], x[x.size-tails:]
                assert x1.size + x2.size + x3.size == x.size
                x2 = np.random.RandomState(0x667).choice(
                    x2, size=MAX_DISPLAY_SIZE - 2 * tails, replace=False,
                )
                x = np.r_[x1, x2, x3]
                span = x[-1] - x[0]
            else:
                span = np.ptp(x)
                self.Warning.sampling_in_effect.clear()

            if span > 0:
                ndecimals = max(4 - int(np.floor(np.log10(span))), 1)
            else:
                ndecimals = 1
            spinlow = self.threshold_stacks[0].widget(Data)
            spinhigh = self.threshold_stacks[1].widget(Data)
            spinlow.setDecimals(ndecimals)
            spinhigh.setDecimals(ndecimals)

            title = "Data Filter"
            axis_label = "Gene Expression"
        else:
            assert False

        if x.size:
            xmin, xmax = np.min(x), np.max(x)
            self.limit_lower = np.clip(self.limit_lower, xmin, xmax)
            self.limit_upper = np.clip(self.limit_upper, xmin, xmax)

        if x.size > 0:
            # TODO: Need correction for lower bounded distribution (counts)
            # Use reflection around 0, but gaussian_kde does not provide
            # sufficient flexibility w.r.t bandwidth selection.
            self._plot.setData(x, 1000)
            self._plot.setBoundary(self.limit_lower, self.limit_upper)

        ax = self._plot.getAxis("left")  # type: pg.AxisItem
        ax.setLabel(axis_label)
        self._plot.setTitle(title)
        self._update_info()

    def _update_dotplot(self):
        self._plot.setDataPointsVisible(self.display_dotplot)

    @property
    def limit_lower(self):
        return self.thresholds[self.selected_filter_type][0]

    @limit_lower.setter
    def limit_lower(self, value):
        _, upper = self.thresholds[self.selected_filter_type]
        self.thresholds[self.selected_filter_type] = (value, upper)
        stacklower, _ = self.threshold_stacks
        sb = stacklower.widget(self.selected_filter_type)
        # prevent changes due to spin box rounding
        sb.setValue(value)

    @property
    def limit_upper(self):
        return self.thresholds[self.selected_filter_type][1]

    @limit_upper.setter
    def limit_upper(self, value):
        lower, _ = self.thresholds[self.selected_filter_type]
        self.thresholds[self.selected_filter_type] = (lower, value)
        _, stackupper = self.threshold_stacks
        sb = stackupper.widget(self.selected_filter_type)
        sb.setValue(value)

    @Slot()
    def _limitchanged(self):
        # Low/high limit changed via the spin boxes
        stacklow, stackhigh = self.threshold_stacks
        filter_ = self.selected_filter_type

        lower = stacklow.widget(filter_).value()
        upper = stackhigh.widget(filter_).value()
        self.thresholds[filter_] = (lower, upper)

        if self._counts is not None and self._counts.size:
            xmin = np.min(self._counts)
            xmax = np.max(self._counts)
            self._plot.setBoundary(
                np.clip(lower, xmin, xmax),
                np.clip(upper, xmin, xmax)
            )
            # TODO: Only when the actual selection/filter mask changes
            self._schedule_commit()
            self._update_info()

    def _limitchanged_plot(self):
        # Low/high limit changed via the plot
        if self._counts is not None:
            newlower, newupper = self._plot.boundary()
            filter_ = self.selected_filter_type
            lower, upper = self.thresholds[filter_]
            stacklow, stackhigh = self.threshold_stacks
            spin_lower = stacklow.widget(filter_)
            spin_upper = stackhigh.widget(filter_)
            # do rounding to match the spin box's precision
            if self.limit_lower_enabled:
                newlower = round(newlower, spin_lower.decimals())
            else:
                newlower = lower

            if self.limit_upper_enabled:
                newupper = round(newupper, spin_upper.decimals())
            else:
                newupper = upper

            if self.limit_lower_enabled and newlower != lower:
                self.limit_lower = newlower
            if self.limit_upper_enabled and newupper != upper:
                self.limit_upper = newupper

            self._plot.setBoundary(newlower, newupper)
            # TODO: Only when the actual selection/filter mask changes
            self._schedule_commit()
            self._update_info()

    def _schedule_commit(self):
        self._committimer.start()

    def commit(self):
        self._committimer.stop()
        data = self.data

        if data is not None and self._is_filter_enabled():
            if self.filter_type() in [Cells, Genes]:
                counts = self._counts
                cmax = self.limit_upper
                cmin = self.limit_lower
                mask = np.ones(counts.shape, dtype=bool)
                if self.limit_lower_enabled:
                    mask &= cmin <= counts
                if self.limit_upper_enabled:
                    mask &= counts <= cmax

                if self.filter_type() == Cells:
                    assert counts.size == len(data)
                    data = data[mask]
                else:
                    assert counts.size == len(data.domain.attributes)
                    atts = [v for v, m in zip(data.domain.attributes, mask)
                            if m]
                    data = data.from_table(
                        Orange.data.Domain(
                            atts, data.domain.class_vars, data.domain.metas
                        ),
                        data
                    )
                if len(data) == 0 or \
                        len(data.domain) + len(data.domain.metas) == 0:
                    data = None
            elif self.filter_type() == Data:
                dmin, dmax = self.limit_lower, self.limit_upper
                data = data.copy()
                assert data.X.base is None
                mask = None
                if self.limit_lower_enabled:
                    mask = data.X < dmin
                if self.limit_upper_enabled:
                    if mask is not None:
                        mask |= data.X > dmax
                    else:
                        mask = data.X < dmax
                data.X[mask] = 0.0
            else:
                assert False

        self.Outputs.data.send(data)

    def onDeleteWidget(self):
        self.clear()
        self._plot.close()
        super().onDeleteWidget()

    @classmethod
    def migrate_settings(cls, settings, version):
        if (version is None or version < 2) and \
                ("limit_lower" in settings and "limit_upper" in settings):
            # v2 changed limit_lower, limit_upper to per filter limits stored
            # in a single dict
            lower = settings.pop("limit_lower")
            upper = settings.pop("limit_upper")
            settings["thresholds"] = {
                Cells: (lower, upper),
                Genes: (lower, upper),
                Data: (lower, upper),
            }
示例#52
0
class OWSelectAttributes(widget.OWWidget):
    # pylint: disable=too-many-instance-attributes
    name = "列选择"
    description = "Select columns from the data table and assign them to " \
                  "data features, classes or meta variables."
    icon = "icons/SelectColumns.svg"
    priority = 100
    keywords = ["filter"]

    class Inputs:
        data = Input("Data", Table)

    class Outputs:
        data = Output("Data", Table)
        features = Output("Features", widget.AttributeList, dynamic=False)

    want_main_area = False
    want_control_area = True

    settingsHandler = SelectAttributesDomainContextHandler()
    domain_role_hints = ContextSetting({})
    auto_commit = Setting(True)

    def __init__(self):
        super().__init__()
        # Schedule interface updates (enabled buttons) using a coalescing
        # single shot timer (complex interactions on selection and filtering
        # updates in the 'available_attrs_view')
        self.__interface_update_timer = QTimer(self,
                                               interval=0,
                                               singleShot=True)
        self.__interface_update_timer.timeout.connect(
            self.__update_interface_state)
        # The last view that has the selection for move operation's source
        self.__last_active_view = None  # type: Optional[QListView]

        def update_on_change(view):
            # Schedule interface state update on selection change in `view`
            self.__last_active_view = view
            self.__interface_update_timer.start()

        self.controlArea = QWidget(self.controlArea)
        self.layout().addWidget(self.controlArea)
        layout = QGridLayout()
        self.controlArea.setLayout(layout)
        layout.setContentsMargins(4, 4, 4, 4)
        box = gui.vBox(self.controlArea,
                       "Available Variables",
                       addToLayout=False)

        self.available_attrs = VariablesListItemModel()
        filter_edit, self.available_attrs_view = variables_filter(
            parent=self, model=self.available_attrs)
        box.layout().addWidget(filter_edit)

        def dropcompleted(action):
            if action == Qt.MoveAction:
                self.commit()

        self.available_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.available_attrs_view))
        self.available_attrs_view.dragDropActionDidComplete.connect(
            dropcompleted)

        box.layout().addWidget(self.available_attrs_view)
        layout.addWidget(box, 0, 0, 3, 1)

        box = gui.vBox(self.controlArea, "Features", addToLayout=False)
        self.used_attrs = VariablesListItemModel()
        self.used_attrs_view = VariablesListItemView(
            acceptedType=(Orange.data.DiscreteVariable,
                          Orange.data.ContinuousVariable))

        self.used_attrs_view.setModel(self.used_attrs)
        self.used_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.used_attrs_view))
        self.used_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        box.layout().addWidget(self.used_attrs_view)
        layout.addWidget(box, 0, 2, 1, 1)

        box = gui.vBox(self.controlArea, "Target Variable", addToLayout=False)
        self.class_attrs = VariablesListItemModel()
        self.class_attrs_view = VariablesListItemView(
            acceptedType=(Orange.data.DiscreteVariable,
                          Orange.data.ContinuousVariable))
        self.class_attrs_view.setModel(self.class_attrs)
        self.class_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.class_attrs_view))
        self.class_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        self.class_attrs_view.setMaximumHeight(72)
        box.layout().addWidget(self.class_attrs_view)
        layout.addWidget(box, 1, 2, 1, 1)

        box = gui.vBox(self.controlArea, "Meta Attributes", addToLayout=False)
        self.meta_attrs = VariablesListItemModel()
        self.meta_attrs_view = VariablesListItemView(
            acceptedType=Orange.data.Variable)
        self.meta_attrs_view.setModel(self.meta_attrs)
        self.meta_attrs_view.selectionModel().selectionChanged.connect(
            partial(update_on_change, self.meta_attrs_view))
        self.meta_attrs_view.dragDropActionDidComplete.connect(dropcompleted)
        box.layout().addWidget(self.meta_attrs_view)
        layout.addWidget(box, 2, 2, 1, 1)

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        layout.addWidget(bbox, 0, 1, 1, 1)

        self.up_attr_button = gui.button(bbox,
                                         self,
                                         "Up",
                                         callback=partial(
                                             self.move_up,
                                             self.used_attrs_view))
        self.move_attr_button = gui.button(bbox,
                                           self,
                                           ">",
                                           callback=partial(
                                               self.move_selected,
                                               self.used_attrs_view))
        self.down_attr_button = gui.button(bbox,
                                           self,
                                           "Down",
                                           callback=partial(
                                               self.move_down,
                                               self.used_attrs_view))

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        layout.addWidget(bbox, 1, 1, 1, 1)

        self.up_class_button = gui.button(bbox,
                                          self,
                                          "Up",
                                          callback=partial(
                                              self.move_up,
                                              self.class_attrs_view))
        self.move_class_button = gui.button(bbox,
                                            self,
                                            ">",
                                            callback=partial(
                                                self.move_selected,
                                                self.class_attrs_view,
                                                exclusive=False))
        self.down_class_button = gui.button(bbox,
                                            self,
                                            "Down",
                                            callback=partial(
                                                self.move_down,
                                                self.class_attrs_view))

        bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0)
        layout.addWidget(bbox, 2, 1, 1, 1)
        self.up_meta_button = gui.button(bbox,
                                         self,
                                         "Up",
                                         callback=partial(
                                             self.move_up,
                                             self.meta_attrs_view))
        self.move_meta_button = gui.button(bbox,
                                           self,
                                           ">",
                                           callback=partial(
                                               self.move_selected,
                                               self.meta_attrs_view))
        self.down_meta_button = gui.button(bbox,
                                           self,
                                           "Down",
                                           callback=partial(
                                               self.move_down,
                                               self.meta_attrs_view))

        autobox = gui.auto_commit(None, self, "auto_commit", "Send")
        layout.addWidget(autobox, 3, 0, 1, 3)
        reset = gui.button(None, self, "Reset", callback=self.reset, width=120)
        autobox.layout().insertWidget(0, reset)
        autobox.layout().insertStretch(1, 20)

        layout.setRowStretch(0, 4)
        layout.setRowStretch(1, 0)
        layout.setRowStretch(2, 2)
        layout.setHorizontalSpacing(0)
        self.controlArea.setLayout(layout)

        self.data = None
        self.output_data = None
        self.original_completer_items = []

        self.resize(500, 600)

    @Inputs.data
    def set_data(self, data=None):
        self.update_domain_role_hints()
        self.closeContext()
        self.data = data
        if data is not None:
            self.openContext(data)
            all_vars = data.domain.variables + data.domain.metas

            var_sig = lambda attr: (attr.name, vartype(attr))

            domain_hints = {
                var_sig(attr): ("attribute", i)
                for i, attr in enumerate(data.domain.attributes)
            }

            domain_hints.update({
                var_sig(attr): ("meta", i)
                for i, attr in enumerate(data.domain.metas)
            })

            if data.domain.class_vars:
                domain_hints.update({
                    var_sig(attr): ("class", i)
                    for i, attr in enumerate(data.domain.class_vars)
                })

            # update the hints from context settings
            domain_hints.update(self.domain_role_hints)

            attrs_for_role = lambda role: [
                (domain_hints[var_sig(attr)][1], attr) for attr in all_vars
                if domain_hints[var_sig(attr)][0] == role
            ]

            attributes = [
                attr for place, attr in sorted(attrs_for_role("attribute"),
                                               key=lambda a: a[0])
            ]
            classes = [
                attr for place, attr in sorted(attrs_for_role("class"),
                                               key=lambda a: a[0])
            ]
            metas = [
                attr for place, attr in sorted(attrs_for_role("meta"),
                                               key=lambda a: a[0])
            ]
            available = [
                attr for place, attr in sorted(attrs_for_role("available"),
                                               key=lambda a: a[0])
            ]

            self.used_attrs[:] = attributes
            self.class_attrs[:] = classes
            self.meta_attrs[:] = metas
            self.available_attrs[:] = available
        else:
            self.used_attrs[:] = []
            self.class_attrs[:] = []
            self.meta_attrs[:] = []
            self.available_attrs[:] = []

        self.unconditional_commit()

    def update_domain_role_hints(self):
        """ Update the domain hints to be stored in the widgets settings.
        """
        hints_from_model = lambda role, model: [(
            (attr.name, vartype(attr)),
            (role, i)) for i, attr in enumerate(model)]
        hints = dict(hints_from_model("available", self.available_attrs))
        hints.update(hints_from_model("attribute", self.used_attrs))
        hints.update(hints_from_model("class", self.class_attrs))
        hints.update(hints_from_model("meta", self.meta_attrs))
        self.domain_role_hints = hints

    def selected_rows(self, view):
        """ Return the selected rows in the view.
        """
        rows = view.selectionModel().selectedRows()
        model = view.model()
        if isinstance(model, QSortFilterProxyModel):
            rows = [model.mapToSource(r) for r in rows]
        return [r.row() for r in rows]

    def move_rows(self, view, rows, offset):
        model = view.model()
        newrows = [min(max(0, row + offset), len(model) - 1) for row in rows]

        for row, newrow in sorted(zip(rows, newrows), reverse=offset > 0):
            model[row], model[newrow] = model[newrow], model[row]

        selection = QItemSelection()
        for nrow in newrows:
            index = model.index(nrow, 0)
            selection.select(index, index)
        view.selectionModel().select(selection,
                                     QItemSelectionModel.ClearAndSelect)

        self.commit()

    def move_up(self, view):
        selected = self.selected_rows(view)
        self.move_rows(view, selected, -1)

    def move_down(self, view):
        selected = self.selected_rows(view)
        self.move_rows(view, selected, 1)

    def move_selected(self, view, exclusive=False):
        if self.selected_rows(view):
            self.move_selected_from_to(view, self.available_attrs_view)
        elif self.selected_rows(self.available_attrs_view):
            self.move_selected_from_to(self.available_attrs_view, view,
                                       exclusive)

    def move_selected_from_to(self, src, dst, exclusive=False):
        self.move_from_to(src, dst, self.selected_rows(src), exclusive)

    def move_from_to(self, src, dst, rows, exclusive=False):
        src_model = source_model(src)
        attrs = [src_model[r] for r in rows]

        for s1, s2 in reversed(list(slices(rows))):
            del src_model[s1:s2]

        dst_model = source_model(dst)

        dst_model.extend(attrs)

        self.commit()

    def __update_interface_state(self):
        last_view = self.__last_active_view
        if last_view is not None:
            self.update_interface_state(last_view)

    def update_interface_state(self,
                               focus=None,
                               selected=None,
                               deselected=None):
        for view in [
                self.available_attrs_view, self.used_attrs_view,
                self.class_attrs_view, self.meta_attrs_view
        ]:
            if view is not focus and not view.hasFocus() \
                    and view.selectionModel().hasSelection():
                view.selectionModel().clear()

        def selected_vars(view):
            model = source_model(view)
            return [model[i] for i in self.selected_rows(view)]

        available_selected = selected_vars(self.available_attrs_view)
        attrs_selected = selected_vars(self.used_attrs_view)
        class_selected = selected_vars(self.class_attrs_view)
        meta_selected = selected_vars(self.meta_attrs_view)

        available_types = set(map(type, available_selected))
        all_primitive = all(var.is_primitive() for var in available_types)

        move_attr_enabled = (available_selected and all_primitive) or \
                             attrs_selected

        self.move_attr_button.setEnabled(bool(move_attr_enabled))
        if move_attr_enabled:
            self.move_attr_button.setText(">" if available_selected else "<")

        move_class_enabled = (all_primitive
                              and available_selected) or class_selected

        self.move_class_button.setEnabled(bool(move_class_enabled))
        if move_class_enabled:
            self.move_class_button.setText(">" if available_selected else "<")
        move_meta_enabled = available_selected or meta_selected

        self.move_meta_button.setEnabled(bool(move_meta_enabled))
        if move_meta_enabled:
            self.move_meta_button.setText(">" if available_selected else "<")

        self.__last_active_view = None
        self.__interface_update_timer.stop()

    def commit(self):
        self.update_domain_role_hints()
        if self.data is not None:
            attributes = list(self.used_attrs)
            class_var = list(self.class_attrs)
            metas = list(self.meta_attrs)

            domain = Orange.data.Domain(attributes, class_var, metas)
            newdata = self.data.transform(domain)
            self.output_data = newdata
            self.Outputs.data.send(newdata)
            self.Outputs.features.send(widget.AttributeList(attributes))
        else:
            self.output_data = None
            self.Outputs.data.send(None)
            self.Outputs.features.send(None)

    def reset(self):
        if self.data is not None:
            self.available_attrs[:] = []
            self.used_attrs[:] = self.data.domain.attributes
            self.class_attrs[:] = self.data.domain.class_vars
            self.meta_attrs[:] = self.data.domain.metas
            self.update_domain_role_hints()
            self.commit()

    def send_report(self):
        if not self.data or not self.output_data:
            return
        in_domain, out_domain = self.data.domain, self.output_data.domain
        self.report_domain("Input data", self.data.domain)
        if (in_domain.attributes, in_domain.class_vars,
                in_domain.metas) == (out_domain.attributes,
                                     out_domain.class_vars, out_domain.metas):
            self.report_paragraph("Output data", "No changes.")
        else:
            self.report_domain("Output data", self.output_data.domain)
            diff = list(
                set(in_domain.variables + in_domain.metas) -
                set(out_domain.variables + out_domain.metas))
            if diff:
                text = "%i (%s)" % (len(diff), ", ".join(x.name for x in diff))
                self.report_items((("Removed", text), ))
示例#53
0
class TabBarWidget(QWidget):
    """
    A vertical tab bar widget using tool buttons as for tabs.
    """

    currentChanged = Signal(int)

    def __init__(self, parent=None, **kwargs):
        QWidget.__init__(self, parent, **kwargs)
        layout = QVBoxLayout()
        layout.setContentsMargins(0, 0, 0, 0)
        layout.setSpacing(0)
        self.setLayout(layout)

        self.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Expanding)
        self.__tabs = []

        self.__currentIndex = -1
        self.__changeOnHover = False

        self.__iconSize = QSize(26, 26)

        self.__group = QButtonGroup(self, exclusive=True)
        self.__group.buttonPressed[QAbstractButton].connect(
            self.__onButtonPressed)
        self.setMouseTracking(True)

        self.__sloppyButton = None
        self.__sloppyRegion = QRegion()
        self.__sloppyTimer = QTimer(self, singleShot=True)
        self.__sloppyTimer.timeout.connect(self.__onSloppyTimeout)

    def setChangeOnHover(self, changeOnHover):
        """
        If set to ``True`` the tab widget will change the current index when
        the mouse hovers over a tab button.

        """
        if self.__changeOnHover != changeOnHover:
            self.__changeOnHover = changeOnHover

    def changeOnHover(self):
        """
        Does the current tab index follow the mouse cursor.
        """
        return self.__changeOnHover

    def count(self):
        """
        Return the number of tabs in the widget.
        """
        return len(self.__tabs)

    def addTab(self, text, icon=None, toolTip=None):
        """
        Add a new tab and return it's index.
        """
        return self.insertTab(self.count(), text, icon, toolTip)

    def insertTab(self, index, text, icon=None, toolTip=None):
        """
        Insert a tab at `index`
        """
        button = TabButton(self, objectName="tab-button")
        button.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
        button.setIconSize(self.__iconSize)
        button.setMouseTracking(True)

        self.__group.addButton(button)

        button.installEventFilter(self)

        tab = _Tab(text, icon, toolTip, button, None, None)
        self.layout().insertWidget(index, button)

        self.__tabs.insert(index, tab)
        self.__updateTab(index)

        if self.currentIndex() == -1:
            self.setCurrentIndex(0)
        return index

    def removeTab(self, index):
        """
        Remove a tab at `index`.
        """
        if index >= 0 and index < self.count():
            tab = self.__tabs.pop(index)
            layout_index = self.layout().indexOf(tab.button)
            if layout_index != -1:
                self.layout().takeAt(layout_index)

            self.__group.removeButton(tab.button)

            tab.button.removeEventFilter(self)

            if tab.button is self.__sloppyButton:
                self.__sloppyButton = None
                self.__sloppyRegion = QRegion()

            tab.button.deleteLater()
            tab.button.setParent(None)

            if self.currentIndex() == index:
                if self.count():
                    self.setCurrentIndex(max(index - 1, 0))
                else:
                    self.setCurrentIndex(-1)

    def setTabIcon(self, index, icon):
        """
        Set the `icon` for tab at `index`.
        """
        self.__tabs[index] = self.__tabs[index]._replace(icon=icon)
        self.__updateTab(index)

    def setTabToolTip(self, index, toolTip):
        """
        Set `toolTip` for tab at `index`.
        """
        self.__tabs[index] = self.__tabs[index]._replace(toolTip=toolTip)
        self.__updateTab(index)

    def setTabText(self, index, text):
        """
        Set tab `text` for tab at `index`
        """
        self.__tabs[index] = self.__tabs[index]._replace(text=text)
        self.__updateTab(index)

    def setTabPalette(self, index, palette):
        """
        Set the tab button palette.
        """
        self.__tabs[index] = self.__tabs[index]._replace(palette=palette)
        self.__updateTab(index)

    def setCurrentIndex(self, index):
        """
        Set the current tab index.
        """
        if self.__currentIndex != index:
            self.__currentIndex = index

            self.__sloppyRegion = QRegion()
            self.__sloppyButton = None

            if index != -1:
                self.__tabs[index].button.setChecked(True)

            self.currentChanged.emit(index)

    def currentIndex(self):
        """
        Return the current index.
        """
        return self.__currentIndex

    def button(self, index):
        """
        Return the `TabButton` instance for index.
        """
        return self.__tabs[index].button

    def setIconSize(self, size):
        if self.__iconSize != size:
            self.__iconSize = size
            for tab in self.__tabs:
                tab.button.setIconSize(self.__iconSize)

    def __updateTab(self, index):
        """
        Update the tab button.
        """
        tab = self.__tabs[index]
        b = tab.button

        if tab.text:
            b.setText(tab.text)

        if tab.icon is not None and not tab.icon.isNull():
            b.setIcon(tab.icon)

        if tab.palette:
            b.setPalette(tab.palette)

    def __onButtonPressed(self, button):
        for i, tab in enumerate(self.__tabs):
            if tab.button is button:
                self.setCurrentIndex(i)
                break

    def __calcSloppyRegion(self, current):
        """
        Given a current mouse cursor position return a region of the widget
        where hover/move events should change the current tab only on a
        timeout.

        """
        p1 = current + QPoint(0, 2)
        p2 = current + QPoint(0, -2)
        p3 = self.pos() + QPoint(self.width() + 10, 0)
        p4 = self.pos() + QPoint(self.width() + 10, self.height())
        return QRegion(QPolygon([p1, p2, p3, p4]))

    def __setSloppyButton(self, button):
        """
        Set the current sloppy button (a tab button inside sloppy region)
        and reset the sloppy timeout.

        """
        if not button.isChecked():
            self.__sloppyButton = button
            delay = self.style().styleHint(QStyle.SH_Menu_SubMenuPopupDelay,
                                           None)
            # The delay timeout is the same as used by Qt in the QMenu.
            self.__sloppyTimer.start(delay)
        else:
            self.__sloppyTimer.stop()

    def __onSloppyTimeout(self):
        if self.__sloppyButton is not None:
            button = self.__sloppyButton
            self.__sloppyButton = None
            if not button.isChecked():
                index = [tab.button for tab in self.__tabs].index(button)
                self.setCurrentIndex(index)

    def eventFilter(self, receiver, event):
        if event.type() == QEvent.MouseMove and \
                isinstance(receiver, TabButton):
            pos = receiver.mapTo(self, event.pos())
            if self.__sloppyRegion.contains(pos):
                self.__setSloppyButton(receiver)
            else:
                if not receiver.isChecked():
                    index = [tab.button for tab in self.__tabs].index(receiver)
                    self.setCurrentIndex(index)
                #also update sloppy region if mouse is moved on the same icon
                self.__sloppyRegion = self.__calcSloppyRegion(pos)

        return QWidget.eventFilter(self, receiver, event)

    def leaveEvent(self, event):
        self.__sloppyButton = None
        self.__sloppyRegion = QRegion()

        return QWidget.leaveEvent(self, event)
示例#54
0
class WidgetManager(QObject):
    """
    OWWidget instance manager class.

    This class handles the lifetime of OWWidget instances in a
    :class:`WidgetsScheme`.

    """

    #: A new OWWidget was created and added by the manager.
    widget_for_node_added = Signal(SchemeNode, QWidget)

    #: An OWWidget was removed, hidden and will be deleted when appropriate.
    widget_for_node_removed = Signal(SchemeNode, QWidget)

    class ProcessingState(enum.IntEnum):
        """Widget processing state flags"""

        #: Signal manager is updating/setting the widget's inputs
        InputUpdate = 1
        #: Widget has entered a blocking state (OWWidget.isBlocking)
        BlockingUpdate = 2
        #: Widget has entered processing state
        ProcessingUpdate = 4
        #: Widget is still in the process of initialization
        Initializing = 8

    InputUpdate, BlockingUpdate, ProcessingUpdate, Initializing = ProcessingState

    #: State mask for widgets that cannot be deleted immediately
    #: (see __try_delete)
    _DelayDeleteMask = InputUpdate | BlockingUpdate

    #: Widget initialization states
    Delayed = namedtuple("Delayed", ["node"])
    PartiallyInitialized = namedtuple("Materializing",
                                      ["node", "partially_initialized_widget"])
    Materialized = namedtuple("Materialized", ["node", "widget"])

    class CreationPolicy(enum.Enum):
        """Widget Creation Policy"""

        #: Widgets are scheduled to be created from the event loop, or when
        #: first accessed with `widget_for_node`
        Normal = "Normal"
        #: Widgets are created immediately when added to the workflow model
        Immediate = "Immediate"
        #: Widgets are created only when first accessed with `widget_for_node`
        OnDemand = "OnDemand"

    Normal, Immediate, OnDemand = CreationPolicy

    def __init__(self, parent=None):
        QObject.__init__(self, parent)
        self.__scheme = None
        self.__signal_manager = None
        self.__widgets = []
        self.__initstate_for_node = {}
        self.__creation_policy = WidgetManager.Normal
        #: a queue of all nodes whose widgets are scheduled for
        #: creation/initialization
        self.__init_queue = deque()  # type: Deque[SchemeNode]
        #: Timer for scheduling widget initialization
        self.__init_timer = QTimer(self, interval=0, singleShot=True)
        self.__init_timer.timeout.connect(self.__create_delayed)

        #: A mapping of SchemeNode -> OWWidget (note: a mapping is only added
        #: after the widget is actually created)
        self.__widget_for_node = {}
        #: a mapping of OWWidget -> SchemeNode
        self.__node_for_widget = {}

        # Widgets that were 'removed' from the scheme but were at
        # the time in an input update loop and could not be deleted
        # immediately
        self.__delay_delete = set()

        #: processing state flags for all widgets (including the ones
        #: in __delay_delete).
        #: Note: widgets which have not yet been created do not have an entry
        self.__widget_processing_state = {}

        # Tracks the widget in the update loop by the SignalManager
        self.__updating_widget = None

    def set_scheme(self, scheme):
        """
        Set the :class:`WidgetsScheme` instance to manage.
        """
        self.__scheme = scheme
        self.__signal_manager = scheme.findChild(SignalManager)

        self.__signal_manager.processingStarted[SchemeNode].connect(
            self.__on_processing_started)
        self.__signal_manager.processingFinished[SchemeNode].connect(
            self.__on_processing_finished)
        scheme.node_added.connect(self.add_widget_for_node)
        scheme.node_removed.connect(self.remove_widget_for_node)
        scheme.runtime_env_changed.connect(self.__on_env_changed)
        scheme.installEventFilter(self)

    def scheme(self):
        """
        Return the scheme instance on which this manager is installed.
        """
        return self.__scheme

    def signal_manager(self):
        """
        Return the signal manager in use on the :func:`scheme`.
        """
        return self.__signal_manager

    def widget_for_node(self, node):
        """
        Return the OWWidget instance for the scheme node.
        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Delayed):
            # Create the widget now if it is still pending
            state = self.__materialize(state)
            return state.widget
        elif isinstance(state, WidgetManager.PartiallyInitialized):
            widget = state.partially_initialized_widget
            log.warning(
                "WidgetManager.widget_for_node: "
                "Accessing a partially created widget instance. "
                "This is most likely a result of explicit "
                "QApplication.processEvents call from the '%s.%s' "
                "widgets __init__.",
                type(widget).__module__,
                type(widget).__name__,
            )
            return widget
        elif isinstance(state, WidgetManager.Materialized):
            return state.widget
        else:
            assert False

    def node_for_widget(self, widget):
        """
        Return the SchemeNode instance for the OWWidget.

        Raise a KeyError if the widget does not map to a node in the scheme.
        """
        return self.__node_for_widget[widget]

    def widget_properties(self, node):
        """
        Return the current widget properties/settings.

        Parameters
        ----------
        node : SchemeNode

        Returns
        -------
        settings : dict
        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Materialized):
            return state.widget.settingsHandler.pack_data(state.widget)
        else:
            return node.properties

    def set_creation_policy(self, policy):
        """
        Set the widget creation policy

        Parameters
        ----------
        policy : WidgetManager.CreationPolicy
        """
        if self.__creation_policy != policy:
            self.__creation_policy = policy

            if self.__creation_policy == WidgetManager.Immediate:
                self.__init_timer.stop()
                while self.__init_queue:
                    state = self.__init_queue.popleft()
                    self.__materialize(state)
            elif self.__creation_policy == WidgetManager.Normal:
                if not self.__init_timer.isActive() and self.__init_queue:
                    self.__init_timer.start()
            elif self.__creation_policy == WidgetManager.OnDemand:
                self.__init_timer.stop()
            else:
                assert False

    def creation_policy(self):
        """
        Return the current widget creation policy

        Returns
        -------
        policy: WidgetManager.CreationPolicy
        """
        return self.__creation_policy

    def add_widget_for_node(self, node):
        """
        Create a new OWWidget instance for the corresponding scheme node.
        """
        state = WidgetManager.Delayed(node)
        self.__initstate_for_node[node] = state

        if self.__creation_policy == WidgetManager.Immediate:
            self.__initstate_for_node[node] = self.__materialize(state)
        elif self.__creation_policy == WidgetManager.Normal:
            self.__init_queue.append(state)
            if not self.__init_timer.isActive():
                self.__init_timer.start()
        elif self.__creation_policy == WidgetManager.OnDemand:
            self.__init_queue.append(state)

    def __materialize(self, state):
        # Create and initialize an OWWidget for a Delayed
        # widget initialization
        assert isinstance(state, WidgetManager.Delayed)
        if state in self.__init_queue:
            self.__init_queue.remove(state)

        node = state.node

        widget = self.create_widget_instance(node)

        self.__widgets.append(widget)
        self.__widget_for_node[node] = widget
        self.__node_for_widget[widget] = node

        self.__initialize_widget_state(node, widget)

        state = WidgetManager.Materialized(node, widget)
        self.__initstate_for_node[node] = state
        self.widget_for_node_added.emit(node, widget)

        return state

    def remove_widget_for_node(self, node):
        """
        Remove the OWWidget instance for node.
        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Delayed):
            del self.__initstate_for_node[node]
            self.__init_queue.remove(state)
        elif isinstance(state, WidgetManager.Materialized):
            # Update the node's stored settings/properties dict before
            # removing the widget.
            # TODO: Update/sync whenever the widget settings change.
            node.properties = self._widget_settings(state.widget)
            self.__widgets.remove(state.widget)
            del self.__initstate_for_node[node]
            del self.__widget_for_node[node]
            del self.__node_for_widget[state.widget]
            node.title_changed.disconnect(state.widget.setCaption)
            state.widget.progressBarValueChanged.disconnect(node.set_progress)

            self.widget_for_node_removed.emit(node, state.widget)
            self._delete_widget(state.widget)
        elif isinstance(state, WidgetManager.PartiallyInitialized):
            widget = state.partially_initialized_widget
            raise RuntimeError(
                "A widget/node {} was removed while being initialized. "
                "This is most likely a result of an explicit "
                "QApplication.processEvents call from the '{}.{}' "
                "widgets __init__.\n".format(state.node.title,
                                             type(widget).__module__,
                                             type(widget).__init__))

    def _widget_settings(self, widget):
        return widget.settingsHandler.pack_data(widget)

    def _delete_widget(self, widget):
        """
        Delete the OWBaseWidget instance.
        """
        widget.close()
        # Save settings to user global settings.
        widget.saveSettings()
        # Notify the widget it will be deleted.
        widget.onDeleteWidget()

        state = self.__widget_processing_state[widget]
        if state & WidgetManager._DelayDeleteMask:
            # If the widget is in an update loop and/or blocking we
            # delay the scheduled deletion until the widget is done.
            log.debug(
                "Widget %s removed but still in state :%s. "
                "Deferring deletion.",
                widget,
                state,
            )
            self.__delay_delete.add(widget)
        else:
            widget.deleteLater()
            del self.__widget_processing_state[widget]

    def create_widget_instance(self, node):
        """
        Create a OWWidget instance for the node.
        """
        desc = node.description
        klass = widget = None
        initialized = False
        error = None
        # First try to actually retrieve the class.
        try:
            klass = name_lookup(desc.qualified_name)
        except (ImportError, AttributeError):
            sys.excepthook(*sys.exc_info())
            error = "Could not import {0!r}\n\n{1}".format(
                node.description.qualified_name, traceback.format_exc())
        except Exception:
            sys.excepthook(*sys.exc_info())
            error = "An unexpected error during import of {0!r}\n\n{1}".format(
                node.description.qualified_name, traceback.format_exc())

        if klass is None:
            widget = mock_error_owwidget(node, error)
            initialized = True

        if widget is None:
            log.info(
                "WidgetManager: Creating '%s.%s' instance '%s'.",
                klass.__module__,
                klass.__name__,
                node.title,
            )

            widget = klass.__new__(
                klass,
                None,
                captionTitle=node.title,
                signal_manager=self.signal_manager(),
                stored_settings=node.properties,
                # NOTE: env is a view of the real env and reflects
                # changes to the environment.
                env=self.scheme().runtime_env(),
            )
            initialized = False

        # Init the node/widget mapping and state before calling __init__
        # Some OWWidgets might already send data in the constructor
        # (should this be forbidden? Raise a warning?) triggering the signal
        # manager which would request the widget => node mapping or state
        # Furthermore they can (though they REALLY REALLY REALLY should not)
        # explicitly call qApp.processEvents.
        assert node not in self.__widget_for_node
        self.__widget_for_node[node] = widget
        self.__node_for_widget[widget] = node
        self.__widget_processing_state[widget] = WidgetManager.Initializing
        self.__initstate_for_node[node] = WidgetManager.PartiallyInitialized(
            node, widget)

        if not initialized:
            try:
                widget.__init__()
            except Exception:
                sys.excepthook(*sys.exc_info())
                msg = traceback.format_exc()
                msg = "Could not create {0!r}\n\n{1}".format(
                    node.description.name, msg)
                # remove state tracking for widget ...
                del self.__widget_for_node[node]
                del self.__node_for_widget[widget]
                del self.__widget_processing_state[widget]

                # ... and substitute it with a mock error widget.
                widget = mock_error_owwidget(node, msg)
                self.__widget_for_node[node] = widget
                self.__node_for_widget[widget] = node
                self.__widget_processing_state[widget] = 0
                self.__initstate_for_node[node] = WidgetManager.Materialized(
                    node, widget)

        self.__initstate_for_node[node] = WidgetManager.Materialized(
            node, widget)
        # Clear Initializing flag
        self.__widget_processing_state[widget] &= ~WidgetManager.Initializing

        node.title_changed.connect(widget.setCaption)

        # Widget's info/warning/error messages.
        widget.messageActivated.connect(self.__on_widget_state_changed)
        widget.messageDeactivated.connect(self.__on_widget_state_changed)

        # Widget's statusTip
        node.set_status_message(widget.statusMessage())
        widget.statusMessageChanged.connect(node.set_status_message)

        # Widget's progress bar value state.
        widget.progressBarValueChanged.connect(node.set_progress)

        # Widget processing state (progressBarInit/Finished)
        # and the blocking state.
        widget.processingStateChanged.connect(
            self.__on_processing_state_changed)
        widget.blockingStateChanged.connect(self.__on_blocking_state_changed)

        if widget.isBlocking():
            # A widget can already enter blocking state in __init__
            self.__widget_processing_state[widget] |= self.BlockingUpdate

        if widget.processingState != 0:
            # It can also start processing (initialization of resources, ...)
            self.__widget_processing_state[widget] |= self.ProcessingUpdate
            node.set_processing_state(1)
            node.set_progress(widget.progressBarValue)

        # Install a help shortcut on the widget
        help_action = widget.findChild(QAction, "action-help")
        if help_action is not None:
            help_action.setEnabled(True)
            help_action.setVisible(True)
            help_action.triggered.connect(self.__on_help_request)

        # Up shortcut (activate/open parent)
        up_shortcut = QShortcut(QKeySequence(Qt.ControlModifier + Qt.Key_Up),
                                widget)
        up_shortcut.activated.connect(self.__on_activate_parent)

        # Call setters only after initialization.
        widget.setWindowIcon(icon_loader.from_description(desc).get(desc.icon))
        widget.setCaption(node.title)

        # Schedule an update with the signal manager, due to the cleared
        # implicit Initializing flag
        self.signal_manager()._update()

        return widget

    def node_processing_state(self, node):
        """
        Return the processing state flags for the node.

        Same as `manager.widget_processing_state(manger.widget_for_node(node))`

        """
        state = self.__initstate_for_node[node]
        if isinstance(state, WidgetManager.Materialized):
            return self.__widget_processing_state[state.widget]
        elif isinstance(state, WidgetManager.PartiallyInitialized):
            return self.__widget_processing_state[
                state.partially_initialized_widget]
        else:
            return WidgetManager.Initializing

    def widget_processing_state(self, widget):
        """
        Return the processing state flags for the widget.

        The state is an bitwise or of `InputUpdate` and `BlockingUpdate`.

        """
        return self.__widget_processing_state[widget]

    def __create_delayed(self):
        if self.__init_queue:
            state = self.__init_queue.popleft()
            node = state.node
            self.__initstate_for_node[node] = self.__materialize(state)

        if self.__creation_policy == WidgetManager.Normal and self.__init_queue:
            # restart the timer if pending widgets still in the queue
            self.__init_timer.start()

    def eventFilter(self, receiver, event):
        if event.type() == QEvent.Close and receiver is self.__scheme:
            self.signal_manager().stop()

            # Notify the widget instances.
            for widget in list(self.__widget_for_node.values()):
                widget.close()
                widget.saveSettings()
                widget.onDeleteWidget()
                widget.deleteLater()

            event.accept()
            return True

        return QObject.eventFilter(self, receiver, event)

    def __on_help_request(self):
        """
        Help shortcut was pressed. We send a `QWhatsThisClickedEvent` to
        the scheme and hope someone responds to it.

        """
        # Sender is the QShortcut, and parent the OWBaseWidget
        widget = self.sender().parent()
        try:
            node = self.node_for_widget(widget)
        except KeyError:
            pass
        else:
            qualified_name = node.description.qualified_name
            help_url = "help://search?" + urlencode({"id": qualified_name})
            event = QWhatsThisClickedEvent(help_url)
            QCoreApplication.sendEvent(self.scheme(), event)

    def __on_activate_parent(self):
        """
        Activate parent shortcut was pressed.
        """
        event = ActivateParentEvent()
        QCoreApplication.sendEvent(self.scheme(), event)

    def __initialize_widget_state(self, node, widget):
        """
        Initialize the tracked info/warning/error message state.
        """
        for message_group in widget.message_groups:
            message = user_message_from_state(message_group)
            if message:
                node.set_state_message(message)

    def __on_widget_state_changed(self, msg):
        """
        The OWBaseWidget info/warning/error state has changed.
        """
        widget = msg.group.widget
        try:
            node = self.node_for_widget(widget)
        except KeyError:
            pass
        else:
            self.__initialize_widget_state(node, widget)

    def __on_processing_state_changed(self, state):
        """
        A widget processing state has changed (progressBarInit/Finished)
        """
        widget = self.sender()

        if state:
            self.__widget_processing_state[widget] |= self.ProcessingUpdate
        else:
            self.__widget_processing_state[widget] &= ~self.ProcessingUpdate

        # propagate the change to the workflow model.
        try:
            # we can still track widget state after it was removed from the
            # workflow model (`__delay_delete`)
            node = self.node_for_widget(widget)
        except KeyError:
            pass
        else:
            self.__update_node_processing_state(node)

    def __on_processing_started(self, node):
        """
        Signal manager entered the input update loop for the node.
        """
        widget = self.widget_for_node(node)
        # Remember the widget instance. The node and the node->widget mapping
        # can be removed between this and __on_processing_finished.
        self.__updating_widget = widget
        self.__widget_processing_state[widget] |= self.InputUpdate
        self.__update_node_processing_state(node)

    def __on_processing_finished(self, node):
        """
        Signal manager exited the input update loop for the node.
        """
        widget = self.__updating_widget
        self.__widget_processing_state[widget] &= ~self.InputUpdate

        if widget in self.__node_for_widget:
            self.__update_node_processing_state(node)
        elif widget in self.__delay_delete:
            self.__try_delete(widget)
        else:
            raise ValueError("%r is not managed" % widget)

        self.__updating_widget = None

    def __on_blocking_state_changed(self, state):
        """
        OWWidget blocking state has changed.
        """
        if not state:
            # schedule an update pass.
            self.signal_manager()._update()

        widget = self.sender()
        if state:
            self.__widget_processing_state[widget] |= self.BlockingUpdate
        else:
            self.__widget_processing_state[widget] &= ~self.BlockingUpdate

        if widget in self.__node_for_widget:
            node = self.node_for_widget(widget)
            self.__update_node_processing_state(node)

        elif widget in self.__delay_delete:
            self.__try_delete(widget)

    def __update_node_processing_state(self, node):
        """
        Update the `node.processing_state` to reflect the widget state.
        """
        state = self.node_processing_state(node)
        node.set_processing_state(1 if state else 0)

    def __try_delete(self, widget):
        if not (self.__widget_processing_state[widget]
                & WidgetManager._DelayDeleteMask):
            log.debug("Delayed delete for widget %s", widget)
            self.__delay_delete.remove(widget)
            del self.__widget_processing_state[widget]
            widget.blockingStateChanged.disconnect(
                self.__on_blocking_state_changed)
            widget.processingStateChanged.disconnect(
                self.__on_processing_state_changed)
            widget.deleteLater()

    def __on_env_changed(self, key, newvalue, oldvalue):
        # Notify widgets of a runtime environment change
        for widget in self.__widget_for_node.values():
            widget.workflowEnvChanged(key, newvalue, oldvalue)
示例#55
0
    def test_anchoritem(self):
        anchoritem = NodeAnchorItem(None)
        anchoritem.setAnimationEnabled(False)
        self.scene.addItem(anchoritem)

        path = QPainterPath()
        path.addEllipse(0, 0, 100, 100)

        anchoritem.setAnchorPath(path)

        anchor = AnchorPoint()
        anchoritem.addAnchor(anchor)

        ellipse1 = QGraphicsEllipseItem(-3, -3, 6, 6)
        ellipse2 = QGraphicsEllipseItem(-3, -3, 6, 6)
        self.scene.addItem(ellipse1)
        self.scene.addItem(ellipse2)

        anchor.scenePositionChanged.connect(ellipse1.setPos)

        with self.assertRaises(ValueError):
            anchoritem.addAnchor(anchor)

        anchor1 = AnchorPoint()
        anchoritem.addAnchor(anchor1)

        anchor1.scenePositionChanged.connect(ellipse2.setPos)

        self.assertSequenceEqual(anchoritem.anchorPoints(), [anchor, anchor1])

        self.assertSequenceEqual(anchoritem.anchorPositions(), [2 / 3, 1 / 3])

        anchoritem.setAnchorPositions([0.5, 0.0])
        self.assertSequenceEqual(anchoritem.anchorPositions(), [0.5, 0.0])

        def advance():
            t = anchoritem.anchorPositions()
            t = [(t + 0.05) % 1.0 for t in t]
            anchoritem.setAnchorPositions(t)

        timer = QTimer(anchoritem, interval=10)
        timer.start()
        timer.timeout.connect(advance)

        self.qWait()
        timer.stop()

        anchoritem.setAnchorOpen(True)
        anchoritem.setHovered(True)
        self.assertEqual(*[p.scenePos() for p in anchoritem.anchorPoints()])
        anchoritem.setAnchorOpen(False)
        self.assertNotEqual(*[p.scenePos() for p in anchoritem.anchorPoints()])
        anchoritem.setAnchorOpen(False)
        anchoritem.setHovered(True)
        self.assertNotEqual(*[p.scenePos() for p in anchoritem.anchorPoints()])

        anchoritem = NodeAnchorItem(None)

        anchoritem.setSignals([
            InputSignal("first", "object", "set_first"),
            InputSignal("second", "object", "set_second")
        ])
        self.assertListEqual(
            anchoritem._NodeAnchorItem__pathStroker.dashPattern(),
            list(anchoritem._NodeAnchorItem__unanchoredDash))
        anchoritem.setAnchorOpen(True)
        anchoritem.setHovered(True)
        self.assertListEqual(
            anchoritem._NodeAnchorItem__pathStroker.dashPattern(),
            list(anchoritem._NodeAnchorItem__channelDash))
示例#56
0
class OWScatterPlotBase(gui.OWComponent, QObject):
    """
    Provide a graph component for widgets that show any kind of point plot

    The component plots a set of points with given coordinates, shapes,
    sizes and colors. Its function is similar to that of a *view*, whereas
    the widget represents a *model* and a *controler*.

    The model (widget) needs to provide methods:

    - `get_coordinates_data`, `get_size_data`, `get_color_data`,
      `get_shape_data`, `get_label_data`, which return a 1d array (or two
      arrays, for `get_coordinates_data`) of `dtype` `float64`, except for
      `get_label_data`, which returns formatted labels;
    - `get_color_labels`, `get_shape_labels`, which are return lists of
       strings used for the color and shape legend;
    - `get_tooltip`, which gives a tooltip for a single data point
    - (optional) `impute_sizes`, `impute_shapes` get final coordinates and
      shapes, and replace nans;
    - `get_subset_mask` returns a bool array indicating whether a
      data point is in the subset or not (e.g. in the 'Data Subset' signal
      in the Scatter plot and similar widgets);
    - `get_palette` returns a palette appropriate for visualizing the
      current color data;
    - `is_continuous_color` decides the type of the color legend;

    The widget (in a role of controller) must also provide methods
    - `selection_changed`

    If `get_coordinates_data` returns `(None, None)`, the plot is cleared. If
    `get_size_data`, `get_color_data` or `get_shape_data` return `None`,
    all points will have the same size, color or shape, respectively.
    If `get_label_data` returns `None`, there are no labels.

    The view (this compomnent) provides methods `update_coordinates`,
    `update_sizes`, `update_colors`, `update_shapes` and `update_labels`
    that the widget (in a role of a controler) should call when any of
    these properties are changed. If the widget calls, for instance, the
    plot's `update_colors`, the plot will react by calling the widget's
    `get_color_data` as well as the widget's methods needed to construct the
    legend.

    The view also provides a method `reset_graph`, which should be called only
    when
    - the widget gets entirely new data
    - the number of points may have changed, for instance when selecting
    a different attribute for x or y in the scatter plot, where the points
    with missing x or y coordinates are hidden.

    Every `update_something` calls the plot's `get_something`, which
    calls the model's `get_something_data`, then it transforms this data
    into whatever is needed (colors, shapes, scaled sizes) and changes the
    plot. For the simplest example, here is `update_shapes`:

    ```
        def update_shapes(self):
            if self.scatterplot_item:
                shape_data = self.get_shapes()
                self.scatterplot_item.setSymbol(shape_data)
            self.update_legends()

        def get_shapes(self):
            shape_data = self.master.get_shape_data()
            shape_data = self.master.impute_shapes(
                shape_data, len(self.CurveSymbols) - 1)
            return self.CurveSymbols[shape_data]
    ```

    On the widget's side, `get_something_data` is essentially just:

    ```
        def get_size_data(self):
            return self.get_column(self.attr_size)
    ```

    where `get_column` retrieves a column while also filtering out the
    points with missing x and y and so forth. (Here we present the simplest
    two cases, "shapes" for the view and "sizes" for the model. The colors
    for the view are more complicated since they deal with discrete and
    continuous palettes, and the shapes for the view merge infrequent shapes.)

    The plot can also show just a random sample of the data. The sample size is
    set by `set_sample_size`, and the rest is taken care by the plot: the
    widget keeps providing the data for all points, selection indices refer
    to the entire set etc. Internally, sampling happens as early as possible
    (in methods `get_<something>`).
    """
    too_many_labels = Signal(bool)

    label_only_selected = Setting(False)
    point_width = Setting(10)
    alpha_value = Setting(128)
    show_grid = Setting(False)
    show_legend = Setting(True)
    class_density = Setting(False)
    jitter_size = Setting(0)

    resolution = 256

    CurveSymbols = np.array("o x t + d s t2 t3 p h star ?".split())
    MinShapeSize = 6
    DarkerValue = 120
    UnknownColor = (168, 50, 168)

    COLOR_NOT_SUBSET = (128, 128, 128, 0)
    COLOR_SUBSET = (128, 128, 128, 255)
    COLOR_DEFAULT = (128, 128, 128, 0)

    MAX_VISIBLE_LABELS = 500

    def __init__(self, scatter_widget, parent=None, view_box=ViewBox):
        QObject.__init__(self)
        gui.OWComponent.__init__(self, scatter_widget)

        self.subset_is_shown = False

        self.view_box = view_box(self)
        self.plot_widget = pg.PlotWidget(viewBox=self.view_box,
                                         parent=parent,
                                         background="w")
        self.plot_widget.hideAxis("left")
        self.plot_widget.hideAxis("bottom")
        self.plot_widget.getPlotItem().buttonsHidden = True
        self.plot_widget.setAntialiasing(True)
        self.plot_widget.sizeHint = lambda: QSize(500, 500)

        self.density_img = None
        self.scatterplot_item = None
        self.scatterplot_item_sel = None
        self.labels = []

        self.master = scatter_widget
        self._create_drag_tooltip(self.plot_widget.scene())

        self.selection = None  # np.ndarray

        self.n_valid = 0
        self.n_shown = 0
        self.sample_size = None
        self.sample_indices = None

        self.palette = None

        self.shape_legend = self._create_legend(((1, 0), (1, 0)))
        self.color_legend = self._create_legend(((1, 1), (1, 1)))
        self.update_legend_visibility()

        self.scale = None  # DiscretizedScale
        self._too_many_labels = False

        # self.setMouseTracking(True)
        # self.grabGesture(QPinchGesture)
        # self.grabGesture(QPanGesture)

        self.update_grid_visibility()

        self._tooltip_delegate = EventDelegate(self.help_event)
        self.plot_widget.scene().installEventFilter(self._tooltip_delegate)
        self.view_box.sigTransformChanged.connect(self.update_density)
        self.view_box.sigRangeChangedManually.connect(self.update_labels)

        self.timer = None

    def _create_legend(self, anchor):
        legend = LegendItem()
        legend.setParentItem(self.plot_widget.getViewBox())
        legend.restoreAnchor(anchor)
        return legend

    def _create_drag_tooltip(self, scene):
        tip_parts = [(Qt.ShiftModifier, "Shift: Add group"),
                     (Qt.ShiftModifier + Qt.ControlModifier,
                      "Shift-{}: Append to group".format(
                          "Cmd" if sys.platform == "darwin" else "Ctrl")),
                     (Qt.AltModifier, "Alt: Remove")]
        all_parts = ", ".join(part for _, part in tip_parts)
        self.tiptexts = {
            int(modifier): all_parts.replace(part, "<b>{}</b>".format(part))
            for modifier, part in tip_parts
        }
        self.tiptexts[0] = all_parts

        self.tip_textitem = text = QGraphicsTextItem()
        # Set to the longest text
        text.setHtml(self.tiptexts[Qt.ShiftModifier + Qt.ControlModifier])
        text.setPos(4, 2)
        r = text.boundingRect()
        rect = QGraphicsRectItem(0, 0, r.width() + 8, r.height() + 4)
        rect.setBrush(QColor(224, 224, 224, 212))
        rect.setPen(QPen(Qt.NoPen))
        self.update_tooltip()

        scene.drag_tooltip = scene.createItemGroup([rect, text])
        scene.drag_tooltip.hide()

    def update_tooltip(self, modifiers=Qt.NoModifier):
        modifiers &= Qt.ShiftModifier + Qt.ControlModifier + Qt.AltModifier
        text = self.tiptexts.get(int(modifiers), self.tiptexts[0])
        self.tip_textitem.setHtml(text + self._get_jittering_tooltip())

    def _get_jittering_tooltip(self):
        warn_jittered = ""
        if self.jitter_size:
            warn_jittered = \
                '<br/><br/>' \
                '<span style="background-color: red; color: white; ' \
                'font-weight: 500;">' \
                '&nbsp;Warning: Selection is applied to unjittered data&nbsp;' \
                '</span>'
        return warn_jittered

    def update_jittering(self):
        self.update_tooltip()
        x, y = self.get_coordinates()
        if x is None or not len(x) or self.scatterplot_item is None:
            return
        self._update_plot_coordinates(self.scatterplot_item, x, y)
        self._update_plot_coordinates(self.scatterplot_item_sel, x, y)
        self.update_labels()

    # TODO: Rename to remove_plot_items
    def clear(self):
        """
        Remove all graphical elements from the plot

        Calls the pyqtgraph's plot widget's clear, sets all handles to `None`,
        removes labels and selections.

        This method should generally not be called by the widget. If the data
        is gone (*e.g.* upon receiving `None` as an input data signal), this
        should be handler by calling `reset_graph`, which will in turn call
        `clear`.

        Derived classes should override this method if they add more graphical
        elements. For instance, the regression line in the scatterplot adds
        `self.reg_line_item = None` (the line in the plot is already removed
        in this method).
        """
        self.plot_widget.clear()

        self.density_img = None
        if self.timer is not None and self.timer.isActive():
            self.timer.stop()
            self.timer = None
        self.scatterplot_item = None
        self.scatterplot_item_sel = None
        self.labels = []
        self._signal_too_many_labels(False)
        self.view_box.init_history()
        self.view_box.tag_history()

    # TODO: I hate `keep_something` and `reset_something` arguments
    # __keep_selection is used exclusively be set_sample size which would
    # otherwise just repeat the code from reset_graph except for resetting
    # the selection. I'm uncomfortable with this; we may prefer to have a
    # method _reset_graph which does everything except resetting the selection,
    # and reset_graph would call it.
    def reset_graph(self, __keep_selection=False):
        """
        Reset the graph to new data (or no data)

        The method must be called when the plot receives new data, in
        particular when the number of points change. If only their properties
        - like coordinates or shapes - change, an update method
        (`update_coordinates`, `update_shapes`...) should be called instead.

        The method must also be called when the data is gone.

        The method calls `clear`, followed by calls of all update methods.

        NB. Argument `__keep_selection` is for internal use only
        """
        self.clear()
        if not __keep_selection:
            self.selection = None
        self.sample_indices = None
        self.update_coordinates()
        self.update_point_props()

    def set_sample_size(self, sample_size):
        """
        Set the sample size

        Args:
            sample_size (int or None): sample size or `None` to show all points
        """
        if self.sample_size != sample_size:
            self.sample_size = sample_size
            self.reset_graph(True)

    def update_point_props(self):
        """
        Update the sizes, colors, shapes and labels

        The method calls the appropriate update methods for individual
        properties.
        """
        self.update_sizes()
        self.update_colors()
        self.update_selection_colors()
        self.update_shapes()
        self.update_labels()

    # Coordinates
    # TODO: It could be nice if this method was run on entire data, not just
    # a sample. For this, however, it would need to either be called from
    # `get_coordinates` before sampling (very ugly) or call
    # `self.master.get_coordinates_data` (beyond ugly) or the widget would
    # have to store the ranges of unsampled data (ugly).
    # Maybe we leave it as it is.
    def _reset_view(self, x_data, y_data):
        """
        Set the range of the view box

        Args:
            x_data (np.ndarray): x coordinates
            y_data (np.ndarray) y coordinates
        """
        min_x, max_x = np.min(x_data), np.max(x_data)
        min_y, max_y = np.min(y_data), np.max(y_data)
        self.view_box.setRange(QRectF(min_x, min_y, max_x - min_x or 1,
                                      max_y - min_y or 1),
                               padding=0.025)

    def _filter_visible(self, data):
        """Return the sample from the data using the stored sample_indices"""
        if data is None or self.sample_indices is None:
            return data
        else:
            return np.asarray(data[self.sample_indices])

    def get_coordinates(self):
        """
        Prepare coordinates of the points in the plot

        The method is called by `update_coordinates`. It gets the coordinates
        from the widget, jitters them and return them.

        The methods also initializes the sample indices if neededd and stores
        the original and sampled number of points.

        Returns:
            (tuple): a pair of numpy arrays containing (sampled) coordinates,
                or `(None, None)`.
        """
        x, y = self.master.get_coordinates_data()
        if x is None:
            self.n_valid = self.n_shown = 0
            return None, None
        self.n_valid = len(x)
        self._create_sample()
        x = self._filter_visible(x)
        y = self._filter_visible(y)
        # Jittering after sampling is OK if widgets do not change the sample
        # semi-permanently, e.g. take a sample for the duration of some
        # animation. If the sample size changes dynamically (like by adding
        # a "sample size" slider), points would move around when the sample
        # size changes. To prevent this, jittering should be done before
        # sampling (i.e. two lines earlier). This would slow it down somewhat.
        x, y = self.jitter_coordinates(x, y)
        return x, y

    def _create_sample(self):
        """
        Create a random sample if the data is larger than the set sample size
        """
        self.n_shown = min(self.n_valid, self.sample_size or self.n_valid)
        if self.sample_size is not None \
                and self.sample_indices is None \
                and self.n_valid != self.n_shown:
            random = np.random.RandomState(seed=0)
            self.sample_indices = random.choice(self.n_valid,
                                                self.n_shown,
                                                replace=False)
            # TODO: Is this really needed?
            np.sort(self.sample_indices)

    def jitter_coordinates(self, x, y):
        """
        Display coordinates to random positions within ellipses with
        radiuses of `self.jittter_size` percents of spans
        """
        if self.jitter_size == 0:
            return x, y
        return self._jitter_data(x, y)

    def _jitter_data(self, x, y, span_x=None, span_y=None):
        if span_x is None:
            span_x = np.max(x) - np.min(x)
        if span_y is None:
            span_y = np.max(y) - np.min(y)
        random = np.random.RandomState(seed=0)
        rs = random.uniform(0, 1, len(x))
        phis = random.uniform(0, 2 * np.pi, len(x))
        magnitude = self.jitter_size / 100
        return (x + magnitude * span_x * rs * np.cos(phis),
                y + magnitude * span_y * rs * np.sin(phis))

    def _update_plot_coordinates(self, plot, x, y):
        """
        Change the coordinates of points while keeping other properites

        Note. Pyqtgraph does not offer a method for this: setting coordinates
        invalidates other data. We therefore retrieve the data to set it
        together with the coordinates. Pyqtgraph also does not offer a
        (documented) method for retrieving the data, yet using
        `plot.data[prop]` looks reasonably safe. The alternative, calling
        update for every property would essentially reset the graph, which
        can be time consuming.
        """
        data = dict(x=x, y=y)
        for prop in ('pen', 'brush', 'size', 'symbol', 'data', 'sourceRect',
                     'targetRect'):
            data[prop] = plot.data[prop]
        plot.setData(**data)

    def update_coordinates(self):
        """
        Trigger the update of coordinates while keeping other features intact.

        The method gets the coordinates by calling `self.get_coordinates`,
        which in turn calls the widget's `get_coordinate_data`. The number of
        coordinate pairs returned by the latter must match the current number
        of points. If this is not the case, the widget should trigger
        the complete update by calling `reset_graph` instead of this method.
        """
        x, y = self.get_coordinates()
        if x is None or not len(x):
            return
        if self.scatterplot_item is None:
            if self.sample_indices is None:
                indices = np.arange(self.n_valid)
            else:
                indices = self.sample_indices
            kwargs = dict(x=x, y=y, data=indices)
            self.scatterplot_item = ScatterPlotItem(**kwargs)
            self.scatterplot_item.sigClicked.connect(self.select_by_click)
            self.scatterplot_item_sel = ScatterPlotItem(**kwargs)
            self.plot_widget.addItem(self.scatterplot_item_sel)
            self.plot_widget.addItem(self.scatterplot_item)
        else:
            self._update_plot_coordinates(self.scatterplot_item, x, y)
            self._update_plot_coordinates(self.scatterplot_item_sel, x, y)
            self.update_labels()

        self.update_density()  # Todo: doesn't work: try MDS with density on
        self._reset_view(x, y)

    # Sizes
    def get_sizes(self):
        """
        Prepare data for sizes of points in the plot

        The method is called by `update_sizes`. It gets the sizes
        from the widget and performs the necessary scaling and sizing.

        Returns:
            (np.ndarray): sizes
        """
        size_column = self.master.get_size_data()
        if size_column is None:
            return np.full((self.n_shown, ),
                           self.MinShapeSize + (5 + self.point_width) * 0.5)
        size_column = self._filter_visible(size_column)
        size_column = size_column.copy()
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=RuntimeWarning)
            size_column -= np.nanmin(size_column)
            mx = np.nanmax(size_column)
        if mx > 0:
            size_column /= mx
        else:
            size_column[:] = 0.5
        return self.MinShapeSize + (5 + self.point_width) * size_column

    def update_sizes(self):
        """
        Trigger an update of point sizes

        The method calls `self.get_sizes`, which in turn calls the widget's
        `get_size_data`. The result are properly scaled and then passed
        back to widget for imputing (`master.impute_sizes`).
        """
        if self.scatterplot_item:
            size_data = self.get_sizes()
            size_imputer = getattr(self.master, "impute_sizes",
                                   self.default_impute_sizes)
            size_imputer(size_data)

            if self.timer is not None and self.timer.isActive():
                self.timer.stop()
                self.timer = None

            current_size_data = self.scatterplot_item.data["size"].copy()
            diff = size_data - current_size_data
            widget = self

            class Timeout:
                # 0.5 - np.cos(np.arange(0.17, 1, 0.17) * np.pi) / 2
                factors = [0.07, 0.26, 0.52, 0.77, 0.95, 1]

                def __init__(self):
                    self._counter = 0

                def __call__(self):
                    factor = self.factors[self._counter]
                    self._counter += 1
                    size = current_size_data + diff * factor
                    if len(self.factors) == self._counter:
                        widget.timer.stop()
                        widget.timer = None
                        size = size_data
                    widget.scatterplot_item.setSize(size)
                    widget.scatterplot_item_sel.setSize(size + SELECTION_WIDTH)

            if np.sum(current_size_data) / self.n_valid != -1 and np.sum(diff):
                # If encountered any strange behaviour when updating sizes,
                # implement it with threads
                self.timer = QTimer(self.scatterplot_item, interval=50)
                self.timer.timeout.connect(Timeout())
                self.timer.start()
            else:
                self.scatterplot_item.setSize(size_data)
                self.scatterplot_item_sel.setSize(size_data + SELECTION_WIDTH)

    update_point_size = update_sizes  # backward compatibility (needed?!)
    update_size = update_sizes

    @classmethod
    def default_impute_sizes(cls, size_data):
        """
        Fallback imputation for sizes.

        Set the size to two pixels smaller than the minimal size

        Returns:
            (bool): True if there was any missing data
        """
        nans = np.isnan(size_data)
        if np.any(nans):
            size_data[nans] = cls.MinShapeSize - 2
            return True
        else:
            return False

    # Colors
    def get_colors(self):
        """
        Prepare data for colors of the points in the plot

        The method is called by `update_colors`. It gets the colors and the
        indices of the data subset from the widget (`get_color_data`,
        `get_subset_mask`), and constructs lists of pens and brushes for
        each data point.

        The method uses different palettes for discrete and continuous data,
        as determined by calling the widget's method `is_continuous_color`.

        If also marks the points that are in the subset as defined by, for
        instance the 'Data Subset' signal in the Scatter plot and similar
        widgets. (Do not confuse this with *selected points*, which are
        marked by circles around the points, which are colored by groups
        and thus independent of this method.)

        Returns:
            (tuple): a list of pens and list of brushes
        """
        self.palette = self.master.get_palette()
        c_data = self.master.get_color_data()
        c_data = self._filter_visible(c_data)
        subset = self.master.get_subset_mask()
        subset = self._filter_visible(subset)
        self.subset_is_shown = subset is not None
        if c_data is None:  # same color
            return self._get_same_colors(subset)
        elif self.master.is_continuous_color():
            return self._get_continuous_colors(c_data, subset)
        else:
            return self._get_discrete_colors(c_data, subset)

    def _get_same_colors(self, subset):
        """
        Return the same pen for all points while the brush color depends
        upon whether the point is in the subset or not

        Args:
            subset (np.ndarray): a bool array indicating whether a data point
                is in the subset or not (e.g. in the 'Data Subset' signal
                in the Scatter plot and similar widgets);

        Returns:
            (tuple): a list of pens and list of brushes
        """
        color = self.plot_widget.palette().color(OWPalette.Data)
        pen = [_make_pen(color, 1.5) for _ in range(self.n_shown)]
        if subset is not None:
            brush = np.where(
                subset,
                *(QBrush(QColor(*col))
                  for col in (self.COLOR_SUBSET, self.COLOR_NOT_SUBSET)))
        else:
            color = QColor(*self.COLOR_DEFAULT)
            color.setAlpha(self.alpha_value)
            brush = [QBrush(color) for _ in range(self.n_shown)]
        return pen, brush

    def _get_continuous_colors(self, c_data, subset):
        """
        Return the pens and colors whose color represent an index into
        a continuous palette. The same color is used for pen and brush,
        except the former is darker. If the data has a subset, the brush
        is transparent for points that are not in the subset.
        """
        if np.isnan(c_data).all():
            self.scale = None
        else:
            self.scale = DiscretizedScale(np.nanmin(c_data), np.nanmax(c_data))
            c_data -= self.scale.offset
            c_data /= self.scale.width
            c_data = np.floor(c_data) + 0.5
            c_data /= self.scale.bins
            c_data = np.clip(c_data, 0, 1)
        pen = self.palette.getRGB(c_data)
        brush = np.hstack(
            [pen, np.full((len(pen), 1), self.alpha_value, dtype=int)])
        pen *= 100
        pen //= self.DarkerValue
        pen = [_make_pen(QColor(*col), 1.5) for col in pen.tolist()]

        if subset is not None:
            brush[:, 3] = 0
            brush[subset, 3] = 255
        brush = np.array([QBrush(QColor(*col)) for col in brush.tolist()])
        return pen, brush

    def _get_discrete_colors(self, c_data, subset):
        """
        Return the pens and colors whose color represent an index into
        a discrete palette. The same color is used for pen and brush,
        except the former is darker. If the data has a subset, the brush
        is transparent for points that are not in the subset.
        """
        n_colors = self.palette.number_of_colors
        c_data = c_data.copy()
        c_data[np.isnan(c_data)] = n_colors
        c_data = c_data.astype(int)
        colors = np.r_[self.palette.getRGB(np.arange(n_colors)),
                       [[128, 128, 128]]]
        pens = np.array([
            _make_pen(QColor(*col).darker(self.DarkerValue), 1.5)
            for col in colors
        ])
        pen = pens[c_data]
        alpha = self.alpha_value if subset is None else 255
        brushes = np.array([[
            QBrush(QColor(0, 0, 0, 0)),
            QBrush(QColor(col[0], col[1], col[2], alpha))
        ] for col in colors])
        brush = brushes[c_data]

        if subset is not None:
            brush = np.where(subset, brush[:, 1], brush[:, 0])
        else:
            brush = brush[:, 1]
        return pen, brush

    def update_colors(self):
        """
        Trigger an update of point sizes

        The method calls `self.get_colors`, which in turn calls the widget's
        `get_color_data` to get the indices in the pallette. `get_colors`
        returns a list of pens and brushes to which this method uses to
        update the colors. Finally, the method triggers the update of the
        legend and the density plot.
        """
        if self.scatterplot_item is not None:
            pen_data, brush_data = self.get_colors()
            self.scatterplot_item.setPen(pen_data, update=False, mask=None)
            self.scatterplot_item.setBrush(brush_data, mask=None)
        self.update_legends()
        self.update_density()

    update_alpha_value = update_colors

    def update_density(self):
        """
        Remove the existing density plot (if there is one) and replace it
        with a new one (if enabled).

        The method gets the colors from the pens of the currently plotted
        points.
        """
        if self.density_img:
            self.plot_widget.removeItem(self.density_img)
            self.density_img = None
        if self.class_density and self.scatterplot_item is not None:
            rgb_data = [
                pen.color().getRgb()[:3] if pen is not None else
                (255, 255, 255) for pen in self.scatterplot_item.data['pen']
            ]
            if len(set(rgb_data)) <= 1:
                return
            [min_x, max_x], [min_y, max_y] = self.view_box.viewRange()
            x_data, y_data = self.scatterplot_item.getData()
            self.density_img = classdensity.class_density_image(
                min_x, max_x, min_y, max_y, self.resolution, x_data, y_data,
                rgb_data)
            self.plot_widget.addItem(self.density_img)

    def update_selection_colors(self):
        """
        Trigger an update of selection markers

        This update method is usually not called by the widget but by the
        plot, since it is the plot that handles the selections.

        Like other update methods, it calls the corresponding get method
        (`get_colors_sel`) which returns a list of pens and brushes.
        """
        if self.scatterplot_item_sel is None:
            return
        pen, brush = self.get_colors_sel()
        self.scatterplot_item_sel.setPen(pen, update=False, mask=None)
        self.scatterplot_item_sel.setBrush(brush, mask=None)

    def get_colors_sel(self):
        """
        Return pens and brushes for selection markers.

        A pen can is set to `Qt.NoPen` if a point is not selected.

        All brushes are completely transparent whites.

        Returns:
            (tuple): a list of pens and a list of brushes
        """
        nopen = QPen(Qt.NoPen)
        if self.selection is None:
            pen = [nopen] * self.n_shown
        else:
            sels = np.max(self.selection)
            if sels == 1:
                pen = np.where(
                    self._filter_visible(self.selection),
                    _make_pen(QColor(255, 190, 0, 255), SELECTION_WIDTH + 1),
                    nopen)
            else:
                palette = ColorPaletteGenerator(number_of_colors=sels + 1)
                pen = np.choose(self._filter_visible(self.selection),
                                [nopen] + [
                                    _make_pen(palette[i], SELECTION_WIDTH + 1)
                                    for i in range(sels)
                                ])
        return pen, [QBrush(QColor(255, 255, 255, 0))] * self.n_shown

    # Labels
    def get_labels(self):
        """
        Prepare data for labels for points

        The method returns the results of the widget's `get_label_data`

        Returns:
            (labels): a sequence of labels
        """
        return self._filter_visible(self.master.get_label_data())

    def update_labels(self):
        """
        Trigger an update of labels

        The method calls `get_labels` which in turn calls the widget's
        `get_label_data`. The obtained labels are shown if the corresponding
        points are selected or if `label_only_selected` is `false`.
        """
        for label in self.labels:
            self.plot_widget.removeItem(label)
        self.labels = []

        mask = None
        if self.scatterplot_item is not None:
            x, y = self.scatterplot_item.getData()
            mask = self._label_mask(x, y)

        if mask is not None:
            labels = self.get_labels()
            if labels is None:
                mask = None

        self._signal_too_many_labels(mask is not None
                                     and mask.sum() > self.MAX_VISIBLE_LABELS)
        if self._too_many_labels or mask is None or not np.any(mask):
            return

        black = pg.mkColor(0, 0, 0)
        labels = labels[mask]
        x = x[mask]
        y = y[mask]
        for label, xp, yp in zip(labels, x, y):
            ti = TextItem(label, black)
            ti.setPos(xp, yp)
            self.plot_widget.addItem(ti)
            self.labels.append(ti)

    def _signal_too_many_labels(self, too_many):
        if self._too_many_labels != too_many:
            self._too_many_labels = too_many
            self.too_many_labels.emit(too_many)

    def _label_mask(self, x, y):
        (x0, x1), (y0, y1) = self.view_box.viewRange()
        mask = np.logical_and(np.logical_and(x >= x0, x <= x1),
                              np.logical_and(y >= y0, y <= y1))
        if self.label_only_selected:
            sub_mask = self._filter_visible(self.master.get_subset_mask())
            if self.selection is None:
                if sub_mask is None:
                    return None
                else:
                    sel_mask = sub_mask
            else:
                sel_mask = self._filter_visible(self.selection) != 0
                if sub_mask is not None:
                    sel_mask = np.logical_or(sel_mask, sub_mask)
            mask = np.logical_and(mask, sel_mask)
        return mask

    # Shapes
    def get_shapes(self):
        """
        Prepare data for shapes of points in the plot

        The method is called by `update_shapes`. It gets the data from
        the widget's `get_shape_data`, and then calls its `impute_shapes`
        to impute the missing shape (usually with some default shape).

        Returns:
            (np.ndarray): an array of symbols (e.g. o, x, + ...)
        """
        shape_data = self.master.get_shape_data()
        shape_data = self._filter_visible(shape_data)
        # Data has to be copied so the imputation can change it in-place
        # TODO: Try avoiding this when we move imputation to the widget
        if shape_data is not None:
            shape_data = np.copy(shape_data)
        shape_imputer = getattr(self.master, "impute_shapes",
                                self.default_impute_shapes)
        shape_imputer(shape_data, len(self.CurveSymbols) - 1)
        if isinstance(shape_data, np.ndarray):
            shape_data = shape_data.astype(int)
        else:
            shape_data = np.zeros(self.n_shown, dtype=int)
        return self.CurveSymbols[shape_data]

    @staticmethod
    def default_impute_shapes(shape_data, default_symbol):
        """
        Fallback imputation for shapes.

        Use the default symbol, usually the last symbol in the list.

        Returns:
            (bool): True if there was any missing data
        """
        if shape_data is None:
            return False
        nans = np.isnan(shape_data)
        if np.any(nans):
            shape_data[nans] = default_symbol
            return True
        else:
            return False

    def update_shapes(self):
        """
        Trigger an update of point symbols

        The method calls `get_shapes` to obtain an array with a symbol
        for each point and uses it to update the symbols.

        Finally, the method updates the legend.
        """
        if self.scatterplot_item:
            shape_data = self.get_shapes()
            self.scatterplot_item.setSymbol(shape_data)
        self.update_legends()

    def update_grid_visibility(self):
        """Show or hide the grid"""
        self.plot_widget.showGrid(x=self.show_grid, y=self.show_grid)

    def update_legend_visibility(self):
        """
        Show or hide legends based on whether they are enabled and non-empty
        """
        self.shape_legend.setVisible(self.show_legend
                                     and bool(self.shape_legend.items))
        self.color_legend.setVisible(self.show_legend
                                     and bool(self.color_legend.items))

    def update_legends(self):
        """Update content of legends and their visibility"""
        cont_color = self.master.is_continuous_color()
        shape_labels = self.master.get_shape_labels()
        color_labels = None if cont_color else self.master.get_color_labels()
        if shape_labels == color_labels and shape_labels is not None:
            self._update_combined_legend(shape_labels)
        else:
            self._update_shape_legend(shape_labels)
            if cont_color:
                self._update_continuous_color_legend()
            else:
                self._update_color_legend(color_labels)
        self.update_legend_visibility()

    def _update_shape_legend(self, labels):
        self.shape_legend.clear()
        if labels is None or self.scatterplot_item is None:
            return
        color = QColor(0, 0, 0)
        color.setAlpha(self.alpha_value)
        for label, symbol in zip(labels, self.CurveSymbols):
            self.shape_legend.addItem(
                ScatterPlotItem(pen=color, brush=color, size=10,
                                symbol=symbol), escape(label))

    def _update_continuous_color_legend(self):
        self.color_legend.clear()
        if self.scale is None or self.scatterplot_item is None:
            return
        label = PaletteItemSample(self.palette, self.scale)
        self.color_legend.addItem(label, "")
        self.color_legend.setGeometry(label.boundingRect())

    def _update_color_legend(self, labels):
        self.color_legend.clear()
        if labels is None:
            return
        self._update_colored_legend(self.color_legend, labels, 'o')

    def _update_combined_legend(self, labels):
        # update_colored_legend will already clear the shape legend
        # so we remove colors here
        use_legend = \
            self.shape_legend if self.shape_legend.items else self.color_legend
        self.color_legend.clear()
        self.shape_legend.clear()
        self._update_colored_legend(use_legend, labels, self.CurveSymbols)

    def _update_colored_legend(self, legend, labels, symbols):
        if self.scatterplot_item is None or not self.palette:
            return
        if isinstance(symbols, str):
            symbols = itertools.repeat(symbols, times=len(labels))
        for i, (label, symbol) in enumerate(zip(labels, symbols)):
            color = QColor(*self.palette.getRGB(i))
            pen = _make_pen(color.darker(self.DarkerValue), 1.5)
            color.setAlpha(255 if self.subset_is_shown else self.alpha_value)
            brush = QBrush(color)
            legend.addItem(
                ScatterPlotItem(pen=pen, brush=brush, size=10, symbol=symbol),
                escape(label))

    def zoom_button_clicked(self):
        self.plot_widget.getViewBox().setMouseMode(
            self.plot_widget.getViewBox().RectMode)

    def pan_button_clicked(self):
        self.plot_widget.getViewBox().setMouseMode(
            self.plot_widget.getViewBox().PanMode)

    def select_button_clicked(self):
        self.plot_widget.getViewBox().setMouseMode(
            self.plot_widget.getViewBox().RectMode)

    def reset_button_clicked(self):
        self.plot_widget.getViewBox().autoRange()
        self.update_labels()

    def select_by_click(self, _, points):
        if self.scatterplot_item is not None:
            self.select(points)

    def select_by_rectangle(self, value_rect):
        if self.scatterplot_item is not None:
            x0, y0 = value_rect.topLeft().x(), value_rect.topLeft().y()
            x1, y1 = value_rect.bottomRight().x(), value_rect.bottomRight().y()
            x, y = self.master.get_coordinates_data()
            indices = np.flatnonzero((x0 <= x) & (x <= x1) & (y0 <= y)
                                     & (y <= y1))
            self.select_by_indices(indices.astype(int))

    def unselect_all(self):
        if self.selection is not None:
            self.selection = None
            self.update_selection_colors()
            if self.label_only_selected:
                self.update_labels()
            self.master.selection_changed()

    def select(self, points):
        # noinspection PyArgumentList
        if self.scatterplot_item is None:
            return
        indices = [p.data() for p in points]
        self.select_by_indices(indices)

    def select_by_indices(self, indices):
        if self.selection is None:
            self.selection = np.zeros(self.n_valid, dtype=np.uint8)
        keys = QApplication.keyboardModifiers()
        if keys & Qt.AltModifier:
            self.selection_remove(indices)
        elif keys & Qt.ShiftModifier and keys & Qt.ControlModifier:
            self.selection_append(indices)
        elif keys & Qt.ShiftModifier:
            self.selection_new_group(indices)
        else:
            self.selection_select(indices)

    def selection_select(self, indices):
        self.selection = np.zeros(self.n_valid, dtype=np.uint8)
        self.selection[indices] = 1
        self._update_after_selection()

    def selection_append(self, indices):
        self.selection[indices] = np.max(self.selection)
        self._update_after_selection()

    def selection_new_group(self, indices):
        self.selection[indices] = np.max(self.selection) + 1
        self._update_after_selection()

    def selection_remove(self, indices):
        self.selection[indices] = 0
        self._update_after_selection()

    def _update_after_selection(self):
        self._compress_indices()
        self.update_selection_colors()
        if self.label_only_selected:
            self.update_labels()
        self.master.selection_changed()

    def _compress_indices(self):
        indices = sorted(set(self.selection) | {0})
        if len(indices) == max(indices) + 1:
            return
        mapping = np.zeros((max(indices) + 1, ), dtype=int)
        for i, ind in enumerate(indices):
            mapping[ind] = i
        self.selection = mapping[self.selection]

    def get_selection(self):
        if self.selection is None:
            return np.array([], dtype=np.uint8)
        else:
            return np.flatnonzero(self.selection)

    def help_event(self, event):
        """
        Create a `QToolTip` for the point hovered by the mouse
        """
        if self.scatterplot_item is None:
            return False
        act_pos = self.scatterplot_item.mapFromScene(event.scenePos())
        point_data = [
            p.data() for p in self.scatterplot_item.pointsAt(act_pos)
        ]
        text = self.master.get_tooltip(point_data)
        if text:
            QToolTip.showText(event.screenPos(), text, widget=self.plot_widget)
            return True
        else:
            return False
示例#57
0
class OWScatterPlotBase(gui.OWComponent, QObject):
    """
    Provide a graph component for widgets that show any kind of point plot

    The component plots a set of points with given coordinates, shapes,
    sizes and colors. Its function is similar to that of a *view*, whereas
    the widget represents a *model* and a *controler*.

    The model (widget) needs to provide methods:

    - `get_coordinates_data`, `get_size_data`, `get_color_data`,
      `get_shape_data`, `get_label_data`, which return a 1d array (or two
      arrays, for `get_coordinates_data`) of `dtype` `float64`, except for
      `get_label_data`, which returns formatted labels;
    - `get_color_labels`, `get_shape_labels`, which are return lists of
       strings used for the color and shape legend;
    - `get_tooltip`, which gives a tooltip for a single data point
    - (optional) `impute_sizes`, `impute_shapes` get final coordinates and
      shapes, and replace nans;
    - `get_subset_mask` returns a bool array indicating whether a
      data point is in the subset or not (e.g. in the 'Data Subset' signal
      in the Scatter plot and similar widgets);
    - `get_palette` returns a palette appropriate for visualizing the
      current color data;
    - `is_continuous_color` decides the type of the color legend;

    The widget (in a role of controller) must also provide methods
    - `selection_changed`

    If `get_coordinates_data` returns `(None, None)`, the plot is cleared. If
    `get_size_data`, `get_color_data` or `get_shape_data` return `None`,
    all points will have the same size, color or shape, respectively.
    If `get_label_data` returns `None`, there are no labels.

    The view (this compomnent) provides methods `update_coordinates`,
    `update_sizes`, `update_colors`, `update_shapes` and `update_labels`
    that the widget (in a role of a controler) should call when any of
    these properties are changed. If the widget calls, for instance, the
    plot's `update_colors`, the plot will react by calling the widget's
    `get_color_data` as well as the widget's methods needed to construct the
    legend.

    The view also provides a method `reset_graph`, which should be called only
    when
    - the widget gets entirely new data
    - the number of points may have changed, for instance when selecting
    a different attribute for x or y in the scatter plot, where the points
    with missing x or y coordinates are hidden.

    Every `update_something` calls the plot's `get_something`, which
    calls the model's `get_something_data`, then it transforms this data
    into whatever is needed (colors, shapes, scaled sizes) and changes the
    plot. For the simplest example, here is `update_shapes`:

    ```
        def update_shapes(self):
            if self.scatterplot_item:
                shape_data = self.get_shapes()
                self.scatterplot_item.setSymbol(shape_data)
            self.update_legends()

        def get_shapes(self):
            shape_data = self.master.get_shape_data()
            shape_data = self.master.impute_shapes(
                shape_data, len(self.CurveSymbols) - 1)
            return self.CurveSymbols[shape_data]
    ```

    On the widget's side, `get_something_data` is essentially just:

    ```
        def get_size_data(self):
            return self.get_column(self.attr_size)
    ```

    where `get_column` retrieves a column while also filtering out the
    points with missing x and y and so forth. (Here we present the simplest
    two cases, "shapes" for the view and "sizes" for the model. The colors
    for the view are more complicated since they deal with discrete and
    continuous palettes, and the shapes for the view merge infrequent shapes.)

    The plot can also show just a random sample of the data. The sample size is
    set by `set_sample_size`, and the rest is taken care by the plot: the
    widget keeps providing the data for all points, selection indices refer
    to the entire set etc. Internally, sampling happens as early as possible
    (in methods `get_<something>`).
    """
    too_many_labels = Signal(bool)

    label_only_selected = Setting(False)
    point_width = Setting(10)
    alpha_value = Setting(128)
    show_grid = Setting(False)
    show_legend = Setting(True)
    class_density = Setting(False)
    jitter_size = Setting(0)

    resolution = 256

    CurveSymbols = np.array("o x t + d s t2 t3 p h star ?".split())
    MinShapeSize = 6
    DarkerValue = 120
    UnknownColor = (168, 50, 168)

    COLOR_NOT_SUBSET = (128, 128, 128, 0)
    COLOR_SUBSET = (128, 128, 128, 255)
    COLOR_DEFAULT = (128, 128, 128, 0)

    MAX_VISIBLE_LABELS = 500

    def __init__(self, scatter_widget, parent=None, view_box=ViewBox):
        QObject.__init__(self)
        gui.OWComponent.__init__(self, scatter_widget)

        self.subset_is_shown = False

        self.view_box = view_box(self)
        self.plot_widget = pg.PlotWidget(viewBox=self.view_box, parent=parent,
                                         background="w")
        self.plot_widget.hideAxis("left")
        self.plot_widget.hideAxis("bottom")
        self.plot_widget.getPlotItem().buttonsHidden = True
        self.plot_widget.setAntialiasing(True)
        self.plot_widget.sizeHint = lambda: QSize(500, 500)

        self.density_img = None
        self.scatterplot_item = None
        self.scatterplot_item_sel = None
        self.labels = []

        self.master = scatter_widget
        self._create_drag_tooltip(self.plot_widget.scene())

        self.selection = None  # np.ndarray

        self.n_valid = 0
        self.n_shown = 0
        self.sample_size = None
        self.sample_indices = None

        self.palette = None

        self.shape_legend = self._create_legend(((1, 0), (1, 0)))
        self.color_legend = self._create_legend(((1, 1), (1, 1)))
        self.update_legend_visibility()

        self.scale = None  # DiscretizedScale
        self._too_many_labels = False

        # self.setMouseTracking(True)
        # self.grabGesture(QPinchGesture)
        # self.grabGesture(QPanGesture)

        self.update_grid_visibility()

        self._tooltip_delegate = EventDelegate(self.help_event)
        self.plot_widget.scene().installEventFilter(self._tooltip_delegate)
        self.view_box.sigTransformChanged.connect(self.update_density)
        self.view_box.sigRangeChangedManually.connect(self.update_labels)

        self.timer = None

    def _create_legend(self, anchor):
        legend = LegendItem()
        legend.setParentItem(self.plot_widget.getViewBox())
        legend.restoreAnchor(anchor)
        return legend

    def _create_drag_tooltip(self, scene):
        tip_parts = [
            (Qt.ShiftModifier, "Shift: Add group"),
            (Qt.ShiftModifier + Qt.ControlModifier,
             "Shift-{}: Append to group".
             format("Cmd" if sys.platform == "darwin" else "Ctrl")),
            (Qt.AltModifier, "Alt: Remove")
        ]
        all_parts = ", ".join(part for _, part in tip_parts)
        self.tiptexts = {
            int(modifier): all_parts.replace(part, "<b>{}</b>".format(part))
            for modifier, part in tip_parts
        }
        self.tiptexts[0] = all_parts

        self.tip_textitem = text = QGraphicsTextItem()
        # Set to the longest text
        text.setHtml(self.tiptexts[Qt.ShiftModifier + Qt.ControlModifier])
        text.setPos(4, 2)
        r = text.boundingRect()
        rect = QGraphicsRectItem(0, 0, r.width() + 8, r.height() + 4)
        rect.setBrush(QColor(224, 224, 224, 212))
        rect.setPen(QPen(Qt.NoPen))
        self.update_tooltip()

        scene.drag_tooltip = scene.createItemGroup([rect, text])
        scene.drag_tooltip.hide()

    def update_tooltip(self, modifiers=Qt.NoModifier):
        modifiers &= Qt.ShiftModifier + Qt.ControlModifier + Qt.AltModifier
        text = self.tiptexts.get(int(modifiers), self.tiptexts[0])
        self.tip_textitem.setHtml(text + self._get_jittering_tooltip())

    def _get_jittering_tooltip(self):
        warn_jittered = ""
        if self.jitter_size:
            warn_jittered = \
                '<br/><br/>' \
                '<span style="background-color: red; color: white; ' \
                'font-weight: 500;">' \
                '&nbsp;Warning: Selection is applied to unjittered data&nbsp;' \
                '</span>'
        return warn_jittered

    def update_jittering(self):
        self.update_tooltip()
        x, y = self.get_coordinates()
        if x is None or not len(x) or self.scatterplot_item is None:
            return
        self._update_plot_coordinates(self.scatterplot_item, x, y)
        self._update_plot_coordinates(self.scatterplot_item_sel, x, y)
        self.update_labels()

    # TODO: Rename to remove_plot_items
    def clear(self):
        """
        Remove all graphical elements from the plot

        Calls the pyqtgraph's plot widget's clear, sets all handles to `None`,
        removes labels and selections.

        This method should generally not be called by the widget. If the data
        is gone (*e.g.* upon receiving `None` as an input data signal), this
        should be handler by calling `reset_graph`, which will in turn call
        `clear`.

        Derived classes should override this method if they add more graphical
        elements. For instance, the regression line in the scatterplot adds
        `self.reg_line_item = None` (the line in the plot is already removed
        in this method).
        """
        self.plot_widget.clear()

        self.density_img = None
        if self.timer is not None and self.timer.isActive():
            self.timer.stop()
            self.timer = None
        self.scatterplot_item = None
        self.scatterplot_item_sel = None
        self.labels = []
        self._signal_too_many_labels(False)
        self.view_box.init_history()
        self.view_box.tag_history()

    # TODO: I hate `keep_something` and `reset_something` arguments
    # __keep_selection is used exclusively be set_sample size which would
    # otherwise just repeat the code from reset_graph except for resetting
    # the selection. I'm uncomfortable with this; we may prefer to have a
    # method _reset_graph which does everything except resetting the selection,
    # and reset_graph would call it.
    def reset_graph(self, __keep_selection=False):
        """
        Reset the graph to new data (or no data)

        The method must be called when the plot receives new data, in
        particular when the number of points change. If only their properties
        - like coordinates or shapes - change, an update method
        (`update_coordinates`, `update_shapes`...) should be called instead.

        The method must also be called when the data is gone.

        The method calls `clear`, followed by calls of all update methods.

        NB. Argument `__keep_selection` is for internal use only
        """
        self.clear()
        if not __keep_selection:
            self.selection = None
        self.sample_indices = None
        self.update_coordinates()
        self.update_point_props()

    def set_sample_size(self, sample_size):
        """
        Set the sample size

        Args:
            sample_size (int or None): sample size or `None` to show all points
        """
        if self.sample_size != sample_size:
            self.sample_size = sample_size
            self.reset_graph(True)

    def update_point_props(self):
        """
        Update the sizes, colors, shapes and labels

        The method calls the appropriate update methods for individual
        properties.
        """
        self.update_sizes()
        self.update_colors()
        self.update_selection_colors()
        self.update_shapes()
        self.update_labels()

    # Coordinates
    # TODO: It could be nice if this method was run on entire data, not just
    # a sample. For this, however, it would need to either be called from
    # `get_coordinates` before sampling (very ugly) or call
    # `self.master.get_coordinates_data` (beyond ugly) or the widget would
    # have to store the ranges of unsampled data (ugly).
    # Maybe we leave it as it is.
    def _reset_view(self, x_data, y_data):
        """
        Set the range of the view box

        Args:
            x_data (np.ndarray): x coordinates
            y_data (np.ndarray) y coordinates
        """
        min_x, max_x = np.min(x_data), np.max(x_data)
        min_y, max_y = np.min(y_data), np.max(y_data)
        self.view_box.setRange(
            QRectF(min_x, min_y, max_x - min_x or 1, max_y - min_y or 1),
            padding=0.025)

    def _filter_visible(self, data):
        """Return the sample from the data using the stored sample_indices"""
        if data is None or self.sample_indices is None:
            return data
        else:
            return np.asarray(data[self.sample_indices])

    def get_coordinates(self):
        """
        Prepare coordinates of the points in the plot

        The method is called by `update_coordinates`. It gets the coordinates
        from the widget, jitters them and return them.

        The methods also initializes the sample indices if neededd and stores
        the original and sampled number of points.

        Returns:
            (tuple): a pair of numpy arrays containing (sampled) coordinates,
                or `(None, None)`.
        """
        x, y = self.master.get_coordinates_data()
        if x is None:
            self.n_valid = self.n_shown = 0
            return None, None
        self.n_valid = len(x)
        self._create_sample()
        x = self._filter_visible(x)
        y = self._filter_visible(y)
        # Jittering after sampling is OK if widgets do not change the sample
        # semi-permanently, e.g. take a sample for the duration of some
        # animation. If the sample size changes dynamically (like by adding
        # a "sample size" slider), points would move around when the sample
        # size changes. To prevent this, jittering should be done before
        # sampling (i.e. two lines earlier). This would slow it down somewhat.
        x, y = self.jitter_coordinates(x, y)
        return x, y

    def _create_sample(self):
        """
        Create a random sample if the data is larger than the set sample size
        """
        self.n_shown = min(self.n_valid, self.sample_size or self.n_valid)
        if self.sample_size is not None \
                and self.sample_indices is None \
                and self.n_valid != self.n_shown:
            random = np.random.RandomState(seed=0)
            self.sample_indices = random.choice(
                self.n_valid, self.n_shown, replace=False)
            # TODO: Is this really needed?
            np.sort(self.sample_indices)

    def jitter_coordinates(self, x, y):
        """
        Display coordinates to random positions within ellipses with
        radiuses of `self.jittter_size` percents of spans
        """
        if self.jitter_size == 0:
            return x, y
        return self._jitter_data(x, y)

    def _jitter_data(self, x, y, span_x=None, span_y=None):
        if span_x is None:
            span_x = np.max(x) - np.min(x)
        if span_y is None:
            span_y = np.max(y) - np.min(y)
        random = np.random.RandomState(seed=0)
        rs = random.uniform(0, 1, len(x))
        phis = random.uniform(0, 2 * np.pi, len(x))
        magnitude = self.jitter_size / 100
        return (x + magnitude * span_x * rs * np.cos(phis),
                y + magnitude * span_y * rs * np.sin(phis))

    def _update_plot_coordinates(self, plot, x, y):
        """
        Change the coordinates of points while keeping other properites

        Note. Pyqtgraph does not offer a method for this: setting coordinates
        invalidates other data. We therefore retrieve the data to set it
        together with the coordinates. Pyqtgraph also does not offer a
        (documented) method for retrieving the data, yet using
        `plot.data[prop]` looks reasonably safe. The alternative, calling
        update for every property would essentially reset the graph, which
        can be time consuming.
        """
        data = dict(x=x, y=y)
        for prop in ('pen', 'brush', 'size', 'symbol', 'data',
                     'sourceRect', 'targetRect'):
            data[prop] = plot.data[prop]
        plot.setData(**data)

    def update_coordinates(self):
        """
        Trigger the update of coordinates while keeping other features intact.

        The method gets the coordinates by calling `self.get_coordinates`,
        which in turn calls the widget's `get_coordinate_data`. The number of
        coordinate pairs returned by the latter must match the current number
        of points. If this is not the case, the widget should trigger
        the complete update by calling `reset_graph` instead of this method.
        """
        x, y = self.get_coordinates()
        if x is None or not len(x):
            return
        if self.scatterplot_item is None:
            if self.sample_indices is None:
                indices = np.arange(self.n_valid)
            else:
                indices = self.sample_indices
            kwargs = dict(x=x, y=y, data=indices)
            self.scatterplot_item = ScatterPlotItem(**kwargs)
            self.scatterplot_item.sigClicked.connect(self.select_by_click)
            self.scatterplot_item_sel = ScatterPlotItem(**kwargs)
            self.plot_widget.addItem(self.scatterplot_item_sel)
            self.plot_widget.addItem(self.scatterplot_item)
        else:
            self._update_plot_coordinates(self.scatterplot_item, x, y)
            self._update_plot_coordinates(self.scatterplot_item_sel, x, y)
            self.update_labels()

        self.update_density()  # Todo: doesn't work: try MDS with density on
        self._reset_view(x, y)

    # Sizes
    def get_sizes(self):
        """
        Prepare data for sizes of points in the plot

        The method is called by `update_sizes`. It gets the sizes
        from the widget and performs the necessary scaling and sizing.

        Returns:
            (np.ndarray): sizes
        """
        size_column = self.master.get_size_data()
        if size_column is None:
            return np.full((self.n_shown,),
                           self.MinShapeSize + (5 + self.point_width) * 0.5)
        size_column = self._filter_visible(size_column)
        size_column = size_column.copy()
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=RuntimeWarning)
            size_column -= np.nanmin(size_column)
            mx = np.nanmax(size_column)
        if mx > 0:
            size_column /= mx
        else:
            size_column[:] = 0.5
        return self.MinShapeSize + (5 + self.point_width) * size_column

    def update_sizes(self):
        """
        Trigger an update of point sizes

        The method calls `self.get_sizes`, which in turn calls the widget's
        `get_size_data`. The result are properly scaled and then passed
        back to widget for imputing (`master.impute_sizes`).
        """
        if self.scatterplot_item:
            size_data = self.get_sizes()
            size_imputer = getattr(
                self.master, "impute_sizes", self.default_impute_sizes)
            size_imputer(size_data)

            if self.timer is not None and self.timer.isActive():
                self.timer.stop()
                self.timer = None

            current_size_data = self.scatterplot_item.data["size"].copy()
            diff = size_data - current_size_data
            widget = self

            class Timeout:
                # 0.5 - np.cos(np.arange(0.17, 1, 0.17) * np.pi) / 2
                factors = [0.07, 0.26, 0.52, 0.77, 0.95, 1]

                def __init__(self):
                    self._counter = 0

                def __call__(self):
                    factor = self.factors[self._counter]
                    self._counter += 1
                    size = current_size_data + diff * factor
                    if len(self.factors) == self._counter:
                        widget.timer.stop()
                        widget.timer = None
                        size = size_data
                    widget.scatterplot_item.setSize(size)
                    widget.scatterplot_item_sel.setSize(size + SELECTION_WIDTH)

            if np.sum(current_size_data) / self.n_valid != -1 and np.sum(diff):
                # If encountered any strange behaviour when updating sizes,
                # implement it with threads
                self.timer = QTimer(self.scatterplot_item, interval=50)
                self.timer.timeout.connect(Timeout())
                self.timer.start()
            else:
                self.scatterplot_item.setSize(size_data)
                self.scatterplot_item_sel.setSize(size_data + SELECTION_WIDTH)

    update_point_size = update_sizes  # backward compatibility (needed?!)
    update_size = update_sizes

    @classmethod
    def default_impute_sizes(cls, size_data):
        """
        Fallback imputation for sizes.

        Set the size to two pixels smaller than the minimal size

        Returns:
            (bool): True if there was any missing data
        """
        nans = np.isnan(size_data)
        if np.any(nans):
            size_data[nans] = cls.MinShapeSize - 2
            return True
        else:
            return False

    # Colors
    def get_colors(self):
        """
        Prepare data for colors of the points in the plot

        The method is called by `update_colors`. It gets the colors and the
        indices of the data subset from the widget (`get_color_data`,
        `get_subset_mask`), and constructs lists of pens and brushes for
        each data point.

        The method uses different palettes for discrete and continuous data,
        as determined by calling the widget's method `is_continuous_color`.

        If also marks the points that are in the subset as defined by, for
        instance the 'Data Subset' signal in the Scatter plot and similar
        widgets. (Do not confuse this with *selected points*, which are
        marked by circles around the points, which are colored by groups
        and thus independent of this method.)

        Returns:
            (tuple): a list of pens and list of brushes
        """
        self.palette = self.master.get_palette()
        c_data = self.master.get_color_data()
        c_data = self._filter_visible(c_data)
        subset = self.master.get_subset_mask()
        subset = self._filter_visible(subset)
        self.subset_is_shown = subset is not None
        if c_data is None:  # same color
            return self._get_same_colors(subset)
        elif self.master.is_continuous_color():
            return self._get_continuous_colors(c_data, subset)
        else:
            return self._get_discrete_colors(c_data, subset)

    def _get_same_colors(self, subset):
        """
        Return the same pen for all points while the brush color depends
        upon whether the point is in the subset or not

        Args:
            subset (np.ndarray): a bool array indicating whether a data point
                is in the subset or not (e.g. in the 'Data Subset' signal
                in the Scatter plot and similar widgets);

        Returns:
            (tuple): a list of pens and list of brushes
        """
        color = self.plot_widget.palette().color(OWPalette.Data)
        pen = [_make_pen(color, 1.5) for _ in range(self.n_shown)]
        if subset is not None:
            brush = np.where(
                subset,
                *(QBrush(QColor(*col))
                  for col in (self.COLOR_SUBSET, self.COLOR_NOT_SUBSET)))
        else:
            color = QColor(*self.COLOR_DEFAULT)
            color.setAlpha(self.alpha_value)
            brush = [QBrush(color) for _ in range(self.n_shown)]
        return pen, brush

    def _get_continuous_colors(self, c_data, subset):
        """
        Return the pens and colors whose color represent an index into
        a continuous palette. The same color is used for pen and brush,
        except the former is darker. If the data has a subset, the brush
        is transparent for points that are not in the subset.
        """
        if np.isnan(c_data).all():
            self.scale = None
        else:
            self.scale = DiscretizedScale(np.nanmin(c_data), np.nanmax(c_data))
            c_data -= self.scale.offset
            c_data /= self.scale.width
            c_data = np.floor(c_data) + 0.5
            c_data /= self.scale.bins
            c_data = np.clip(c_data, 0, 1)
        pen = self.palette.getRGB(c_data)
        brush = np.hstack(
            [pen, np.full((len(pen), 1), self.alpha_value, dtype=int)])
        pen *= 100
        pen //= self.DarkerValue
        pen = [_make_pen(QColor(*col), 1.5) for col in pen.tolist()]

        if subset is not None:
            brush[:, 3] = 0
            brush[subset, 3] = 255
        brush = np.array([QBrush(QColor(*col)) for col in brush.tolist()])
        return pen, brush

    def _get_discrete_colors(self, c_data, subset):
        """
        Return the pens and colors whose color represent an index into
        a discrete palette. The same color is used for pen and brush,
        except the former is darker. If the data has a subset, the brush
        is transparent for points that are not in the subset.
        """
        n_colors = self.palette.number_of_colors
        c_data = c_data.copy()
        c_data[np.isnan(c_data)] = n_colors
        c_data = c_data.astype(int)
        colors = np.r_[self.palette.getRGB(np.arange(n_colors)),
                       [[128, 128, 128]]]
        pens = np.array(
            [_make_pen(QColor(*col).darker(self.DarkerValue), 1.5)
             for col in colors])
        pen = pens[c_data]
        alpha = self.alpha_value if subset is None else 255
        brushes = np.array([
            [QBrush(QColor(0, 0, 0, 0)),
             QBrush(QColor(col[0], col[1], col[2], alpha))]
            for col in colors])
        brush = brushes[c_data]

        if subset is not None:
            brush = np.where(subset, brush[:, 1], brush[:, 0])
        else:
            brush = brush[:, 1]
        return pen, brush

    def update_colors(self):
        """
        Trigger an update of point sizes

        The method calls `self.get_colors`, which in turn calls the widget's
        `get_color_data` to get the indices in the pallette. `get_colors`
        returns a list of pens and brushes to which this method uses to
        update the colors. Finally, the method triggers the update of the
        legend and the density plot.
        """
        if self.scatterplot_item is not None:
            pen_data, brush_data = self.get_colors()
            self.scatterplot_item.setPen(pen_data, update=False, mask=None)
            self.scatterplot_item.setBrush(brush_data, mask=None)
        self.update_legends()
        self.update_density()

    update_alpha_value = update_colors

    def update_density(self):
        """
        Remove the existing density plot (if there is one) and replace it
        with a new one (if enabled).

        The method gets the colors from the pens of the currently plotted
        points.
        """
        if self.density_img:
            self.plot_widget.removeItem(self.density_img)
            self.density_img = None
        if self.class_density and self.scatterplot_item is not None:
            rgb_data = [
                pen.color().getRgb()[:3] if pen is not None else (255, 255, 255)
                for pen in self.scatterplot_item.data['pen']]
            if len(set(rgb_data)) <= 1:
                return
            [min_x, max_x], [min_y, max_y] = self.view_box.viewRange()
            x_data, y_data = self.scatterplot_item.getData()
            self.density_img = classdensity.class_density_image(
                min_x, max_x, min_y, max_y, self.resolution,
                x_data, y_data, rgb_data)
            self.plot_widget.addItem(self.density_img)

    def update_selection_colors(self):
        """
        Trigger an update of selection markers

        This update method is usually not called by the widget but by the
        plot, since it is the plot that handles the selections.

        Like other update methods, it calls the corresponding get method
        (`get_colors_sel`) which returns a list of pens and brushes.
        """
        if self.scatterplot_item_sel is None:
            return
        pen, brush = self.get_colors_sel()
        self.scatterplot_item_sel.setPen(pen, update=False, mask=None)
        self.scatterplot_item_sel.setBrush(brush, mask=None)

    def get_colors_sel(self):
        """
        Return pens and brushes for selection markers.

        A pen can is set to `Qt.NoPen` if a point is not selected.

        All brushes are completely transparent whites.

        Returns:
            (tuple): a list of pens and a list of brushes
        """
        nopen = QPen(Qt.NoPen)
        if self.selection is None:
            pen = [nopen] * self.n_shown
        else:
            sels = np.max(self.selection)
            if sels == 1:
                pen = np.where(
                    self._filter_visible(self.selection),
                    _make_pen(QColor(255, 190, 0, 255), SELECTION_WIDTH + 1),
                    nopen)
            else:
                palette = ColorPaletteGenerator(number_of_colors=sels + 1)
                pen = np.choose(
                    self._filter_visible(self.selection),
                    [nopen] + [_make_pen(palette[i], SELECTION_WIDTH + 1)
                               for i in range(sels)])
        return pen, [QBrush(QColor(255, 255, 255, 0))] * self.n_shown

    # Labels
    def get_labels(self):
        """
        Prepare data for labels for points

        The method returns the results of the widget's `get_label_data`

        Returns:
            (labels): a sequence of labels
        """
        return self._filter_visible(self.master.get_label_data())

    def update_labels(self):
        """
        Trigger an update of labels

        The method calls `get_labels` which in turn calls the widget's
        `get_label_data`. The obtained labels are shown if the corresponding
        points are selected or if `label_only_selected` is `false`.
        """
        for label in self.labels:
            self.plot_widget.removeItem(label)
        self.labels = []

        mask = None
        if self.scatterplot_item is not None:
            x, y = self.scatterplot_item.getData()
            mask = self._label_mask(x, y)

        if mask is not None:
            labels = self.get_labels()
            if labels is None:
                mask = None

        self._signal_too_many_labels(
            mask is not None and mask.sum() > self.MAX_VISIBLE_LABELS)
        if self._too_many_labels or mask is None or not np.any(mask):
            return

        black = pg.mkColor(0, 0, 0)
        labels = labels[mask]
        x = x[mask]
        y = y[mask]
        for label, xp, yp in zip(labels, x, y):
            ti = TextItem(label, black)
            ti.setPos(xp, yp)
            self.plot_widget.addItem(ti)
            self.labels.append(ti)

    def _signal_too_many_labels(self, too_many):
        if self._too_many_labels != too_many:
            self._too_many_labels = too_many
            self.too_many_labels.emit(too_many)

    def _label_mask(self, x, y):
        (x0, x1), (y0, y1) = self.view_box.viewRange()
        mask = np.logical_and(
            np.logical_and(x >= x0, x <= x1),
            np.logical_and(y >= y0, y <= y1))
        if self.label_only_selected:
            sub_mask = self._filter_visible(self.master.get_subset_mask())
            if self.selection is None:
                if sub_mask is None:
                    return None
                else:
                    sel_mask = sub_mask
            else:
                sel_mask = self._filter_visible(self.selection) != 0
                if sub_mask is not None:
                    sel_mask = np.logical_or(sel_mask, sub_mask)
            mask = np.logical_and(mask, sel_mask)
        return mask

    # Shapes
    def get_shapes(self):
        """
        Prepare data for shapes of points in the plot

        The method is called by `update_shapes`. It gets the data from
        the widget's `get_shape_data`, and then calls its `impute_shapes`
        to impute the missing shape (usually with some default shape).

        Returns:
            (np.ndarray): an array of symbols (e.g. o, x, + ...)
        """
        shape_data = self.master.get_shape_data()
        shape_data = self._filter_visible(shape_data)
        # Data has to be copied so the imputation can change it in-place
        # TODO: Try avoiding this when we move imputation to the widget
        if shape_data is not None:
            shape_data = np.copy(shape_data)
        shape_imputer = getattr(
            self.master, "impute_shapes", self.default_impute_shapes)
        shape_imputer(shape_data, len(self.CurveSymbols) - 1)
        if isinstance(shape_data, np.ndarray):
            shape_data = shape_data.astype(int)
        else:
            shape_data = np.zeros(self.n_shown, dtype=int)
        return self.CurveSymbols[shape_data]

    @staticmethod
    def default_impute_shapes(shape_data, default_symbol):
        """
        Fallback imputation for shapes.

        Use the default symbol, usually the last symbol in the list.

        Returns:
            (bool): True if there was any missing data
        """
        if shape_data is None:
            return False
        nans = np.isnan(shape_data)
        if np.any(nans):
            shape_data[nans] = default_symbol
            return True
        else:
            return False

    def update_shapes(self):
        """
        Trigger an update of point symbols

        The method calls `get_shapes` to obtain an array with a symbol
        for each point and uses it to update the symbols.

        Finally, the method updates the legend.
        """
        if self.scatterplot_item:
            shape_data = self.get_shapes()
            self.scatterplot_item.setSymbol(shape_data)
        self.update_legends()

    def update_grid_visibility(self):
        """Show or hide the grid"""
        self.plot_widget.showGrid(x=self.show_grid, y=self.show_grid)

    def update_legend_visibility(self):
        """
        Show or hide legends based on whether they are enabled and non-empty
        """
        self.shape_legend.setVisible(
            self.show_legend and bool(self.shape_legend.items))
        self.color_legend.setVisible(
            self.show_legend and bool(self.color_legend.items))

    def update_legends(self):
        """Update content of legends and their visibility"""
        cont_color = self.master.is_continuous_color()
        shape_labels = self.master.get_shape_labels()
        color_labels = None if cont_color else self.master.get_color_labels()
        if shape_labels == color_labels and shape_labels is not None:
            self._update_combined_legend(shape_labels)
        else:
            self._update_shape_legend(shape_labels)
            if cont_color:
                self._update_continuous_color_legend()
            else:
                self._update_color_legend(color_labels)
        self.update_legend_visibility()

    def _update_shape_legend(self, labels):
        self.shape_legend.clear()
        if labels is None or self.scatterplot_item is None:
            return
        color = QColor(0, 0, 0)
        color.setAlpha(self.alpha_value)
        for label, symbol in zip(labels, self.CurveSymbols):
            self.shape_legend.addItem(
                ScatterPlotItem(pen=color, brush=color, size=10, symbol=symbol),
                escape(label))

    def _update_continuous_color_legend(self):
        self.color_legend.clear()
        if self.scale is None or self.scatterplot_item is None:
            return
        label = PaletteItemSample(self.palette, self.scale)
        self.color_legend.addItem(label, "")
        self.color_legend.setGeometry(label.boundingRect())

    def _update_color_legend(self, labels):
        self.color_legend.clear()
        if labels is None:
            return
        self._update_colored_legend(self.color_legend, labels, 'o')

    def _update_combined_legend(self, labels):
        # update_colored_legend will already clear the shape legend
        # so we remove colors here
        use_legend = \
            self.shape_legend if self.shape_legend.items else self.color_legend
        self.color_legend.clear()
        self.shape_legend.clear()
        self._update_colored_legend(use_legend, labels, self.CurveSymbols)

    def _update_colored_legend(self, legend, labels, symbols):
        if self.scatterplot_item is None or not self.palette:
            return
        if isinstance(symbols, str):
            symbols = itertools.repeat(symbols, times=len(labels))
        for i, (label, symbol) in enumerate(zip(labels, symbols)):
            color = QColor(*self.palette.getRGB(i))
            pen = _make_pen(color.darker(self.DarkerValue), 1.5)
            color.setAlpha(255 if self.subset_is_shown else self.alpha_value)
            brush = QBrush(color)
            legend.addItem(
                ScatterPlotItem(pen=pen, brush=brush, size=10, symbol=symbol),
                escape(label))

    def zoom_button_clicked(self):
        self.plot_widget.getViewBox().setMouseMode(
            self.plot_widget.getViewBox().RectMode)

    def pan_button_clicked(self):
        self.plot_widget.getViewBox().setMouseMode(
            self.plot_widget.getViewBox().PanMode)

    def select_button_clicked(self):
        self.plot_widget.getViewBox().setMouseMode(
            self.plot_widget.getViewBox().RectMode)

    def reset_button_clicked(self):
        self.plot_widget.getViewBox().autoRange()
        self.update_labels()

    def select_by_click(self, _, points):
        if self.scatterplot_item is not None:
            self.select(points)

    def select_by_rectangle(self, value_rect):
        if self.scatterplot_item is not None:
            x0, y0 = value_rect.topLeft().x(), value_rect.topLeft().y()
            x1, y1 = value_rect.bottomRight().x(), value_rect.bottomRight().y()
            x, y = self.master.get_coordinates_data()
            indices = np.flatnonzero(
                (x0 <= x) & (x <= x1) & (y0 <= y) & (y <= y1))
            self.select_by_indices(indices.astype(int))

    def unselect_all(self):
        if self.selection is not None:
            self.selection = None
            self.update_selection_colors()
            if self.label_only_selected:
                self.update_labels()
            self.master.selection_changed()

    def select(self, points):
        # noinspection PyArgumentList
        if self.scatterplot_item is None:
            return
        indices = [p.data() for p in points]
        self.select_by_indices(indices)

    def select_by_indices(self, indices):
        if self.selection is None:
            self.selection = np.zeros(self.n_valid, dtype=np.uint8)
        keys = QApplication.keyboardModifiers()
        if keys & Qt.AltModifier:
            self.selection_remove(indices)
        elif keys & Qt.ShiftModifier and keys & Qt.ControlModifier:
            self.selection_append(indices)
        elif keys & Qt.ShiftModifier:
            self.selection_new_group(indices)
        else:
            self.selection_select(indices)

    def selection_select(self, indices):
        self.selection = np.zeros(self.n_valid, dtype=np.uint8)
        self.selection[indices] = 1
        self._update_after_selection()

    def selection_append(self, indices):
        self.selection[indices] = np.max(self.selection)
        self._update_after_selection()

    def selection_new_group(self, indices):
        self.selection[indices] = np.max(self.selection) + 1
        self._update_after_selection()

    def selection_remove(self, indices):
        self.selection[indices] = 0
        self._update_after_selection()

    def _update_after_selection(self):
        self._compress_indices()
        self.update_selection_colors()
        if self.label_only_selected:
            self.update_labels()
        self.master.selection_changed()

    def _compress_indices(self):
        indices = sorted(set(self.selection) | {0})
        if len(indices) == max(indices) + 1:
            return
        mapping = np.zeros((max(indices) + 1,), dtype=int)
        for i, ind in enumerate(indices):
            mapping[ind] = i
        self.selection = mapping[self.selection]

    def get_selection(self):
        if self.selection is None:
            return np.array([], dtype=np.uint8)
        else:
            return np.flatnonzero(self.selection)

    def help_event(self, event):
        """
        Create a `QToolTip` for the point hovered by the mouse
        """
        if self.scatterplot_item is None:
            return False
        act_pos = self.scatterplot_item.mapFromScene(event.scenePos())
        point_data = [p.data() for p in self.scatterplot_item.pointsAt(act_pos)]
        text = self.master.get_tooltip(point_data)
        if text:
            QToolTip.showText(event.screenPos(), text, widget=self.plot_widget)
            return True
        else:
            return False
示例#58
0
    def test_nodeitem(self):
        one_item = NodeItem()
        one_item.setWidgetDescription(self.one_desc)
        one_item.setWidgetCategory(self.const_desc)

        one_item.setTitle("Neo")
        self.assertEqual(one_item.title(), "Neo")

        one_item.setProcessingState(True)
        self.assertEqual(one_item.processingState(), True)

        one_item.setProgress(50)
        self.assertEqual(one_item.progress(), 50)

        one_item.setProgress(100)
        self.assertEqual(one_item.progress(), 100)

        one_item.setProgress(101)
        self.assertEqual(one_item.progress(), 100, "Progress overshots")

        one_item.setProcessingState(False)
        self.assertEqual(one_item.processingState(), False)
        self.assertEqual(one_item.progress(), -1,
                         "setProcessingState does not clear the progress.")

        self.scene.addItem(one_item)
        one_item.setPos(100, 100)

        negate_item = NodeItem()
        negate_item.setWidgetDescription(self.negate_desc)
        negate_item.setWidgetCategory(self.const_desc)

        self.scene.addItem(negate_item)
        negate_item.setPos(300, 100)

        nb_item = NodeItem()
        nb_item.setWidgetDescription(self.add_desc)
        nb_item.setWidgetCategory(self.operator_desc)

        self.scene.addItem(nb_item)
        nb_item.setPos(500, 100)

        positions = []
        anchor = one_item.newOutputAnchor()
        anchor.scenePositionChanged.connect(positions.append)

        one_item.setPos(110, 100)
        self.assertTrue(len(positions) > 0)

        one_item.setErrorMessage("message")
        one_item.setWarningMessage("message")
        one_item.setInfoMessage("I am alive")

        one_item.setErrorMessage(None)
        one_item.setWarningMessage(None)
        one_item.setInfoMessage(None)

        one_item.setInfoMessage("I am back.")
        nb_item.setProcessingState(1)
        negate_item.setProcessingState(1)
        negate_item.shapeItem.startSpinner()

        def progress():
            p = (nb_item.progress() + 25) % 100
            nb_item.setProgress(p)

            if p > 50:
                nb_item.setInfoMessage("Over 50%")
                one_item.setWarningMessage("Second")
            else:
                nb_item.setInfoMessage(None)
                one_item.setWarningMessage(None)

            negate_item.setAnchorRotation(50 - p)

        timer = QTimer(nb_item, interval=5)
        timer.start()
        timer.timeout.connect(progress)
        self.qWait()
        timer.stop()
示例#59
0
class OWScatterPlot(OWWidget):
    """Scatterplot visualization with explorative analysis and intelligent
    data visualization enhancements."""

    name = 'Scatter Plot'
    description = "Interactive scatter plot visualization with " \
                  "intelligent data visualization enhancements."
    icon = "icons/ScatterPlot.svg"
    priority = 140

    class Inputs:
        data = Input("Data", Table, default=True)
        data_subset = Input("Data Subset", Table)
        features = Input("Features", AttributeList)

    class Outputs:
        selected_data = Output("Selected Data", Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table)
        features = Output("Features", AttributeList, dynamic=False)

    settings_version = 2
    settingsHandler = DomainContextHandler()

    auto_send_selection = Setting(True)
    auto_sample = Setting(True)
    toolbar_selection = Setting(0)

    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)

    #: Serialized selection state to be restored
    selection_group = Setting(None, schema_only=True)

    graph = SettingProvider(OWScatterPlotGraph)

    jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]

    graph_name = "graph.plot_widget.plotItem"

    class Information(OWWidget.Information):
        sampled_sql = Msg("Large SQL table; showing a sample.")

    def __init__(self):
        super().__init__()

        box = gui.vBox(self.mainArea, True, margin=0)
        self.graph = OWScatterPlotGraph(self, box, "ScatterPlot")
        box.layout().addWidget(self.graph.plot_widget)
        plot = self.graph.plot_widget

        axispen = QPen(self.palette().color(QPalette.Text))
        axis = plot.getAxis("bottom")
        axis.setPen(axispen)

        axis = plot.getAxis("left")
        axis.setPen(axispen)

        self.data = None  # Orange.data.Table
        self.subset_data = None  # Orange.data.Table
        self.sql_data = None  # Orange.data.sql.table.SqlTable
        self.attribute_selection_list = None  # list of Orange.data.Variable
        self.__timer = QTimer(self, interval=1200)
        self.__timer.timeout.connect(self.add_data)
        #: Remember the saved state to restore
        self.__pending_selection_restore = self.selection_group
        self.selection_group = None

        common_options = dict(
            labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True,
            valueType=str)
        box = gui.vBox(self.controlArea, "Axis Data")
        dmod = DomainModel
        self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE)
        self.cb_attr_x = gui.comboBox(
            box, self, "attr_x", label="Axis x:", callback=self.update_attr,
            model=self.xy_model, **common_options)
        self.cb_attr_y = gui.comboBox(
            box, self, "attr_y", label="Axis y:", callback=self.update_attr,
            model=self.xy_model, **common_options)

        vizrank_box = gui.hBox(box)
        gui.separator(vizrank_box, width=common_options["labelWidth"])
        self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank(
            vizrank_box, self, "Find Informative Projections", self.set_attr)

        gui.separator(box)

        g = self.graph.gui
        g.add_widgets([g.JitterSizeSlider,
                       g.JitterNumericValues], box)

        self.sampling = gui.auto_commit(
            self.controlArea, self, "auto_sample", "Sample", box="Sampling",
            callback=self.switch_sampling, commit=lambda: self.add_data(1))
        self.sampling.setVisible(False)

        g.point_properties_box(self.controlArea)
        self.models = [self.xy_model] + g.points_models

        box_plot_prop = gui.vBox(self.controlArea, "Plot Properties")
        g.add_widgets([g.ShowLegend,
                       g.ShowGridLines,
                       g.ToolTipShowsAll,
                       g.ClassDensity,
                       g.RegressionLine,
                       g.LabelOnlySelected], box_plot_prop)

        self.graph.box_zoom_select(self.controlArea)

        self.controlArea.layout().addStretch(100)
        self.icons = gui.attributeIconDict

        p = self.graph.plot_widget.palette()
        self.graph.set_palette(p)

        gui.auto_commit(self.controlArea, self, "auto_send_selection",
                        "Send Selection", "Send Automatically")

        self.graph.zoom_actions(self)

    def keyPressEvent(self, event):
        super().keyPressEvent(event)
        self.graph.update_tooltip(event.modifiers())

    def keyReleaseEvent(self, event):
        super().keyReleaseEvent(event)
        self.graph.update_tooltip(event.modifiers())

    def reset_graph_data(self, *_):
        if self.data is not None:
            self.graph.rescale_data()
            self.update_graph()

    def _vizrank_color_change(self):
        self.vizrank.initialize()
        is_enabled = self.data is not None and not self.data.is_sparse() and \
                     len([v for v in chain(self.data.domain.variables, self.data.domain.metas)
                          if v.is_primitive]) > 2\
                     and len(self.data) > 1
        self.vizrank_button.setEnabled(
            is_enabled and self.graph.attr_color is not None and
            not np.isnan(self.data.get_column_view(self.graph.attr_color)[0].astype(float)).all())
        if is_enabled and self.graph.attr_color is None:
            self.vizrank_button.setToolTip("Color variable has to be selected.")
        else:
            self.vizrank_button.setToolTip("")

    @Inputs.data
    def set_data(self, data):
        self.clear_messages()
        self.Information.sampled_sql.clear()
        self.__timer.stop()
        self.sampling.setVisible(False)
        self.sql_data = None
        if isinstance(data, SqlTable):
            if data.approx_len() < 4000:
                data = Table(data)
            else:
                self.Information.sampled_sql()
                self.sql_data = data
                data_sample = data.sample_time(0.8, no_cache=True)
                data_sample.download_data(2000, partial=True)
                data = Table(data_sample)
                self.sampling.setVisible(True)
                if self.auto_sample:
                    self.__timer.start()

        if data is not None and (len(data) == 0 or len(data.domain) == 0):
            data = None
        if self.data and data and self.data.checksum() == data.checksum():
            return

        self.closeContext()
        same_domain = (self.data and data and
                       data.domain.checksum() == self.data.domain.checksum())
        self.data = data

        if not same_domain:
            self.init_attr_values()
        self.openContext(self.data)
        self._vizrank_color_change()

        def findvar(name, iterable):
            """Find a Orange.data.Variable in `iterable` by name"""
            for el in iterable:
                if isinstance(el, Orange.data.Variable) and el.name == name:
                    return el
            return None

        # handle restored settings from  < 3.3.9 when attr_* were stored
        # by name
        if isinstance(self.attr_x, str):
            self.attr_x = findvar(self.attr_x, self.xy_model)
        if isinstance(self.attr_y, str):
            self.attr_y = findvar(self.attr_y, self.xy_model)
        if isinstance(self.graph.attr_label, str):
            self.graph.attr_label = findvar(
                self.graph.attr_label, self.graph.gui.label_model)
        if isinstance(self.graph.attr_color, str):
            self.graph.attr_color = findvar(
                self.graph.attr_color, self.graph.gui.color_model)
        if isinstance(self.graph.attr_shape, str):
            self.graph.attr_shape = findvar(
                self.graph.attr_shape, self.graph.gui.shape_model)
        if isinstance(self.graph.attr_size, str):
            self.graph.attr_size = findvar(
                self.graph.attr_size, self.graph.gui.size_model)

    def add_data(self, time=0.4):
        if self.data and len(self.data) > 2000:
            return self.__timer.stop()
        data_sample = self.sql_data.sample_time(time, no_cache=True)
        if data_sample:
            data_sample.download_data(2000, partial=True)
            data = Table(data_sample)
            self.data = Table.concatenate((self.data, data), axis=0)
            self.handleNewSignals()

    def switch_sampling(self):
        self.__timer.stop()
        if self.auto_sample and self.sql_data:
            self.add_data()
            self.__timer.start()

    @Inputs.data_subset
    def set_subset_data(self, subset_data):
        self.warning()
        if isinstance(subset_data, SqlTable):
            if subset_data.approx_len() < AUTO_DL_LIMIT:
                subset_data = Table(subset_data)
            else:
                self.warning("Data subset does not support large Sql tables")
                subset_data = None
        self.subset_data = subset_data
        self.controls.graph.alpha_value.setEnabled(subset_data is None)

    # called when all signals are received, so the graph is updated only once
    def handleNewSignals(self):
        self.graph.new_data(self.data, self.subset_data)
        if self.attribute_selection_list and self.graph.domain and \
                all(attr in self.graph.domain
                        for attr in self.attribute_selection_list):
            self.attr_x = self.attribute_selection_list[0]
            self.attr_y = self.attribute_selection_list[1]
        self.attribute_selection_list = None
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line())
        if self.data is not None and self.__pending_selection_restore is not None:
            self.apply_selection(self.__pending_selection_restore)
            self.__pending_selection_restore = None
        self.unconditional_commit()

    def apply_selection(self, selection):
        """Apply `selection` to the current plot."""
        if self.data is not None:
            self.graph.selection = np.zeros(len(self.data), dtype=np.uint8)
            self.selection_group = [x for x in selection if x[0] < len(self.data)]
            selection_array = np.array(self.selection_group).T
            self.graph.selection[selection_array[0]] = selection_array[1]
            self.graph.update_colors(keep_colors=True)

    @Inputs.features
    def set_shown_attributes(self, attributes):
        if attributes and len(attributes) >= 2:
            self.attribute_selection_list = attributes[:2]
        else:
            self.attribute_selection_list = None

    def init_attr_values(self):
        domain = self.data and self.data.domain
        for model in self.models:
            model.set_domain(domain)
        self.attr_x = self.xy_model[0] if self.xy_model else None
        self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \
            else self.attr_x
        self.graph.attr_color = self.data.domain.class_var if domain else None
        self.graph.attr_shape = None
        self.graph.attr_size = None
        self.graph.attr_label = None

    def set_attr(self, attr_x, attr_y):
        self.attr_x, self.attr_y = attr_x, attr_y
        self.update_attr()

    def update_attr(self):
        self.update_graph()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())
        self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line())
        self.send_features()

    def update_colors(self):
        self._vizrank_color_change()
        self.cb_class_density.setEnabled(self.graph.can_draw_density())

    def update_density(self):
        self.update_graph(reset_view=False)

    def update_regression_line(self):
        self.update_graph(reset_view=False)

    def update_graph(self, reset_view=True, **_):
        self.graph.zoomStack = []
        if self.graph.data is None:
            return
        self.graph.update_data(self.attr_x, self.attr_y, reset_view)

    def selection_changed(self):

        # Store current selection in a setting that is stored in workflow
        if isinstance(self.data, SqlTable):
            selection = None
        elif self.data is not None:
            selection = self.graph.get_selection()
        else:
            selection = None
        if selection is not None and len(selection):
            self.selection_group = list(zip(selection, self.graph.selection[selection]))
        else:
            self.selection_group = None

        self.commit()

    def send_data(self):
        # TODO: Implement selection for sql data
        def _get_selected():
            if not len(selection):
                return None
            return create_groups_table(data, graph.selection, False, "Group")

        def _get_annotated():
            if graph.selection is not None and np.max(graph.selection) > 1:
                return create_groups_table(data, graph.selection)
            else:
                return create_annotated_table(data, selection)

        graph = self.graph
        data = self.data
        selection = graph.get_selection()
        self.Outputs.annotated_data.send(_get_annotated())
        self.Outputs.selected_data.send(_get_selected())

    def send_features(self):
        features = [attr for attr in [self.attr_x, self.attr_y] if attr]
        self.Outputs.features.send(features or None)

    def commit(self):
        self.send_data()
        self.send_features()

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)

    def send_report(self):
        if self.data is None:
            return
        def name(var):
            return var and var.name
        caption = report.render_items_vert((
            ("Color", name(self.graph.attr_color)),
            ("Label", name(self.graph.attr_label)),
            ("Shape", name(self.graph.attr_shape)),
            ("Size", name(self.graph.attr_size)),
            ("Jittering", (self.attr_x.is_discrete or
                           self.attr_y.is_discrete or
                           self.graph.jitter_continuous) and
             self.graph.jitter_size)))
        self.report_plot()
        if caption:
            self.report_caption(caption)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        self.graph.plot_widget.getViewBox().deleteLater()
        self.graph.plot_widget.clear()

    @classmethod
    def migrate_settings(cls, settings, version):
        if version < 2 and "selection" in settings and settings["selection"]:
            settings["selection_group"] = [(a, 1) for a in settings["selection"]]
示例#60
0
class OWTimeSlice(widget.OWWidget):
    name = 'Time Slice'
    description = 'Select a slice of measurements on a time interval.'
    icon = 'icons/TimeSlice.svg'
    priority = 550

    class Inputs:
        data = Input("Data", Table)

    class Outputs:
        subset = Output("Subset", Table)

    settings_version = 2

    want_main_area = False

    class Error(widget.OWWidget.Error):
        no_time_variable = widget.Msg('Data contains no time variable')
        no_time_delta = widget.Msg('Data contains only one time point')

    MAX_SLIDER_VALUE = 500
    DATE_FORMATS = ('yyyy', '-MM', '-dd', '  HH:mm:ss.zzz')
    # only appropriate overlap amounts are shown, but these are all the options
    DELAY_VALUES = (0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 30)
    STEP_SIZES = OrderedDict(
        (('1 second', 1), ('5 seconds', 5), ('10 seconds', 10),
         ('15 seconds', 15), ('30 seconds', 30), ('1 minute', 60),
         ('5 minutes', 300), ('10 minutes', 600), ('15 minutes', 900),
         ('30 minutes', 1800), ('1 hour', 3600), ('2 hours', 7200),
         ('3 hours', 10800), ('6 hours', 21600), ('12 hours', 43200),
         ('1 day', 86400), ('1 week', 604800), ('2 weeks', 1209600),
         ('1 month', (1, 'month')), ('2 months', (2, 'month')), ('3 months',
                                                                 (3, 'month')),
         ('6 months', (6, 'month')), ('1 year', (1, 'year')), ('2 years',
                                                               (2, 'year')),
         ('5 years', (5, 'year')), ('10 years', (10, 'year')), ('25 years',
                                                                (25, 'year')),
         ('50 years', (50, 'year')), ('100 years', (100, 'year'))))

    loop_playback = settings.Setting(True)
    custom_step_size = settings.Setting(False)
    step_size = settings.Setting(next(iter(STEP_SIZES)))
    playback_interval = settings.Setting(1)
    slider_values = settings.Setting((0, .2 * MAX_SLIDER_VALUE))

    icons_font = None

    def __init__(self):
        super().__init__()
        self._delta = 0
        self.play_timer = QTimer(self,
                                 interval=1000 * self.playback_interval,
                                 timeout=self.play_single_step)
        slider = self.slider = Slider(Qt.Horizontal,
                                      self,
                                      minimum=0,
                                      maximum=self.MAX_SLIDER_VALUE,
                                      tracking=True,
                                      playbackInterval=1000 *
                                      self.playback_interval,
                                      valuesChanged=self.sliderValuesChanged,
                                      minimumValue=self.slider_values[0],
                                      maximumValue=self.slider_values[1])
        slider.setShowText(False)
        selectBox = gui.vBox(self.controlArea, 'Select a Time Range')
        selectBox.layout().addWidget(slider)

        dtBox = gui.hBox(selectBox)

        kwargs = dict(calendarPopup=True,
                      displayFormat=' '.join(self.DATE_FORMATS),
                      timeSpec=Qt.UTC)
        date_from = self.date_from = QDateTimeEdit(self, **kwargs)
        date_to = self.date_to = QDateTimeEdit(self, **kwargs)

        def datetime_edited(dt_edit):
            minTime = self.date_from.dateTime().toMSecsSinceEpoch() / 1000
            maxTime = self.date_to.dateTime().toMSecsSinceEpoch() / 1000
            if minTime > maxTime:
                minTime = maxTime = minTime if dt_edit == self.date_from else maxTime
                other = self.date_to if dt_edit == self.date_from else self.date_from
                with blockSignals(other):
                    other.setDateTime(dt_edit.dateTime())

            self.dteditValuesChanged(minTime, maxTime)

        date_from.dateTimeChanged.connect(lambda: datetime_edited(date_from))
        date_to.dateTimeChanged.connect(lambda: datetime_edited(date_to))

        # hotfix, does not repaint on click of arrow
        date_from.calendarWidget().currentPageChanged.connect(
            lambda: date_from.calendarWidget().repaint())
        date_to.calendarWidget().currentPageChanged.connect(
            lambda: date_to.calendarWidget().repaint())

        dtBox.layout().addStretch(100)
        dtBox.layout().addWidget(date_from)
        dtBox.layout().addWidget(QLabel(' – '))
        dtBox.layout().addWidget(date_to)
        dtBox.layout().addStretch(100)

        hCenterBox = gui.hBox(self.controlArea)
        gui.rubber(hCenterBox)
        vControlsBox = gui.vBox(hCenterBox)

        stepThroughBox = gui.vBox(vControlsBox, 'Step/Play Through')
        gui.rubber(stepThroughBox)
        gui.checkBox(stepThroughBox,
                     self,
                     'loop_playback',
                     label='Loop playback')
        customStepBox = gui.hBox(stepThroughBox)
        gui.checkBox(
            customStepBox,
            self,
            'custom_step_size',
            label='Custom step size: ',
            toolTip='If not chosen, the active interval moves forward '
            '(backward), stepping in increments of its own size.')
        self.stepsize_combobox = gui.comboBox(customStepBox,
                                              self,
                                              'step_size',
                                              items=tuple(
                                                  self.STEP_SIZES.keys()),
                                              sendSelectedValue=True)
        playBox = gui.hBox(stepThroughBox)
        gui.rubber(playBox)
        gui.rubber(stepThroughBox)

        if self.icons_font is None:
            self.icons_font = load_icons_font()

        self.step_backward = gui.button(
            playBox,
            self,
            '⏪',
            callback=lambda: self.play_single_step(backward=True),
            autoDefault=False)
        self.step_backward.setFont(self.icons_font)
        self.play_button = gui.button(playBox,
                                      self,
                                      '▶️',
                                      callback=self.playthrough,
                                      toggleButton=True,
                                      default=True)
        self.play_button.setFont(self.icons_font)
        self.step_forward = gui.button(playBox,
                                       self,
                                       '⏩',
                                       callback=self.play_single_step,
                                       autoDefault=False)
        self.step_forward.setFont(self.icons_font)

        gui.rubber(playBox)
        intervalBox = gui.vBox(vControlsBox, 'Playback/Tracking interval')
        intervalBox.setToolTip(
            'In milliseconds, set the delay for playback and '
            'for sending data upon manually moving the interval.')

        def set_intervals():
            self.play_timer.setInterval(1000 * self.playback_interval)
            self.slider.tracking_timer.setInterval(1000 *
                                                   self.playback_interval)

        gui.valueSlider(intervalBox,
                        self,
                        'playback_interval',
                        label='Delay:',
                        labelFormat='%.2g sec',
                        values=self.DELAY_VALUES,
                        callback=set_intervals)

        gui.rubber(hCenterBox)
        gui.rubber(self.controlArea)
        self._set_disabled(True)

    def sliderValuesChanged(self, minValue, maxValue):
        self._delta = max(1, (maxValue - minValue))
        minTime = self.slider.scale(minValue)
        maxTime = self.slider.scale(maxValue)

        from_dt = QDateTime.fromMSecsSinceEpoch(int(minTime * 1000)).toUTC()
        to_dt = QDateTime.fromMSecsSinceEpoch(int(maxTime * 1000)).toUTC()
        if self.date_from.dateTime() != from_dt:
            with blockSignals(self.date_from):
                self.date_from.setDateTime(from_dt)
        if self.date_from.dateTime() != to_dt:
            with blockSignals(self.date_to):
                self.date_to.setDateTime(to_dt)

        self.send_selection(minTime, maxTime)

    def dteditValuesChanged(self, minTime, maxTime):
        minValue = self.slider.unscale(minTime)
        maxValue = self.slider.unscale(maxTime)
        if minValue == maxValue:
            # maxValue's range is minValue's range shifted by one
            maxValue += 1
            maxTime = self.slider.scale(maxValue)
            to_dt = QDateTime.fromMSecsSinceEpoch(int(maxTime * 1000)).toUTC()
            with blockSignals(self.date_to):
                self.date_to.setDateTime(to_dt)

        self._delta = max(1, (maxValue - minValue))

        if self.slider_values != (minValue, maxValue):
            self.slider_values = (minValue, maxValue)
            with blockSignals(self.slider):
                self.slider.setValues(minValue, maxValue)

        self.send_selection(minTime, maxTime)

    def send_selection(self, minTime, maxTime):
        try:
            time_values = self.data.time_values
        except AttributeError:
            return
        indices = (minTime <= time_values) & (time_values < maxTime)
        self.Outputs.subset.send(self.data[indices] if indices.any() else None)

    def playthrough(self):
        playing = self.play_button.isChecked()

        for widget in (self.slider, self.step_forward, self.step_backward):
            widget.setDisabled(playing)

        for widget in (self.date_from, self.date_to):
            widget.setReadOnly(playing)

        if playing:
            self.play_timer.start()
            self.play_button.setText('⏸')
        else:
            self.play_timer.stop()
            self.play_button.setText('▶️')

        # hotfix
        self.repaint()

    def play_single_step(self, backward=False):
        minValue, maxValue = self.slider.values()
        orig_delta = delta = self._delta

        def new_value(value):
            if self.custom_step_size:
                step_amount = self.STEP_SIZES[self.step_size]
                time = fromtimestamp(self.slider.scale(value))
                newTime = add_time(time, step_amount, -1 if backward else 1)
                return self.slider.unscale(timestamp(newTime))
            return value + (-delta if backward else delta)

        if maxValue == self.slider.maximum() and not backward:
            minValue = self.slider.minimum()
            maxValue = self.slider.minimum() + delta

            if not self.loop_playback:
                self.play_button.click()
                assert not self.play_timer.isActive()
                assert not self.play_button.isChecked()

        elif minValue == self.slider.minimum() and backward:
            maxValue = self.slider.maximum()
            minValue = min(self.slider.maximum(), new_value(maxValue))
        else:
            minValue = min(new_value(minValue), self.slider.maximum())
            maxValue = min(new_value(maxValue), self.slider.maximum())
        # Blocking signals because we want this to be synchronous to avoid
        # re-setting self._delta
        with blockSignals(self.slider):
            self.slider.setValues(minValue, maxValue)
        self.sliderValuesChanged(self.slider.minimumValue(),
                                 self.slider.maximumValue())
        self._delta = orig_delta  # Override valuesChanged handler

        # hotfix
        self.slider.repaint()

    def _set_disabled(self, is_disabled):
        if is_disabled and self.play_timer.isActive():
            self.play_button.click()
            assert not self.play_timer.isActive()
            assert not self.play_button.isChecked()

        for func in [
                self.date_from, self.date_to, self.step_backward,
                self.play_button, self.step_forward,
                self.controls.loop_playback, self.controls.step_size,
                self.controls.playback_interval, self.slider
        ]:
            func.setDisabled(is_disabled)

    @Inputs.data
    def set_data(self, data):
        slider = self.slider
        self.data = data = None if data is None else Timeseries.from_data_table(
            data)

        def disabled():
            slider.setFormatter(str)
            slider.setHistogram(None)
            slider.setScale(0, 0, None)
            slider.setValues(0, 0)
            self._set_disabled(True)
            self.Outputs.subset.send(None)

        if data is None:
            disabled()
            return

        if not isinstance(data.time_variable, TimeVariable):
            self.Error.no_time_variable()
            disabled()
            return
        if not data.time_delta.deltas:
            self.Error.no_time_delta()
            disabled()
            return
        self.Error.clear()
        var = data.time_variable

        time_values = data.time_values

        min_dt = fromtimestamp(round(time_values.min()))
        max_dt = fromtimestamp(round(time_values.max()))

        # Depending on time delta:
        #   - set slider maximum (granularity)
        #   - set range for end dt (+ 1 timedelta)
        #   - set date format
        #   - set time overlap options
        delta = data.time_delta.gcd
        range = max_dt - min_dt
        if isinstance(delta, Number):
            maximum = round(range.total_seconds() / delta)

            timedelta = datetime.timedelta(milliseconds=delta * 1000)
            min_dt2 = min_dt + timedelta
            max_dt2 = max_dt + timedelta

            if delta >= 86400:  # more than a day
                date_format = ''.join(self.DATE_FORMATS[0:3])
            else:
                date_format = ''.join(self.DATE_FORMATS)

            for k, n in [(k, n) for k, n in self.STEP_SIZES.items()
                         if isinstance(n, Number)]:
                if delta <= n:
                    min_overlap = k
                    break
            else:
                min_overlap = '1 day'
        else:  # isinstance(delta, tuple)
            if delta[1] == 'month':
                months = (max_dt.year - min_dt.year) * 12 + \
                         (max_dt.month - min_dt.month)
                maximum = months / delta[0]

                if min_dt.month < 12 - delta[0]:
                    min_dt2 = min_dt.replace(month=min_dt.month + delta[0])
                else:
                    min_dt2 = min_dt.replace(year=min_dt.year + 1,
                                             month=12 - min_dt.month +
                                             delta[0])
                if max_dt.month < 12 - delta[0]:
                    max_dt2 = max_dt.replace(month=max_dt.month + delta[0])
                else:
                    max_dt2 = max_dt.replace(year=max_dt.year + 1,
                                             month=12 - min_dt.month +
                                             delta[0])

                date_format = ''.join(self.DATE_FORMATS[0:2])

                for k, (i, u) in [(k, v) for k, v in self.STEP_SIZES.items()
                                  if isinstance(v, tuple) and v[1] == 'month']:
                    if delta[0] <= i:
                        min_overlap = k
                        break
                else:
                    min_overlap = '1 year'
            else:  # elif delta[1] == 'year':
                years = max_dt.year - min_dt.year
                maximum = years / delta[0]

                min_dt2 = min_dt.replace(year=min_dt.year + delta[0], )
                max_dt2 = max_dt.replace(year=max_dt.year + delta[0], )

                date_format = self.DATE_FORMATS[0]

                for k, (i, u) in [(k, v) for k, v in self.STEP_SIZES.items()
                                  if isinstance(v, tuple) and v[1] == 'year']:
                    if delta[0] <= i:
                        min_overlap = k
                        break
                else:
                    raise Exception('Timedelta larger than 100 years')

        # find max sensible time overlap
        upper_overlap_limit = range / 2
        for k, overlap in self.STEP_SIZES.items():
            if isinstance(overlap, Number):
                if upper_overlap_limit.total_seconds() <= overlap:
                    max_overlap = k
                    break
            else:
                i, u = overlap
                if u == 'month':
                    month_diff = (max_dt.year - min_dt.year) * 12 \
                                 + max(0, max_dt.month - min_dt.month)
                    if month_diff / 2 <= i:
                        max_overlap = k
                        break
                else:  # if u == 'year':
                    year_diff = max_dt.year - min_dt.year
                    if year_diff / 2 <= i:
                        max_overlap = k
                        break
        else:
            # last item in step sizes
            *_, max_overlap = self.STEP_SIZES.keys()

        self.stepsize_combobox.clear()
        dict_iter = iter(self.STEP_SIZES.keys())
        next_item = next(dict_iter)
        while next_item != min_overlap:
            next_item = next(dict_iter)
        self.stepsize_combobox.addItem(next_item)
        self.step_size = next_item
        while next_item != max_overlap:
            next_item = next(dict_iter)
            self.stepsize_combobox.addItem(next_item)

        slider.setMinimum(0)
        slider.setMaximum(int(maximum + 1))

        self._set_disabled(False)
        slider.setHistogram(time_values)
        slider.setFormatter(var.repr_val)
        slider.setScale(time_values.min(), time_values.max(),
                        data.time_delta.gcd)
        self.sliderValuesChanged(slider.minimumValue(), slider.maximumValue())

        def utc_dt(dt):
            qdt = QDateTime(dt)
            qdt.setTimeZone(QTimeZone.utc())
            return qdt

        self.date_from.setDateTimeRange(utc_dt(min_dt), utc_dt(max_dt))
        self.date_to.setDateTimeRange(utc_dt(min_dt2), utc_dt(max_dt2))
        self.date_from.setDisplayFormat(date_format)
        self.date_to.setDisplayFormat(date_format)

        def format_time(i):
            dt = QDateTime.fromMSecsSinceEpoch(i * 1000).toUTC()
            return dt.toString(date_format)

        self.slider.setFormatter(format_time)

    @classmethod
    def migrate_settings(cls, settings_, version):
        if version < 2:
            interval = settings_["playback_interval"] / 1000
            if interval in cls.DELAY_VALUES:
                settings_["playback_interval"] = interval
            else:
                settings_["playback_interval"] = 1