def test_dynamic_link(self): link = LinkItem() anchor1 = AnchorPoint() anchor2 = AnchorPoint() self.scene.addItem(link) self.scene.addItem(anchor1) self.scene.addItem(anchor2) link.setSourceItem(None, anchor1) link.setSinkItem(None, anchor2) anchor2.setPos(100, 100) link.setSourceName("1") link.setSinkName("2") link.setDynamic(True) self.assertTrue(link.isDynamic()) link.setDynamicEnabled(True) self.assertTrue(link.isDynamicEnabled()) def advance(): clock = time.process_time() link.setDynamic(clock > 1) link.setDynamicEnabled(int(clock) % 2 == 0) timer = QTimer(link, interval=0) timer.timeout.connect(advance) timer.start() self.qWait() timer.stop()
def test_arrowannotation(self): item = ArrowItem() self.scene.addItem(item) item.setLine(QLineF(100, 100, 100, 200)) item.setLineWidth(5) item = ArrowItem() item.setLine(QLineF(150, 100, 150, 200)) item.setLineWidth(10) item.setArrowStyle(ArrowItem.Concave) self.scene.addItem(item) item = ArrowAnnotation() item.setPos(10, 10) item.setLine(QLineF(10, 10, 200, 200)) self.scene.addItem(item) item.setLineWidth(5) def advance(): clock = time.process_time() * 10 item.setLineWidth(5 + math.sin(clock) * 5) item.setColor( QColor(Qt.red).lighter(100 + int(30 * math.cos(clock)))) timer = QTimer(item, interval=10) timer.timeout.connect(advance) timer.start() self.qWait() timer.stop()
class QCoreAppTestCase(unittest.TestCase): _AppClass = QCoreApplication @classmethod def setUpClass(cls): super(QCoreAppTestCase, cls).setUpClass() app = cls._AppClass.instance() if app is None: app = cls._AppClass([]) cls.app = app def setUp(self): super(QCoreAppTestCase, self).setUp() self._quittimer = QTimer(interval=1000) self._quittimer.timeout.connect(self.app.quit) self._quittimer.start() def tearDown(self): self._quittimer.stop() self._quittimer.timeout.disconnect(self.app.quit) self._quittimer = None super(QCoreAppTestCase, self).tearDown() @classmethod def tearDownClass(cls): gc.collect() cls.app = None super(QCoreAppTestCase, cls).tearDownClass()
class MagnetTool(DataTool): """ Draw points closer to the mouse position. """ def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self.__timeout) self._radius = 20.0 self._density = 4.0 self._pos = None def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.editingStarted.emit() self._pos = self.mapToPlot(event.pos()) self.__timer.start() return True return super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self._pos = self.mapToPlot(event.pos()) return True return super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.__timer.stop() self.editingFinished.emit() return True return super().mouseReleaseEvent(event) def __timeout(self): self.issueCommand.emit(Magnet(self._pos, self._radius, self._density))
def test_dock_standalone(self): widget = QWidget() layout = QHBoxLayout() widget.setLayout(layout) layout.addStretch(1) widget.show() dock = CollapsibleDockWidget() layout.addWidget(dock) list_view = QListView() list_view.setModel(QStringListModel(["a", "b"], list_view)) label = QLabel("A label. ") label.setWordWrap(True) dock.setExpandedWidget(label) dock.setCollapsedWidget(list_view) dock.setExpanded(True) dock.setExpanded(False) timer = QTimer(dock, interval=50) timer.timeout.connect(lambda: dock.setExpanded(not dock.expanded())) timer.start() self.qWait() timer.stop()
def test_splashscreen(self): splash = pkg_resources.resource_filename( config.__package__, "icons/orange-canvas-core-splash.svg") w = SplashScreen() w.setPixmap(QPixmap(splash)) w.setTextRect(QRect(100, 100, 400, 50)) w.show() def advance_time(): now = datetime.now() time = now.strftime("%c : %f") i = now.second % 3 if i == 2: w.setTextFormat(Qt.RichText) time = "<i>" + time + "</i>" else: w.setTextFormat(Qt.PlainText) w.showMessage(time, alignment=Qt.AlignCenter) rect = QRect(100, 100 + i * 20, 400, 50) w.setTextRect(rect) self.assertEqual(w.textRect(), rect) timer = QTimer(w, interval=1) timer.timeout.connect(advance_time) timer.start() self.qWait() timer.stop()
def test_outputview(self): output = OutputView() output.show() line1 = "A line \n" line2 = "A different line\n" output.write(line1) self.assertEqual(output.toPlainText(), line1) output.write(line2) self.assertEqual(output.toPlainText(), line1 + line2) output.clear() self.assertEqual(output.toPlainText(), "") output.writelines([line1, line2]) self.assertEqual(output.toPlainText(), line1 + line2) output.setMaximumLines(5) def advance(): now = datetime.now().strftime("%c\n") output.write(now) text = output.toPlainText() self.assertLessEqual(len(text.splitlines()), 5) timer = QTimer(output, interval=25) timer.timeout.connect(advance) timer.start() self.qWait(100) timer.stop()
class QSignalSpy(QObject): """ QSignalSpy(boundsignal) """ def __init__(self, boundsig, **kwargs): super(QSignalSpy, self).__init__(**kwargs) from AnyQt.QtCore import QEventLoop, QTimer self.__boundsig = boundsig self.__recorded = recorded = [] # type: List[List[Any]] self.__loop = loop = QEventLoop() self.__timer = QTimer(self, singleShot=True) self.__timer.timeout.connect(self.__loop.quit) def record(*args): # Record the emitted arguments and quit the loop if running. # NOTE: not capturing self from parent scope recorded.append(list(args)) if loop.isRunning(): loop.quit() # Need to keep reference at least for PyQt4 4.11.4, sip 4.16.9 on # python 3.4 (if the signal is emitted during gc collection, and # the boundsignal is a QObject.destroyed signal). self.__record = record boundsig.connect(record) def signal(self): return _QByteArray(self.__boundsig.signal[1:].encode("latin-1")) def isValid(self): return True def wait(self, timeout=5000): count = len(self) self.__timer.stop() self.__timer.setInterval(timeout) self.__timer.start() self.__loop.exec_() self.__timer.stop() return len(self) != count def __getitem__(self, index): return self.__recorded[index] def __setitem__(self, index, value): self.__recorded.__setitem__(index, value) def __delitem__(self, index): self.__recorded.__delitem__(index) def __len__(self): return len(self.__recorded)
def test_layout(self): one_desc, negate_desc, cons_desc = self.widget_desc() one_item = NodeItem() one_item.setWidgetDescription(one_desc) one_item.setPos(0, 150) self.scene.add_node_item(one_item) cons_item = NodeItem() cons_item.setWidgetDescription(cons_desc) cons_item.setPos(200, 0) self.scene.add_node_item(cons_item) negate_item = NodeItem() negate_item.setWidgetDescription(negate_desc) negate_item.setPos(200, 300) self.scene.add_node_item(negate_item) link = LinkItem() link.setSourceItem(one_item) link.setSinkItem(negate_item) self.scene.add_link_item(link) link = LinkItem() link.setSourceItem(one_item) link.setSinkItem(cons_item) self.scene.add_link_item(link) layout = AnchorLayout() self.scene.addItem(layout) self.scene.set_anchor_layout(layout) layout.invalidateNode(one_item) layout.activate() p1, p2 = one_item.outputAnchorItem.anchorPositions() self.assertTrue(p1 > p2) self.scene.node_item_position_changed.connect(layout.invalidateNode) path = QPainterPath() path.addEllipse(125, 0, 50, 300) def advance(): t = time.process_time() cons_item.setPos(path.pointAtPercent(t % 1.0)) negate_item.setPos(path.pointAtPercent((t + 0.5) % 1.0)) timer = QTimer(negate_item, interval=5) timer.start() timer.timeout.connect(advance) self.qWait() timer.stop()
def test_framelesswindow(self): window = FramelessWindow() window.show() window.setRadius(5) def cycle(): window.setRadius((window.radius() + 3) % 30) timer = QTimer(window, interval=50) timer.timeout.connect(cycle) timer.start() self.qWait() timer.stop()
def test_anchoritem(self): anchoritem = NodeAnchorItem(None) self.scene.addItem(anchoritem) path = QPainterPath() path.addEllipse(0, 0, 100, 100) anchoritem.setAnchorPath(path) anchor = AnchorPoint() anchoritem.addAnchor(anchor) ellipse1 = QGraphicsEllipseItem(-3, -3, 6, 6) ellipse2 = QGraphicsEllipseItem(-3, -3, 6, 6) self.scene.addItem(ellipse1) self.scene.addItem(ellipse2) anchor.scenePositionChanged.connect(ellipse1.setPos) with self.assertRaises(ValueError): anchoritem.addAnchor(anchor) anchor1 = AnchorPoint() anchoritem.addAnchor(anchor1) anchor1.scenePositionChanged.connect(ellipse2.setPos) self.assertSequenceEqual(anchoritem.anchorPoints(), [anchor, anchor1]) self.assertSequenceEqual(anchoritem.anchorPositions(), [0.5, 0.5]) anchoritem.setAnchorPositions([0.5, 0.0]) self.assertSequenceEqual(anchoritem.anchorPositions(), [0.5, 0.0]) def advance(): t = anchoritem.anchorPositions() t = [(t + 0.05) % 1.0 for t in t] anchoritem.setAnchorPositions(t) timer = QTimer(anchoritem, interval=10) timer.start() timer.timeout.connect(advance) self.qWait() timer.stop()
class QSignalSpy(QObject): """ QSignalSpy(boundsignal) """ def __init__(self, boundsig, **kwargs): super(QSignalSpy, self).__init__(**kwargs) from AnyQt.QtCore import QEventLoop, QTimer self.__boundsig = boundsig self.__boundsig.connect(lambda *args: self.__record(*args)) self.__recorded = [] # type: List[List[Any]] self.__loop = QEventLoop() self.__timer = QTimer(self, singleShot=True) self.__timer.timeout.connect(self.__loop.quit) def __record(self, *args): self.__recorded.append(list(args)) if self.__loop.isRunning(): self.__loop.quit() def signal(self): return _QByteArray(self.__boundsig.signal[1:].encode("latin-1")) def isValid(self): return True def wait(self, timeout=5000): count = len(self) self.__timer.stop() self.__timer.setInterval(timeout) self.__timer.start() self.__loop.exec_() self.__timer.stop() return len(self) != count def __getitem__(self, index): return self.__recorded[index] def __setitem__(self, index, value): self.__recorded.__setitem__(index, value) def __delitem__(self, index): self.__recorded.__delitem__(index) def __len__(self): return len(self.__recorded)
class PreviewModel(QStandardItemModel): """A model for preview items. """ def __init__(self, parent=None, items=None): super().__init__(parent) self.__preview_index = -1 if items is not None: self.insertColumn(0, items) self.__timer = QTimer(self) self.__timer.timeout.connect(self.__process_next) def delayedScanUpdate(self, delay=10): """Run a delayed preview item scan update. """ self.__preview_index = -1 self.__timer.start(delay) log.debug("delayedScanUpdate: Start") @Slot() def __process_next(self): index = self.__preview_index log.debug("delayedScanUpdate: Next %i", index + 1) if not 0 <= index + 1 < self.rowCount(): self.__timer.stop() log.debug("delayedScanUpdate: Stop") return self.__preview_index = index = index + 1 assert 0 <= index < self.rowCount() item = self.item(index) if os.path.isfile(item.path()): try: scanner.scan_update(item) except Exception: log.error( "An unexpected error occurred while " "scanning '%s'.", item.text(), exc_info=True) item.setEnabled(False)
class LightControl(QPushButton): def __init__(self, *args, **kwargs): self._strobe = kwargs.get('strobe', False) self._strobeState = False self._strobeTimer = QTimer() self._strobeTimer.timeout.connect(self.__strobeEffect) self._parent = kwargs.get('parent', None) super(LightControl, self).__init__(*args) self.clicked.connect(self.__callback) self.setCheckable(True) self.setIconSize(QSize(Config.iconSize, Config.iconSize)) self.setFixedSize(Config.controlWidth, Config.controlHeight) self._lastPress = 0 def __callback(self): self._strobeTimer.stop() if self._parent is not None: self._parent.setLight(self.text(), self.isChecked()) self._strobeState = False if self._strobe: now = nowMillis(datetime.datetime.now()) diff = now - self._lastPress self._lastPress = now if diff <= 500: self.setChecked(True) self._strobeTimer.start(Config.strobeRate / 1000) def __strobeEffect(self): if self._parent is not None: self._strobeState = not self._strobeState self._parent.setLight(self.text(), self._strobeState) @property def value(self): return self._value @value.setter def value(self, value): """ Reject value updates. """ pass
class PreviewModel(QStandardItemModel): """A model for preview items. """ def __init__(self, parent=None, items=None): QStandardItemModel.__init__(self, parent) if items is not None: self.insertColumn(0, items) self.__timer = QTimer(self) def delayedScanUpdate(self, delay=10): """Run a delayed preview item scan update. """ def iter_update(items): for item in items: try: scanner.scan_update(item) except Exception: log.error( "An unexpected error occurred while " "scanning %r.", str(item.text()), exc_info=True, ) item.setEnabled(False) yield items = [self.item(i) for i in range(self.rowCount())] iter_scan = iter_update(items) def process_one(): try: next(iter_scan) except StopIteration: self.__timer.timeout.disconnect(process_one) self.__timer.stop() self.__timer.timeout.connect(process_one) self.__timer.start(delay)
class JitterTool(DataTool): """ Jitter points around the mouse position. """ def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self._do) self._pos = None self._radius = 20.0 self._intensity = 5.0 self.__count = itertools.count() def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.editingStarted.emit() self._pos = self.mapToPlot(event.pos()) self.__timer.start() return True else: return super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self._pos = self.mapToPlot(event.pos()) return True else: return super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.__timer.stop() self.editingFinished.emit() return True else: return super().mouseReleaseEvent(event) def _do(self): self.issueCommand.emit( Jitter(self._pos, self._radius, self._intensity, next(self.__count)) )
def test_dock_mainwinow(self): mw = QMainWindow() dock = CollapsibleDockWidget() w1 = QTextEdit() w2 = QToolButton() w2.setFixedSize(38, 200) dock.setExpandedWidget(w1) dock.setCollapsedWidget(w2) mw.addDockWidget(Qt.LeftDockWidgetArea, dock) mw.setCentralWidget(QTextEdit()) mw.show() timer = QTimer(dock, interval=50) timer.timeout.connect(lambda: dock.setExpanded(not dock.expanded())) timer.start() self.qWait() timer.stop()
class AirBrushTool(DataTool): """ Add points with an 'air brush'. """ only2d = False def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self.__timout) self.__count = itertools.count() self.__pos = None def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.editingStarted.emit() self.__pos = self.mapToPlot(event.pos()) self.__timer.start() return True else: return super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self.__pos = self.mapToPlot(event.pos()) return True else: return super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.__timer.stop() self.editingFinished.emit() return True else: return super().mouseReleaseEvent(event) def __timout(self): self.issueCommand.emit( AirBrush(self.__pos, None, None, next(self.__count)) )
class JitterTool(DataTool): """ Jitter points around the mouse position. """ def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self._do) self._pos = None self._radius = 20.0 self._intensity = 5.0 self.__count = itertools.count() def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.editingStarted.emit() self._pos = self.mapToPlot(event.pos()) self.__timer.start() return True else: return super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self._pos = self.mapToPlot(event.pos()) return True else: return super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.__timer.stop() self.editingFinished.emit() return True else: return super().mouseReleaseEvent(event) def _do(self): self.issueCommand.emit( Jitter(self._pos, self._radius, self._intensity, next(self.__count)))
def test_splitter_resizer(self): w = QSplitter(orientation=Qt.Vertical) w.addWidget(QWidget()) text = QTextEdit() w.addWidget(text) resizer = SplitterResizer(parent=None) resizer.setSplitterAndWidget(w, text) def toogle(): if resizer.size() == 0: resizer.open() else: resizer.close() w.show() timer = QTimer(resizer, interval=100) timer.timeout.connect(toogle) timer.start() toogle() self.qWait() timer.stop()
class AirBrushTool(DataTool): """ Add points with an 'air brush'. """ only2d = False def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self.__timout) self.__count = itertools.count() self.__pos = None def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.editingStarted.emit() self.__pos = self.mapToPlot(event.pos()) self.__timer.start() return True else: return super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self.__pos = self.mapToPlot(event.pos()) return True else: return super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.__timer.stop() self.editingFinished.emit() return True else: return super().mouseReleaseEvent(event) def __timout(self): self.issueCommand.emit( AirBrush(self.__pos, None, None, next(self.__count)))
class MagnetTool(DataTool): """ Draw points closer to the mouse position. """ def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self.__timeout) self._radius = 20.0 self._density = 4.0 self._pos = None def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.editingStarted.emit() self._pos = self.mapToPlot(event.pos()) self.__timer.start() return True else: return super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self._pos = self.mapToPlot(event.pos()) return True else: return super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.__timer.stop() self.editingFinished.emit() return True else: return super().mouseReleaseEvent(event) def __timeout(self): self.issueCommand.emit( Magnet(self._pos, self._radius, self._density) )
class QCoreAppTestCase(unittest.TestCase): _AppClass = QCoreApplication app = None # type: QCoreApplication __appdomain = "" __appname = "" @classmethod def setUpClass(cls): super(QCoreAppTestCase, cls).setUpClass() QStandardPaths.setTestModeEnabled(True) app = cls._AppClass.instance() if app is None: app = cls._AppClass([]) cls.app = app cls.__appname = cls.app.applicationName() cls.__appdomain = cls.app.organizationDomain() cls.app.setApplicationName("orangecanvas.testing") cls.app.setOrganizationDomain("biolab.si") def setUp(self): super(QCoreAppTestCase, self).setUp() self._quittimer = QTimer(interval=100) self._quittimer.timeout.connect(self.app.quit) self._quittimer.start() def tearDown(self): self._quittimer.stop() self._quittimer.timeout.disconnect(self.app.quit) self._quittimer = None super(QCoreAppTestCase, self).tearDown() @classmethod def tearDownClass(cls): gc.collect() cls.app.setApplicationName(cls.__appname) cls.app.setOrganizationDomain(cls.__appdomain) cls.app = None super(QCoreAppTestCase, cls).tearDownClass() QStandardPaths.setTestModeEnabled(False)
class PreviewModel(QStandardItemModel): """A model for preview items. """ def __init__(self, parent=None, items=None): QStandardItemModel.__init__(self, parent) if items is not None: self.insertColumn(0, items) self.__timer = QTimer(self) def delayedScanUpdate(self, delay=10): """Run a delayed preview item scan update. """ def iter_update(items): for item in items: try: scanner.scan_update(item) except Exception: log.error("An unexpected error occurred while " "scanning %r.", str(item.text()), exc_info=True) item.setEnabled(False) yield items = [self.item(i) for i in range(self.rowCount())] iter_scan = iter_update(items) def process_one(): try: next(iter_scan) except StopIteration: self.__timer.timeout.disconnect(process_one) self.__timer.stop() self.__timer.timeout.connect(process_one) self.__timer.start(delay)
class SignalManager(QObject): """ Handle all runtime signal propagation for a :clas:`Scheme` instance. The scheme must be passed to the constructor and will become the parent of this object. Furthermore this should happen before any items (nodes, links) are added to the scheme. """ Running, Stoped, Paused, Error = range(4) """SignalManger state flags.""" Waiting, Processing = range(2) """SignalManager runtime state flags.""" stateChanged = Signal(int) """Emitted when the state of the signal manager changes.""" updatesPending = Signal() """Emitted when signals are added to the queue.""" processingStarted = Signal([], [SchemeNode]) """Emitted right before a `SchemeNode` instance has its inputs updated. """ processingFinished = Signal([], [SchemeNode]) """Emitted right after a `SchemeNode` instance has had its inputs updated. """ runtimeStateChanged = Signal(int) """Emitted when `SignalManager`'s runtime state changes.""" def __init__(self, scheme): assert scheme QObject.__init__(self, scheme) self._input_queue = [] # mapping a node to it's current outputs # {node: {channel: {id: signal_value}}} self._node_outputs = {} self.__state = SignalManager.Running self.__runtime_state = SignalManager.Waiting # A flag indicating if UpdateRequest event should be rescheduled self.__reschedule = False self.__update_timer = QTimer(self, interval=100, singleShot=True) self.__update_timer.timeout.connect(self.__process_next) def _can_process(self): """ Return a bool indicating if the manger can enter the main processing loop. """ return self.__state not in [SignalManager.Error, SignalManager.Stoped] def scheme(self): """ Return the parent class:`Scheme` instance. """ return self.parent() def start(self): """ Start the update loop. .. note:: The updates will not happen until the control reaches the Qt event loop. """ if self.__state != SignalManager.Running: self.__state = SignalManager.Running self.stateChanged.emit(SignalManager.Running) self._update() def stop(self): """ Stop the update loop. .. note:: If the `SignalManager` is currently in `process_queues` it will still update all current pending signals, but will not re-enter until `start()` is called again """ if self.__state != SignalManager.Stoped: self.__state = SignalManager.Stoped self.stateChanged.emit(SignalManager.Stoped) self.__update_timer.stop() def pause(self): """ Pause the updates. """ if self.__state != SignalManager.Paused: self.__state = SignalManager.Paused self.stateChanged.emit(SignalManager.Paused) self.__update_timer.stop() def resume(self): if self.__state == SignalManager.Paused: self.__state = SignalManager.Running self.stateChanged.emit(self.__state) self._update() def step(self): if self.__state == SignalManager.Paused: self.process_queued() def state(self): """ Return the current state. """ return self.__state def _set_runtime_state(self, state): """ Set the runtime state. Should only be called by `SignalManager` implementations. """ if self.__runtime_state != state: self.__runtime_state = state self.runtimeStateChanged.emit(self.__runtime_state) def runtime_state(self): """ Return the runtime state. This can be `SignalManager.Waiting` or `SignalManager.Processing`. """ return self.__runtime_state def on_node_removed(self, node): # remove all pending input signals for node so we don't get # stale references in process_node. # NOTE: This does not remove output signals for this node. In # particular the final 'None' will be delivered to the sink # nodes even after the source node is no longer in the scheme. log.info("Node %r removed. Removing pending signals.", node.title) self.remove_pending_signals(node) del self._node_outputs[node] def on_node_added(self, node): self._node_outputs[node] = defaultdict(dict) def link_added(self, link): # push all current source values to the sink link.set_runtime_state(SchemeLink.Empty) if link.enabled: log.info("Link added (%s). Scheduling signal data update.", link) self._schedule(self.signals_on_link(link)) self._update() link.enabled_changed.connect(self.link_enabled_changed) def link_removed(self, link): # purge all values in sink's queue log.info("Link removed (%s). Scheduling signal data purge.", link) self.purge_link(link) link.enabled_changed.disconnect(self.link_enabled_changed) def link_enabled_changed(self, enabled): if enabled: link = self.sender() log.info("Link %s enabled. Scheduling signal data update.", link) self._schedule(self.signals_on_link(link)) def signals_on_link(self, link): """ Return _Signal instances representing the current values present on the link. """ items = self.link_contents(link) signals = [] for key, value in list(items.items()): signals.append(_Signal(link, value, key)) return signals def link_contents(self, link): """ Return the contents on link. """ node, channel = link.source_node, link.source_channel if node in self._node_outputs: return self._node_outputs[node][channel] else: # if the the node was already removed it's tracked outputs in # _node_outputs are cleared, however the final 'None' signal # deliveries for the link are left in the _input_queue. pending = [sig for sig in self._input_queue if sig.link is link] return {sig.id: sig.value for sig in pending} def send(self, node, channel, value, id): """ """ log.debug("%r sending %r (id: %r) on channel %r", node.title, type(value), id, channel.name) scheme = self.scheme() self._node_outputs[node][channel][id] = value links = scheme.find_links(source_node=node, source_channel=channel) links = list(filter(is_enabled, links)) signals = [] for link in links: signals.append(_Signal(link, value, id)) self._schedule(signals) def purge_link(self, link): """ Purge the link (send None for all ids currently present) """ contents = self.link_contents(link) ids = list(contents.keys()) signals = [_Signal(link, None, id) for id in ids] self._schedule(signals) def _schedule(self, signals): """ Schedule a list of :class:`_Signal` for delivery. """ self._input_queue.extend(signals) for link in {sig.link for sig in signals}: # update the SchemeLink's runtime state flags contents = self.link_contents(link) if any(value is not None for value in contents.values()): state = SchemeLink.Active else: state = SchemeLink.Empty link.set_runtime_state(state | SchemeLink.Pending) if signals: self.updatesPending.emit() self._update() def _update_link(self, link): """ Schedule update of a single link. """ signals = self.signals_on_link(link) self._schedule(signals) def process_queued(self, max_nodes=None): """ Process queued signals. Take one node node from the pending input queue and deliver all scheduled signals. """ if max_nodes is not None or max_nodes != 1: warnings.warn( "`max_nodes` is deprecated and unused (will always equal 1)", DeprecationWarning, stacklevel=2 ) if self.__runtime_state == SignalManager.Processing: raise RuntimeError("Cannot re-enter 'process_queued'") if not self._can_process(): raise RuntimeError("Can't process in state %i" % self.__state) log.info("SignalManager: Processing queued signals") node_update_front = self.node_update_front() log.debug("SignalManager: Nodes eligible for update %s", [node.title for node in node_update_front]) if node_update_front: node = node_update_front[0] self._set_runtime_state(SignalManager.Processing) try: self.process_node(node) finally: self._set_runtime_state(SignalManager.Waiting) def process_node(self, node): """ Process pending input signals for `node`. """ signals_in = self.pending_input_signals(node) self.remove_pending_signals(node) signals_in = self.compress_signals(signals_in) log.debug("Processing %r, sending %i signals.", node.title, len(signals_in)) # Clear the link's pending flag. for link in {sig.link for sig in signals_in}: link.set_runtime_state(link.runtime_state() & ~SchemeLink.Pending) assert {sig.link for sig in self._input_queue}.intersection({sig.link for sig in signals_in}) == set([]) self.processingStarted.emit() self.processingStarted[SchemeNode].emit(node) try: self.send_to_node(node, signals_in) finally: self.processingFinished.emit() self.processingFinished[SchemeNode].emit(node) def compress_signals(self, signals): """ Compress a list of :class:`_Signal` instances to be delivered. The base implementation returns the list unmodified. """ return signals def send_to_node(self, node, signals): """ Abstract. Reimplement in subclass. Send/notify the :class:`SchemeNode` instance (or whatever object/instance it is a representation of) that it has new inputs as represented by the signals list (list of :class:`_Signal`). """ raise NotImplementedError def is_pending(self, node): """ Is `node` (class:`SchemeNode`) scheduled for processing (i.e. it has incoming pending signals). """ return node in [signal.link.sink_node for signal in self._input_queue] def pending_nodes(self): """ Return a list of pending nodes. The nodes are returned in the order they were enqueued for signal delivery. Returns ------- nodes : List[SchemeNode] """ return list(unique(sig.link.sink_node for sig in self._input_queue)) def pending_input_signals(self, node): """ Return a list of pending input signals for node. """ return [signal for signal in self._input_queue if node is signal.link.sink_node] def remove_pending_signals(self, node): """ Remove pending signals for `node`. """ for signal in self.pending_input_signals(node): try: self._input_queue.remove(signal) except ValueError: pass def blocking_nodes(self): """ Return a list of nodes in a blocking state. """ scheme = self.scheme() return [node for node in scheme.nodes if self.is_blocking(node)] def is_blocking(self, node): return False def node_update_front(self): """ Return a list of nodes on the update front, i.e. nodes scheduled for an update that have no ancestor which is either itself scheduled for update or is in a blocking state) .. note:: The node's ancestors are only computed over enabled links. """ scheme = self.scheme() blocking_nodes = set(self.blocking_nodes()) dependents = partial(dependent_nodes, scheme) blocked_nodes = reduce(set.union, map(dependents, blocking_nodes), set(blocking_nodes)) pending = self.pending_nodes() pending_downstream = reduce(set.union, map(dependents, pending), set()) log.debug("Pending nodes: %s", pending) log.debug("Blocking nodes: %s", blocking_nodes) noneligible = pending_downstream | blocked_nodes return [node for node in pending if node not in noneligible] @Slot() def __process_next(self): if not self.__state == SignalManager.Running: log.debug("Received 'UpdateRequest' while not in 'Running' state") return if self.__runtime_state == SignalManager.Processing: # This happens if someone calls QCoreApplication.processEvents # from the signal handlers. # A `__process_next` must be rescheduled when exiting # process_queued. log.warning( "Received 'UpdateRequest' while in 'process_queued'. " "An update will be re-scheduled when exiting the " "current update." ) self.__reschedule = True return log.info("'UpdateRequest' event, queued signals: %i", len(self._input_queue)) if self._input_queue: self.process_queued() if self.__reschedule and self.__state == SignalManager.Running: self.__reschedule = False log.debug("Rescheduling signal update") self.__update_timer.start() if self.node_update_front(): log.debug("More nodes are eligible for an update. " "Scheduling another update.") self._update() def _update(self): """ Schedule processing at a later time. """ if self.__state == SignalManager.Running and not self.__update_timer.isActive(): self.__update_timer.start()
class OWGOEnrichmentAnalysis(widget.OWWidget): name = "GO Browser" description = "Enrichment analysis for Gene Ontology terms." icon = "../widgets/icons/GOBrowser.svg" priority = 2020 inputs = [("Cluster Data", Orange.data.Table, "setDataset", widget.Single + widget.Default), ("Reference Data", Orange.data.Table, "setReferenceDataset")] outputs = [("Data on Selected Genes", Orange.data.Table), ("Data on Unselected Genes", Orange.data.Table), ("Data on Unknown Genes", Orange.data.Table), ("Enrichment Report", Orange.data.Table)] settingsHandler = settings.DomainContextHandler() annotationIndex = settings.ContextSetting(0) geneAttrIndex = settings.ContextSetting(0) useAttrNames = settings.ContextSetting(False) geneMatcherSettings = settings.Setting([True, False, False, False]) useReferenceDataset = settings.Setting(False) aspectIndex = settings.Setting(0) useEvidenceType = settings.Setting( {et: True for et in go.evidenceTypesOrdered}) filterByNumOfInstances = settings.Setting(False) minNumOfInstances = settings.Setting(1) filterByPValue = settings.Setting(True) maxPValue = settings.Setting(0.2) filterByPValue_nofdr = settings.Setting(False) maxPValue_nofdr = settings.Setting(0.01) probFunc = settings.Setting(0) selectionDirectAnnotation = settings.Setting(0) selectionDisjoint = settings.Setting(0) selectionAddTermAsClass = settings.Setting(0) def __init__(self, parent=None): super().__init__(self, parent) self.clusterDataset = None self.referenceDataset = None self.ontology = None self.annotations = None self.loadedAnnotationCode = None self.treeStructRootKey = None self.probFunctions = [stats.Binomial(), stats.Hypergeometric()] self.selectedTerms = [] self.selectionChanging = 0 self.__state = State.Ready self.__scheduletimer = QTimer(self, singleShot=True) self.__scheduletimer.timeout.connect(self.__update) ############# ## GUI ############# self.tabs = gui.tabWidget(self.controlArea) ## Input tab self.inputTab = gui.createTabPage(self.tabs, "Input") box = gui.widgetBox(self.inputTab, "Info") self.infoLabel = gui.widgetLabel(box, "No data on input\n") gui.button(box, self, "Ontology/Annotation Info", callback=self.ShowInfo, tooltip="Show information on loaded ontology and annotations") box = gui.widgetBox(self.inputTab, "Organism") self.annotationComboBox = gui.comboBox( box, self, "annotationIndex", items=[], callback=self.__invalidateAnnotations, tooltip="Select organism" ) genebox = gui.widgetBox(self.inputTab, "Gene Names") self.geneAttrIndexCombo = gui.comboBox( genebox, self, "geneAttrIndex", callback=self.__invalidate, tooltip="Use this attribute to extract gene names from input data") self.geneAttrIndexCombo.setDisabled(self.useAttrNames) cb = gui.checkBox(genebox, self, "useAttrNames", "Use column names", tooltip="Use column names for gene names", callback=self.__invalidate) cb.toggled[bool].connect(self.geneAttrIndexCombo.setDisabled) gui.button(genebox, self, "Gene matcher settings", callback=self.UpdateGeneMatcher, tooltip="Open gene matching settings dialog") self.referenceRadioBox = gui.radioButtonsInBox( self.inputTab, self, "useReferenceDataset", ["Entire genome", "Reference set (input)"], tooltips=["Use entire genome for reference", "Use genes from Referece Examples input signal as reference"], box="Reference", callback=self.__invalidate) self.referenceRadioBox.buttons[1].setDisabled(True) gui.radioButtonsInBox( self.inputTab, self, "aspectIndex", ["Biological process", "Cellular component", "Molecular function"], box="Aspect", callback=self.__invalidate) ## Filter tab self.filterTab = gui.createTabPage(self.tabs, "Filter") box = gui.widgetBox(self.filterTab, "Filter GO Term Nodes") gui.checkBox(box, self, "filterByNumOfInstances", "Genes", callback=self.FilterAndDisplayGraph, tooltip="Filter by number of input genes mapped to a term") ibox = gui.indentedBox(box) gui.spin(ibox, self, 'minNumOfInstances', 1, 100, step=1, label='#:', labelWidth=15, callback=self.FilterAndDisplayGraph, callbackOnReturn=True, tooltip="Min. number of input genes mapped to a term") gui.checkBox(box, self, "filterByPValue_nofdr", "p-value", callback=self.FilterAndDisplayGraph, tooltip="Filter by term p-value") gui.doubleSpin(gui.indentedBox(box), self, 'maxPValue_nofdr', 1e-8, 1, step=1e-8, label='p:', labelWidth=15, callback=self.FilterAndDisplayGraph, callbackOnReturn=True, tooltip="Max term p-value") #use filterByPValue for FDR, as it was the default in prior versions gui.checkBox(box, self, "filterByPValue", "FDR", callback=self.FilterAndDisplayGraph, tooltip="Filter by term FDR") gui.doubleSpin(gui.indentedBox(box), self, 'maxPValue', 1e-8, 1, step=1e-8, label='p:', labelWidth=15, callback=self.FilterAndDisplayGraph, callbackOnReturn=True, tooltip="Max term p-value") box = gui.widgetBox(box, "Significance test") gui.radioButtonsInBox(box, self, "probFunc", ["Binomial", "Hypergeometric"], tooltips=["Use binomial distribution test", "Use hypergeometric distribution test"], callback=self.__invalidate) # TODO: only update the p values box = gui.widgetBox(self.filterTab, "Evidence codes in annotation", addSpace=True) self.evidenceCheckBoxDict = {} for etype in go.evidenceTypesOrdered: ecb = QCheckBox( etype, toolTip=go.evidenceTypes[etype], checked=self.useEvidenceType[etype]) ecb.toggled.connect(self.__on_evidenceChanged) box.layout().addWidget(ecb) self.evidenceCheckBoxDict[etype] = ecb ## Select tab self.selectTab = gui.createTabPage(self.tabs, "Select") box = gui.radioButtonsInBox( self.selectTab, self, "selectionDirectAnnotation", ["Directly or Indirectly", "Directly"], box="Annotated genes", callback=self.ExampleSelection) box = gui.widgetBox(self.selectTab, "Output", addSpace=True) gui.radioButtonsInBox( box, self, "selectionDisjoint", btnLabels=["All selected genes", "Term-specific genes", "Common term genes"], tooltips=["Outputs genes annotated to all selected GO terms", "Outputs genes that appear in only one of selected GO terms", "Outputs genes common to all selected GO terms"], callback=[self.ExampleSelection, self.UpdateAddClassButton]) self.addClassCB = gui.checkBox( box, self, "selectionAddTermAsClass", "Add GO Term as class", callback=self.ExampleSelection) # ListView for DAG, and table for significant GOIDs self.DAGcolumns = ['GO term', 'Cluster', 'Reference', 'p-value', 'FDR', 'Genes', 'Enrichment'] self.splitter = QSplitter(Qt.Vertical, self.mainArea) self.mainArea.layout().addWidget(self.splitter) # list view self.listView = GOTreeWidget(self.splitter) self.listView.setSelectionMode(QTreeView.ExtendedSelection) self.listView.setAllColumnsShowFocus(1) self.listView.setColumnCount(len(self.DAGcolumns)) self.listView.setHeaderLabels(self.DAGcolumns) self.listView.header().setSectionsClickable(True) self.listView.header().setSortIndicatorShown(True) self.listView.setSortingEnabled(True) self.listView.setItemDelegateForColumn( 6, EnrichmentColumnItemDelegate(self)) self.listView.setRootIsDecorated(True) self.listView.itemSelectionChanged.connect(self.ViewSelectionChanged) # table of significant GO terms self.sigTerms = QTreeWidget(self.splitter) self.sigTerms.setColumnCount(len(self.DAGcolumns)) self.sigTerms.setHeaderLabels(self.DAGcolumns) self.sigTerms.setSortingEnabled(True) self.sigTerms.setSelectionMode(QTreeView.ExtendedSelection) self.sigTerms.setItemDelegateForColumn( 6, EnrichmentColumnItemDelegate(self)) self.sigTerms.itemSelectionChanged.connect(self.TableSelectionChanged) self.sigTableTermsSorted = [] self.graph = {} self.originalGraph = None self.inputTab.layout().addStretch(1) self.filterTab.layout().addStretch(1) self.selectTab.layout().addStretch(1) class AnnotationSlot(SimpleNamespace): taxid = ... # type: str name = ... # type: str orgcode = ... # type: str filename = ... # type:str available_annotations = [ AnnotationSlot( taxid=taxid, name=taxonomy.common_taxid_to_name(taxid), orgcode=go.from_taxid(taxid), filename="gene_association.{}.tar.gz" .format(go.from_taxid(taxid)) ) for taxid in taxonomy.common_taxids() if go.from_taxid(taxid) ] self.availableAnnotations = sorted( available_annotations, key=lambda a: a.name ) self.annotationComboBox.clear() for a in self.availableAnnotations: self.annotationComboBox.addItem(a.name) self.annotationComboBox.setCurrentIndex(self.annotationIndex) self.annotationIndex = self.annotationComboBox.currentIndex() self._executor = ThreadExecutor() def sizeHint(self): return QSize(1000, 700) def __on_evidenceChanged(self): for etype, cb in self.evidenceCheckBoxDict.items(): self.useEvidenceType[etype] = cb.isChecked() self.__invalidate() def UpdateGeneMatcher(self): """Open the Gene matcher settings dialog.""" dialog = GeneMatcherDialog(self, defaults=self.geneMatcherSettings, modal=True) if dialog.exec_() != QDialog.Rejected: self.geneMatcherSettings = [getattr(dialog, item[0]) for item in dialog.items] self.__invalidateAnnotations() def clear(self): self.infoLabel.setText("No data on input\n") self.warning(0) self.warning(1) self.geneAttrIndexCombo.clear() self.ClearGraph() self.send("Data on Selected Genes", None) self.send("Data on Unselected Genes", None) self.send("Data on Unknown Genes", None) self.send("Enrichment Report", None) def setDataset(self, data=None): self.closeContext() self.clear() self.clusterDataset = data if data is not None: domain = data.domain allvars = domain.variables + domain.metas self.candidateGeneAttrs = [var for var in allvars if isstring(var)] self.geneAttrIndexCombo.clear() for var in self.candidateGeneAttrs: self.geneAttrIndexCombo.addItem(*gui.attributeItem(var)) taxid = data_hints.get_hint(data, "taxid", "") try: code = go.from_taxid(taxid) except KeyError: pass else: _c2i = {a.orgcode: i for i, a in enumerate(self.availableAnnotations)} try: self.annotationIndex = _c2i[code] except KeyError: pass self.useAttrNames = data_hints.get_hint(data, "genesinrows", self.useAttrNames) self.openContext(data) self.geneAttrIndex = min(self.geneAttrIndex, len(self.candidateGeneAttrs) - 1) if len(self.candidateGeneAttrs) == 0: self.useAttrNames = True self.geneAttrIndex = -1 elif self.geneAttrIndex < len(self.candidateGeneAttrs): self.geneAttrIndex = len(self.candidateGeneAttrs) - 1 self.__invalidate() def setReferenceDataset(self, data=None): self.referenceDataset = data self.referenceRadioBox.buttons[1].setDisabled(not bool(data)) self.referenceRadioBox.buttons[1].setText("Reference set") if self.clusterDataset is not None and self.useReferenceDataset: self.useReferenceDataset = 0 if not data else 1 self.__invalidate() elif self.clusterDataset: self.__updateReferenceSetButton() def handleNewSignals(self): super().handleNewSignals() self.__update() @Slot() def __invalidate(self): # Invalidate the current results or pending task and schedule an # update. self.__scheduletimer.start() if self.__state != State.Ready: self.__state |= State.Stale self.SetGraph({}) self.referenceGenes = None self.clusterGenes = None def __invalidateAnnotations(self): self.annotations = None self.loadedAnnotationCode = None if self.clusterDataset: self.infoLabel.setText("...\n") self.__updateReferenceSetButton() self.__invalidate() @Slot() def __update(self): self.__scheduletimer.stop() if self.clusterDataset is None: return if self.__state & State.Running: self.__state |= State.Stale elif self.__state & State.Downloading: self.__state |= State.Stale elif self.__state & State.Ready: if self.__ensure_data(): self.Load() self.Enrichment() else: assert self.__state & State.Downloading assert self.isBlocking() def __updateReferenceSetButton(self): allgenes, refgenes = None, None if self.referenceDataset and self.annotations is not None: try: allgenes = self.genesFromTable(self.referenceDataset) except Exception: allgenes = [] refgenes, unknown = self.FilterAnnotatedGenes(allgenes) self.referenceRadioBox.buttons[1].setDisabled(not bool(allgenes)) self.referenceRadioBox.buttons[1].setText("Reference set " + ("(%i genes, %i matched)" % (len(allgenes), len(refgenes)) if allgenes and refgenes else "")) def genesFromTable(self, data): if self.useAttrNames: genes = [v.name for v in data.domain.variables] else: attr = self.candidateGeneAttrs[min(self.geneAttrIndex, len(self.candidateGeneAttrs) - 1)] genes = [str(ex[attr]) for ex in data if not numpy.isnan(ex[attr])] if any("," in gene for gene in genes): self.information(0, "Separators detected in gene names. Assuming multiple genes per example.") genes = reduce(operator.iadd, (genes.split(",") for genes in genes), []) return genes def FilterAnnotatedGenes(self, genes): matchedgenes = self.annotations.get_gene_names_translator(genes).values() return matchedgenes, [gene for gene in genes if gene not in matchedgenes] def FilterUnknownGenes(self): if not self.useAttrNames and self.candidateGeneAttrs: geneAttr = self.candidateGeneAttrs[min(self.geneAttrIndex, len(self.candidateGeneAttrs)-1)] indices = [] for i, ex in enumerate(self.clusterDataset): if not any(self.annotations.genematcher.match(n.strip()) for n in str(ex[geneAttr]).split(",")): indices.append(i) if indices: data = self.clusterDataset[indices] else: data = None self.send("Data on Unknown Genes", data) else: self.send("Data on Unknown Genes", None) def __start_download(self, files_list): # type: (List[Tuple[str, str]]) -> None task = EnsureDownloaded(files_list) task.progress.connect(self._progressBarSet) f = self._executor.submit(task) fw = FutureWatcher(f, self) fw.finished.connect(self.__download_finish) fw.finished.connect(fw.deleteLater) fw.resultReady.connect(self.__invalidate) self.progressBarInit(processEvents=None) self.setBlocking(True) self.setStatusMessage("Downloading") self.__state = State.Downloading @Slot(Future) def __download_finish(self, result): # type: (Future[None]) -> None assert QThread.currentThread() is self.thread() assert result.done() self.setBlocking(False) self.setStatusMessage("") self.progressBarFinished(processEvents=False) try: result.result() except ConnectTimeout: logging.getLogger(__name__).error("Error:") self.error(2, "Internet connection error, unable to load data. " + "Check connection and create a new GO Browser widget.") except RequestException as err: logging.getLogger(__name__).error("Error:") self.error(2, "Internet error:\n" + str(err)) except BaseException as err: logging.getLogger(__name__).error("Error:") self.error(2, "Error:\n" + str(err)) raise else: self.error(2) finally: self.__state = State.Ready def __ensure_data(self): # Ensure that all required database (ontology and annotations for # the current selected organism are present. If not start a download in # the background. Return True if all dbs are present and false # otherwise assert self.__state == State.Ready annotation = self.availableAnnotations[self.annotationIndex] go_files = serverfiles.listfiles("GO") files = [] if annotation.filename not in go_files: files.append(("GO", annotation.filename)) if go.Ontology.FILENAME not in go_files: files.append((go.Ontology.DOMAIN, go.Ontology.FILENAME)) gene_info_files = serverfiles.listfiles(gene.NCBIGeneInfo.DOMAIN) gi_filename = gene.NCBIGeneInfo.FILENAME.format( taxid=gene.NCBIGeneInfo.TAX_MAP.get( annotation.taxid, annotation.taxid) ) if gi_filename not in gene_info_files and self.geneMatcherSettings[2]: files.append((gene.NCBIGeneInfo.DOMAIN, gi_filename)) if files: self.__start_download(files) assert self.__state == State.Downloading return False else: return True def Load(self): a = self.availableAnnotations[self.annotationIndex] if self.ontology is None: self.ontology = go.Ontology() if a.orgcode != self.loadedAnnotationCode: self.annotations = None gc.collect() # Force run garbage collection self.annotations = go.Annotations(a.orgcode, genematcher=gene.GMDirect()) self.loadedAnnotationCode = a.orgcode count = defaultdict(int) geneSets = defaultdict(set) for anno in self.annotations.annotations: count[anno.evidence] += 1 geneSets[anno.evidence].add(anno.geneName) for etype in go.evidenceTypesOrdered: ecb = self.evidenceCheckBoxDict[etype] ecb.setEnabled(bool(count[etype])) ecb.setText(etype + ": %i annots(%i genes)" % (count[etype], len(geneSets[etype]))) self.__updateReferenceSetButton() def SetGeneMatcher(self): if self.annotations: taxid = self.annotations.taxid matchers = [] for matcher, use in zip([gene.GMGO, gene.GMKEGG, gene.GMNCBI, gene.GMAffy], self.geneMatcherSettings): if use: try: if taxid == "352472": matchers.extend([matcher(taxid), gene.GMDicty(), [matcher(taxid), gene.GMDicty()]]) # The reason machers are duplicated is that we want `matcher` or `GMDicty` to # match genes by them self if possible. Only use the joint matcher if they fail. else: matchers.append(matcher(taxid)) except Exception as ex: print(ex) self.annotations.genematcher = gene.matcher(matchers) self.annotations.genematcher.set_targets(self.annotations.gene_names) self.__updateReferenceSetButton() def Enrichment(self): assert self.clusterDataset is not None assert self.__state == State.Ready if not self.annotations.ontology: self.annotations.ontology = self.ontology if isinstance(self.annotations.genematcher, gene.GMDirect): self.SetGeneMatcher() self.error(1) self.warning([0, 1]) if self.useAttrNames: clusterGenes = [v.name for v in self.clusterDataset.domain.attributes] self.information(0) elif 0 <= self.geneAttrIndex < len(self.candidateGeneAttrs): geneAttr = self.candidateGeneAttrs[self.geneAttrIndex] clusterGenes = [str(ex[geneAttr]) for ex in self.clusterDataset if not numpy.isnan(ex[geneAttr])] if any("," in gene for gene in clusterGenes): self.information(0, "Separators detected in cluster gene names. Assuming multiple genes per example.") clusterGenes = reduce(operator.iadd, (genes.split(",") for genes in clusterGenes), []) else: self.information(0) else: self.error(1, "Failed to extract gene names from input dataset!") return {} genesSetCount = len(set(clusterGenes)) self.clusterGenes = clusterGenes = self.annotations.get_gene_names_translator(clusterGenes).values() self.infoLabel.setText("%i unique genes on input\n%i (%.1f%%) genes with known annotations" % (genesSetCount, len(clusterGenes), 100.0*len(clusterGenes)/genesSetCount if genesSetCount else 0.0)) referenceGenes = None if not self.useReferenceDataset or self.referenceDataset is None: self.information(2) self.information(1) referenceGenes = self.annotations.gene_names elif self.referenceDataset is not None: if self.useAttrNames: referenceGenes = [v.name for v in self.referenceDataset.domain.attributes] self.information(1) elif geneAttr in (self.referenceDataset.domain.variables + self.referenceDataset.domain.metas): referenceGenes = [str(ex[geneAttr]) for ex in self.referenceDataset if not numpy.isnan(ex[geneAttr])] if any("," in gene for gene in clusterGenes): self.information(1, "Separators detected in reference gene names. Assuming multiple genes per example.") referenceGenes = reduce(operator.iadd, (genes.split(",") for genes in referenceGenes), []) else: self.information(1) else: self.information(1) referenceGenes = None if referenceGenes is None: referenceGenes = list(self.annotations.gene_names) self.referenceRadioBox.buttons[1].setText("Reference set") self.referenceRadioBox.buttons[1].setDisabled(True) self.information(2, "Unable to extract gene names from reference dataset. Using entire genome for reference") self.useReferenceDataset = 0 else: refc = len(referenceGenes) referenceGenes = self.annotations.get_gene_names_translator(referenceGenes).values() self.referenceRadioBox.buttons[1].setText("Reference set (%i genes, %i matched)" % (refc, len(referenceGenes))) self.referenceRadioBox.buttons[1].setDisabled(False) self.information(2) else: self.useReferenceDataset = 0 if not referenceGenes: self.error(1, "No valid reference set") return {} self.referenceGenes = referenceGenes evidences = [] for etype in go.evidenceTypesOrdered: if self.useEvidenceType[etype]: evidences.append(etype) aspect = ["P", "C", "F"][self.aspectIndex] self.progressBarInit(processEvents=False) self.setBlocking(True) self.__state = State.Running if clusterGenes: f = self._executor.submit( self.annotations.get_enriched_terms, clusterGenes, referenceGenes, evidences, aspect=aspect, prob=self.probFunctions[self.probFunc], use_fdr=False, progress_callback=methodinvoke( self, "_progressBarSet", (float,)) ) fw = FutureWatcher(f, parent=self) fw.done.connect(self.__on_enrichment_done) fw.done.connect(fw.deleteLater) return else: f = Future() f.set_result({}) self.__on_enrichment_done(f) def __on_enrichment_done(self, results): # type: (Future[Dict[str, tuple]]) -> None self.progressBarFinished(processEvents=False) self.setBlocking(False) self.setStatusMessage("") if self.__state & State.Stale: self.__state = State.Ready self.__invalidate() return self.__state = State.Ready try: results = results.result() # type: Dict[str, tuple] except Exception as ex: results = {} error = str(ex) self.error(1, error) if results: terms = list(results.items()) fdr_vals = stats.FDR([d[1] for _, d in terms]) terms = [(key, d + (fdr,)) for (key, d), fdr in zip(terms, fdr_vals)] terms = dict(terms) else: terms = {} self.terms = terms if not self.terms: self.warning(0, "No enriched terms found.") else: self.warning(0) self.treeStructDict = {} ids = self.terms.keys() self.treeStructRootKey = None parents = {} for id in ids: parents[id] = set([term for _, term in self.ontology[id].related]) children = {} for term in self.terms: children[term] = set([id for id in ids if term in parents[id]]) for term in self.terms: self.treeStructDict[term] = TreeNode(self.terms[term], children[term]) if not self.ontology[term].related and not getattr(self.ontology[term], "is_obsolete", False): self.treeStructRootKey = term self.FilterUnknownGenes() self.SetGraph(terms) self._updateEnrichmentReportOutput() self.commit() def _updateEnrichmentReportOutput(self): terms = sorted(self.terms.items(), key=lambda item: item[1][1]) # Create and send the enrichemnt report table. termsDomain = Orange.data.Domain( [], [], # All is meta! [Orange.data.StringVariable("GO Term Id"), Orange.data.StringVariable("GO Term Name"), Orange.data.ContinuousVariable("Cluster Frequency"), Orange.data.ContinuousVariable("Genes in Cluster", number_of_decimals=0), Orange.data.ContinuousVariable("Reference Frequency"), Orange.data.ContinuousVariable("Genes in Reference", number_of_decimals=0), Orange.data.ContinuousVariable("p-value"), Orange.data.ContinuousVariable("FDR"), Orange.data.ContinuousVariable("Enrichment"), Orange.data.StringVariable("Genes")]) terms = [[t_id, self.ontology[t_id].name, len(genes) / len(self.clusterGenes), len(genes), r_count / len(self.referenceGenes), r_count, p_value, fdr, len(genes) / len(self.clusterGenes) * \ len(self.referenceGenes) / r_count, ",".join(genes) ] for t_id, (genes, p_value, r_count, fdr) in terms if genes and r_count] if terms: X = numpy.empty((len(terms), 0)) M = numpy.array(terms, dtype=object) termsTable = Orange.data.Table.from_numpy(termsDomain, X, metas=M) else: termsTable = None self.send("Enrichment Report", termsTable) @Slot(float) def _progressBarSet(self, value): assert QThread.currentThread() is self.thread() self.progressBarSet(value, processEvents=None) @Slot() def _progressBarFinish(self): assert QThread.currentThread() is self.thread() self.progressBarFinished(processEvents=None) def FilterGraph(self, graph): if self.filterByPValue_nofdr: graph = go.filterByPValue(graph, self.maxPValue_nofdr) if self.filterByPValue: #FDR graph = dict(filter(lambda item: item[1][3] <= self.maxPValue, graph.items())) if self.filterByNumOfInstances: graph = dict(filter(lambda item: len(item[1][0]) >= self.minNumOfInstances, graph.items())) return graph def FilterAndDisplayGraph(self): if self.clusterDataset and self.originalGraph is not None: self.graph = self.FilterGraph(self.originalGraph) if self.originalGraph and not self.graph: self.warning(1, "All found terms were filtered out.") else: self.warning(1) self.ClearGraph() self.DisplayGraph() def SetGraph(self, graph=None): self.originalGraph = graph if graph: self.FilterAndDisplayGraph() else: self.graph = {} self.ClearGraph() def ClearGraph(self): self.listView.clear() self.listViewItems=[] self.sigTerms.clear() def DisplayGraph(self): fromParentDict = {} self.termListViewItemDict = {} self.listViewItems = [] enrichment = lambda t: len(t[0]) / t[2] * (len(self.referenceGenes) / len(self.clusterGenes)) maxFoldEnrichment = max([enrichment(term) for term in self.graph.values()] or [1]) def addNode(term, parent, parentDisplayNode): if (parent, term) in fromParentDict: return if term in self.graph: displayNode = GOTreeWidgetItem(self.ontology[term], self.graph[term], len(self.clusterGenes), len(self.referenceGenes), maxFoldEnrichment, parentDisplayNode) displayNode.goId = term self.listViewItems.append(displayNode) if term in self.termListViewItemDict: self.termListViewItemDict[term].append(displayNode) else: self.termListViewItemDict[term] = [displayNode] fromParentDict[(parent, term)] = True parent = term else: displayNode = parentDisplayNode for c in self.treeStructDict[term].children: addNode(c, parent, displayNode) if self.treeStructDict: addNode(self.treeStructRootKey, None, self.listView) terms = self.graph.items() terms = sorted(terms, key=lambda item: item[1][1]) self.sigTableTermsSorted = [t[0] for t in terms] self.sigTerms.clear() for i, (t_id, (genes, p_value, refCount, fdr)) in enumerate(terms): item = GOTreeWidgetItem(self.ontology[t_id], (genes, p_value, refCount, fdr), len(self.clusterGenes), len(self.referenceGenes), maxFoldEnrichment, self.sigTerms) item.goId = t_id self.listView.expandAll() for i in range(5): self.listView.resizeColumnToContents(i) self.sigTerms.resizeColumnToContents(i) self.sigTerms.resizeColumnToContents(6) width = min(self.listView.columnWidth(0), 350) self.listView.setColumnWidth(0, width) self.sigTerms.setColumnWidth(0, width) def ViewSelectionChanged(self): if self.selectionChanging: return self.selectionChanging = 1 self.selectedTerms = [] selected = self.listView.selectedItems() self.selectedTerms = list(set([lvi.term.id for lvi in selected])) self.ExampleSelection() self.selectionChanging = 0 def TableSelectionChanged(self): if self.selectionChanging: return self.selectionChanging = 1 self.selectedTerms = [] selectedIds = set([self.sigTerms.itemFromIndex(index).goId for index in self.sigTerms.selectedIndexes()]) for i in range(self.sigTerms.topLevelItemCount()): item = self.sigTerms.topLevelItem(i) selected = item.goId in selectedIds term = item.goId if selected: self.selectedTerms.append(term) for lvi in self.termListViewItemDict[term]: try: lvi.setSelected(selected) if selected: lvi.setExpanded(True) except RuntimeError: # Underlying C/C++ object deleted pass self.selectionChanging = 0 self.ExampleSelection() def UpdateAddClassButton(self): self.addClassCB.setEnabled(self.selectionDisjoint == 1) def ExampleSelection(self): self.commit() def commit(self): if self.clusterDataset is None or self.originalGraph is None or \ self.annotations is None: return if self.__state & State.Stale: return terms = set(self.selectedTerms) genes = reduce(operator.ior, (set(self.graph[term][0]) for term in terms), set()) evidences = [] for etype in go.evidenceTypesOrdered: if self.useEvidenceType[etype]: evidences.append(etype) allTerms = self.annotations.get_annotated_terms( genes, direct_annotation_only=self.selectionDirectAnnotation, evidence_codes=evidences) if self.selectionDisjoint > 0: count = defaultdict(int) for term in self.selectedTerms: for g in allTerms.get(term, []): count[g] += 1 ccount = 1 if self.selectionDisjoint == 1 else len(self.selectedTerms) selectedGenes = [gene for gene, c in count.items() if c == ccount and gene in genes] else: selectedGenes = reduce( operator.ior, (set(allTerms.get(term, [])) for term in self.selectedTerms), set()) if self.useAttrNames: vars = [self.clusterDataset.domain[gene] for gene in set(selectedGenes)] domain = Orange.data.Domain( vars, self.clusterDataset.domain.class_vars, self.clusterDataset.domain.metas) newdata = self.clusterDataset.from_table(domain, self.clusterDataset) self.send("Data on Selected Genes", newdata) self.send("Data on Unselected Genes", None) elif self.candidateGeneAttrs: selectedExamples = [] unselectedExamples = [] geneAttr = self.candidateGeneAttrs[min(self.geneAttrIndex, len(self.candidateGeneAttrs)-1)] if self.selectionDisjoint == 1: goVar = Orange.data.DiscreteVariable( "GO Term", values=list(self.selectedTerms)) newDomain = Orange.data.Domain( self.clusterDataset.domain.variables, goVar, self.clusterDataset.domain.metas) goColumn = [] for i, ex in enumerate(self.clusterDataset): if not numpy.isnan(ex[geneAttr]) and any(gene in selectedGenes for gene in str(ex[geneAttr]).split(",")): if self.selectionDisjoint == 1 and self.selectionAddTermAsClass: terms = filter(lambda term: any(gene in self.graph[term][0] for gene in str(ex[geneAttr]).split(",")) , self.selectedTerms) term = sorted(terms)[0] goColumn.append(goVar.values.index(term)) selectedExamples.append(i) else: unselectedExamples.append(i) if selectedExamples: selectedExamples = self.clusterDataset[selectedExamples] if self.selectionDisjoint == 1 and self.selectionAddTermAsClass: selectedExamples = Orange.data.Table.from_table(newDomain, selectedExamples) view, issparse = selectedExamples.get_column_view(goVar) assert not issparse view[:] = goColumn else: selectedExamples = None if unselectedExamples: unselectedExamples = self.clusterDataset[unselectedExamples] else: unselectedExamples = None self.send("Data on Selected Genes", selectedExamples) self.send("Data on Unselected Genes", unselectedExamples) def ShowInfo(self): dialog = QDialog(self) dialog.setModal(False) dialog.setLayout(QVBoxLayout()) label = QLabel(dialog) label.setText("Ontology:\n" + self.ontology.header if self.ontology else "Ontology not loaded!") dialog.layout().addWidget(label) label = QLabel(dialog) label.setText("Annotations:\n" + self.annotations.header.replace("!", "") if self.annotations else "Annotations not loaded!") dialog.layout().addWidget(label) dialog.show() def onDeleteWidget(self): """Called before the widget is removed from the canvas. """ self.annotations = None self.ontology = None gc.collect() # Force collection
class WidgetManager(QObject): """ OWWidget instance manager class. This class handles the lifetime of OWWidget instances in a :class:`WidgetsScheme`. """ #: A new OWWidget was created and added by the manager. widget_for_node_added = Signal(SchemeNode, QWidget) #: An OWWidget was removed, hidden and will be deleted when appropriate. widget_for_node_removed = Signal(SchemeNode, QWidget) class ProcessingState(enum.IntEnum): """Widget processing state flags""" #: Signal manager is updating/setting the widget's inputs InputUpdate = 1 #: Widget has entered a blocking state (OWWidget.isBlocking) BlockingUpdate = 2 #: Widget has entered processing state ProcessingUpdate = 4 #: Widget is still in the process of initialization Initializing = 8 InputUpdate, BlockingUpdate, ProcessingUpdate, Initializing = ProcessingState #: Widget initialization states Delayed = namedtuple( "Delayed", ["node"]) PartiallyInitialized = namedtuple( "Materializing", ["node", "partially_initialized_widget"]) Materialized = namedtuple( "Materialized", ["node", "widget"]) class CreationPolicy(enum.Enum): """Widget Creation Policy""" #: Widgets are scheduled to be created from the event loop, or when #: first accessed with `widget_for_node` Normal = "Normal" #: Widgets are created immediately when added to the workflow model Immediate = "Immediate" #: Widgets are created only when first accessed with `widget_for_node` OnDemand = "OnDemand" Normal, Immediate, OnDemand = CreationPolicy def __init__(self, parent=None): QObject.__init__(self, parent) self.__scheme = None self.__signal_manager = None self.__widgets = [] self.__initstate_for_node = {} self.__creation_policy = WidgetManager.Normal #: a queue of all nodes whose widgets are scheduled for #: creation/initialization self.__init_queue = deque() # type: Deque[SchemeNode] #: Timer for scheduling widget initialization self.__init_timer = QTimer(self, interval=0, singleShot=True) self.__init_timer.timeout.connect(self.__create_delayed) #: A mapping of SchemeNode -> OWWidget (note: a mapping is only added #: after the widget is actually created) self.__widget_for_node = {} #: a mapping of OWWidget -> SchemeNode self.__node_for_widget = {} # Widgets that were 'removed' from the scheme but were at # the time in an input update loop and could not be deleted # immediately self.__delay_delete = set() #: Deleted/removed during creation/initialization. self.__delete_after_create = [] #: processing state flags for all widgets (including the ones #: in __delay_delete). #: Note: widgets which have not yet been created do not have an entry self.__widget_processing_state = {} # Tracks the widget in the update loop by the SignalManager self.__updating_widget = None def set_scheme(self, scheme): """ Set the :class:`WidgetsScheme` instance to manage. """ self.__scheme = scheme self.__signal_manager = scheme.findChild(SignalManager) self.__signal_manager.processingStarted[SchemeNode].connect( self.__on_processing_started ) self.__signal_manager.processingFinished[SchemeNode].connect( self.__on_processing_finished ) scheme.node_added.connect(self.add_widget_for_node) scheme.node_removed.connect(self.remove_widget_for_node) scheme.runtime_env_changed.connect(self.__on_env_changed) scheme.installEventFilter(self) def scheme(self): """ Return the scheme instance on which this manager is installed. """ return self.__scheme def signal_manager(self): """ Return the signal manager in use on the :func:`scheme`. """ return self.__signal_manager def widget_for_node(self, node): """ Return the OWWidget instance for the scheme node. """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Delayed): # Create the widget now if it is still pending state = self.__materialize(state) return state.widget elif isinstance(state, WidgetManager.PartiallyInitialized): widget = state.partially_initialized_widget log.warning("WidgetManager.widget_for_node: " "Accessing a partially created widget instance. " "This is most likely a result of explicit " "QApplication.processEvents call from the '%s.%s' " "widgets __init__.", type(widget).__module__, type(widget).__name__) return widget elif isinstance(state, WidgetManager.Materialized): return state.widget else: assert False def node_for_widget(self, widget): """ Return the SchemeNode instance for the OWWidget. Raise a KeyError if the widget does not map to a node in the scheme. """ return self.__node_for_widget[widget] def widget_properties(self, node): """ Return the current widget properties/settings. Parameters ---------- node : SchemeNode Returns ------- settings : dict """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Materialized): return state.widget.settingsHandler.pack_data(state.widget) else: return node.properties def set_creation_policy(self, policy): """ Set the widget creation policy Parameters ---------- policy : WidgetManager.CreationPolicy """ if self.__creation_policy != policy: self.__creation_policy = policy if self.__creation_policy == WidgetManager.Immediate: self.__init_timer.stop() while self.__init_queue: state = self.__init_queue.popleft() self.__materialize(state) elif self.__creation_policy == WidgetManager.Normal: if not self.__init_timer.isActive() and self.__init_queue: self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_timer.stop() else: assert False def creation_policy(self): """ Return the current widget creation policy Returns ------- policy: WidgetManager.CreationPolicy """ return self.__creation_policy def add_widget_for_node(self, node): """ Create a new OWWidget instance for the corresponding scheme node. """ state = WidgetManager.Delayed(node) self.__initstate_for_node[node] = state if self.__creation_policy == WidgetManager.Immediate: self.__initstate_for_node[node] = self.__materialize(state) elif self.__creation_policy == WidgetManager.Normal: self.__init_queue.append(state) if not self.__init_timer.isActive(): self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_queue.append(state) def __materialize(self, state): # Create and initialize an OWWidget for a Delayed # widget initialization assert isinstance(state, WidgetManager.Delayed) if state in self.__init_queue: self.__init_queue.remove(state) node = state.node widget = self.create_widget_instance(node) self.__widgets.append(widget) self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__initialize_widget_state(node, widget) state = WidgetManager.Materialized(node, widget) self.__initstate_for_node[node] = state self.widget_for_node_added.emit(node, widget) return state def remove_widget_for_node(self, node): """ Remove the OWWidget instance for node. """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Delayed): del self.__initstate_for_node[node] self.__init_queue.remove(state) elif isinstance(state, WidgetManager.Materialized): # Update the node's stored settings/properties dict before # removing the widget. # TODO: Update/sync whenever the widget settings change. node.properties = self._widget_settings(state.widget) self.__widgets.remove(state.widget) del self.__initstate_for_node[node] del self.__widget_for_node[node] del self.__node_for_widget[state.widget] node.title_changed.disconnect(state.widget.setCaption) state.widget.progressBarValueChanged.disconnect(node.set_progress) self.widget_for_node_removed.emit(node, state.widget) self._delete_widget(state.widget) elif isinstance(state, WidgetManager.PartiallyInitialized): widget = state.partially_initialized_widget raise RuntimeError( "A widget/node {} was removed while being initialized. " "This is most likely a result of an explicit " "QApplication.processEvents call from the '{}.{}' " "widgets __init__.\n" .format(state.node.title, type(widget).__module__, type(widget).__init__)) def _widget_settings(self, widget): return widget.settingsHandler.pack_data(widget) def _delete_widget(self, widget): """ Delete the OWBaseWidget instance. """ widget.close() # Save settings to user global settings. widget.saveSettings() # Notify the widget it will be deleted. widget.onDeleteWidget() if self.__widget_processing_state[widget] != 0: # If the widget is in an update loop and/or blocking we # delay the scheduled deletion until the widget is done. self.__delay_delete.add(widget) else: widget.deleteLater() del self.__widget_processing_state[widget] def create_widget_instance(self, node): """ Create a OWWidget instance for the node. """ desc = node.description klass = widget = None initialized = False error = None # First try to actually retrieve the class. try: klass = name_lookup(desc.qualified_name) except (ImportError, AttributeError): sys.excepthook(*sys.exc_info()) error = "Could not import {0!r}\n\n{1}".format( node.description.qualified_name, traceback.format_exc() ) except Exception: sys.excepthook(*sys.exc_info()) error = "An unexpected error during import of {0!r}\n\n{1}".format( node.description.qualified_name, traceback.format_exc() ) if klass is None: widget = mock_error_owwidget(node, error) initialized = True if widget is None: log.info("WidgetManager: Creating '%s.%s' instance '%s'.", klass.__module__, klass.__name__, node.title) widget = klass.__new__( klass, None, captionTitle=node.title, signal_manager=self.signal_manager(), stored_settings=node.properties, # NOTE: env is a view of the real env and reflects # changes to the environment. env=self.scheme().runtime_env() ) initialized = False # Init the node/widget mapping and state before calling __init__ # Some OWWidgets might already send data in the constructor # (should this be forbidden? Raise a warning?) triggering the signal # manager which would request the widget => node mapping or state # Furthermore they can (though they REALLY REALLY REALLY should not) # explicitly call qApp.processEvents. assert node not in self.__widget_for_node self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__widget_processing_state[widget] = WidgetManager.Initializing self.__initstate_for_node[node] = \ WidgetManager.PartiallyInitialized(node, widget) if not initialized: try: widget.__init__() except Exception: sys.excepthook(*sys.exc_info()) msg = traceback.format_exc() msg = "Could not create {0!r}\n\n{1}".format( node.description.name, msg ) # remove state tracking for widget ... del self.__widget_for_node[node] del self.__node_for_widget[widget] del self.__widget_processing_state[widget] # ... and substitute it with a mock error widget. widget = mock_error_owwidget(node, msg) self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__widget_processing_state[widget] = 0 self.__initstate_for_node[node] = \ WidgetManager.Materialized(node, widget) self.__initstate_for_node[node] = \ WidgetManager.Materialized(node, widget) # Clear Initializing flag self.__widget_processing_state[widget] &= ~WidgetManager.Initializing node.title_changed.connect(widget.setCaption) # Widget's info/warning/error messages. widget.messageActivated.connect(self.__on_widget_state_changed) widget.messageDeactivated.connect(self.__on_widget_state_changed) # Widget's statusTip node.set_status_message(widget.statusMessage()) widget.statusMessageChanged.connect(node.set_status_message) # Widget's progress bar value state. widget.progressBarValueChanged.connect(node.set_progress) # Widget processing state (progressBarInit/Finished) # and the blocking state. widget.processingStateChanged.connect( self.__on_processing_state_changed ) widget.blockingStateChanged.connect(self.__on_blocking_state_changed) if widget.isBlocking(): # A widget can already enter blocking state in __init__ self.__widget_processing_state[widget] |= self.BlockingUpdate if widget.processingState != 0: # It can also start processing (initialization of resources, ...) self.__widget_processing_state[widget] |= self.ProcessingUpdate node.set_processing_state(1) node.set_progress(widget.progressBarValue) # Install a help shortcut on the widget help_shortcut = QShortcut(QKeySequence("F1"), widget) help_shortcut.activated.connect(self.__on_help_request) # Up shortcut (activate/open parent) up_shortcut = QShortcut( QKeySequence(Qt.ControlModifier + Qt.Key_Up), widget) up_shortcut.activated.connect(self.__on_activate_parent) # Call setters only after initialization. widget.setWindowIcon( icon_loader.from_description(desc).get(desc.icon) ) widget.setCaption(node.title) # Schedule an update with the signal manager, due to the cleared # implicit Initializing flag self.signal_manager()._update() return widget def node_processing_state(self, node): """ Return the processing state flags for the node. Same as `manager.widget_processing_state(manger.widget_for_node(node))` """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Materialized): return self.__widget_processing_state[state.widget] elif isinstance(state, WidgetManager.PartiallyInitialized): return self.__widget_processing_state[state.partially_initialized_widget] else: return WidgetManager.Initializing def widget_processing_state(self, widget): """ Return the processing state flags for the widget. The state is an bitwise or of `InputUpdate` and `BlockingUpdate`. """ return self.__widget_processing_state[widget] def __create_delayed(self): if self.__init_queue: state = self.__init_queue.popleft() node = state.node self.__initstate_for_node[node] = self.__materialize(state) if self.__creation_policy == WidgetManager.Normal and \ self.__init_queue: # restart the timer if pending widgets still in the queue self.__init_timer.start() def eventFilter(self, receiver, event): if event.type() == QEvent.Close and receiver is self.__scheme: self.signal_manager().stop() # Notify the widget instances. for widget in list(self.__widget_for_node.values()): widget.close() widget.saveSettings() widget.onDeleteWidget() event.accept() return True return QObject.eventFilter(self, receiver, event) def __on_help_request(self): """ Help shortcut was pressed. We send a `QWhatsThisClickedEvent` to the scheme and hope someone responds to it. """ # Sender is the QShortcut, and parent the OWBaseWidget widget = self.sender().parent() try: node = self.node_for_widget(widget) except KeyError: pass else: qualified_name = node.description.qualified_name help_url = "help://search?" + urlencode({"id": qualified_name}) event = QWhatsThisClickedEvent(help_url) QCoreApplication.sendEvent(self.scheme(), event) def __on_activate_parent(self): """ Activate parent shortcut was pressed. """ event = ActivateParentEvent() QCoreApplication.sendEvent(self.scheme(), event) def __initialize_widget_state(self, node, widget): """ Initialize the tracked info/warning/error message state. """ for message_group in widget.message_groups: message = user_message_from_state(message_group) if message: node.set_state_message(message) def __on_widget_state_changed(self, msg): """ The OWBaseWidget info/warning/error state has changed. """ widget = msg.group.widget try: node = self.node_for_widget(widget) except KeyError: pass else: self.__initialize_widget_state(node, widget) def __on_processing_state_changed(self, state): """ A widget processing state has changed (progressBarInit/Finished) """ widget = self.sender() try: node = self.node_for_widget(widget) except KeyError: return if state: self.__widget_processing_state[widget] |= self.ProcessingUpdate else: self.__widget_processing_state[widget] &= ~self.ProcessingUpdate self.__update_node_processing_state(node) def __on_processing_started(self, node): """ Signal manager entered the input update loop for the node. """ widget = self.widget_for_node(node) # Remember the widget instance. The node and the node->widget mapping # can be removed between this and __on_processing_finished. self.__updating_widget = widget self.__widget_processing_state[widget] |= self.InputUpdate self.__update_node_processing_state(node) def __on_processing_finished(self, node): """ Signal manager exited the input update loop for the node. """ widget = self.__updating_widget self.__widget_processing_state[widget] &= ~self.InputUpdate if widget in self.__node_for_widget: self.__update_node_processing_state(node) elif widget in self.__delay_delete: self.__try_delete(widget) else: raise ValueError("%r is not managed" % widget) self.__updating_widget = None def __on_blocking_state_changed(self, state): """ OWWidget blocking state has changed. """ if not state: # schedule an update pass. self.signal_manager()._update() widget = self.sender() if state: self.__widget_processing_state[widget] |= self.BlockingUpdate else: self.__widget_processing_state[widget] &= ~self.BlockingUpdate if widget in self.__node_for_widget: node = self.node_for_widget(widget) self.__update_node_processing_state(node) elif widget in self.__delay_delete: self.__try_delete(widget) def __update_node_processing_state(self, node): """ Update the `node.processing_state` to reflect the widget state. """ state = self.node_processing_state(node) node.set_processing_state(1 if state else 0) def __try_delete(self, widget): if self.__widget_processing_state[widget] == 0: self.__delay_delete.remove(widget) widget.deleteLater() del self.__widget_processing_state[widget] def __on_env_changed(self, key, newvalue, oldvalue): # Notify widgets of a runtime environment change for widget in self.__widget_for_node.values(): widget.workflowEnvChanged(key, newvalue, oldvalue)
class QuickHelp(QTextBrowser): #: Emitted when the shown text changes. textChanged = Signal() def __init__(self, *args, **kwargs): QTextBrowser.__init__(self, *args, **kwargs) self.setOpenExternalLinks(False) self.setOpenLinks(False) self.__text = "" self.__permanentText = "" self.__defaultText = "" self.__timer = QTimer(self, timeout=self.__on_timeout, singleShot=True) self.anchorClicked.connect(self.__on_anchorClicked) def showHelp(self, text, timeout=0): """ Show help for `timeout` milliseconds. if timeout is 0 then show the text until it is cleared with clearHelp or showHelp is called with an empty string. """ if self.__text != text: self.__text = str(text) self.__update() self.textChanged.emit() if timeout > 0: self.__timer.start(timeout) def clearHelp(self): """ Clear help text previously set with `showHelp`. """ self.__timer.stop() self.showHelp("") def showPermanentHelp(self, text): """ Set permanent help text. The text may be temporarily overridden by showHelp but will be shown again when that is cleared. """ if self.__permanentText != text: self.__permanentText = text self.__update() self.textChanged.emit() def setDefaultText(self, text): """ Set default help text. The text is overriden by normal and permanent help messages, but is show again after such messages are cleared. """ if self.__defaultText != text: self.__defaultText = text self.__update() self.textChanged.emit() def currentText(self): """ Return the current shown text. """ return self.__text or self.__permanentText def __update(self): if self.__text: self.setHtml(self.__text) elif self.__permanentText: self.setHtml(self.__permanentText) else: self.setHtml(self.__defaultText) def __on_timeout(self): if self.__text: self.__text = "" self.__update() self.textChanged.emit() def __on_anchorClicked(self, anchor): ev = QuickHelpDetailRequestEvent(anchor.toString(), anchor) QCoreApplication.postEvent(self, ev)
class WidgetManager(QObject): """ WidgetManager class is responsible for creation, tracking and deletion of UI elements constituting an interactive workflow. It does so by reacting to changes in the underlying workflow model, creating and destroying the components when needed. This is an abstract class, subclassed MUST reimplement at least :func:`create_widget_for_node` and :func:`delete_widget_for_node`. The widgets created with :func:`create_widget_for_node` will automatically receive dispatched events: * :data:`WorkflowEvent.InputLinkAdded` - when a new input link is added to the workflow. * :data:`LinkEvent.InputLinkRemoved` - when a input link is removed * :data:`LinkEvent.OutputLinkAdded` - when a new output link is added to the workflow * :data:`LinkEvent.InputLinkRemoved` - when a output link is removed * :data:`WorkflowEnvEvent.WorkflowEnvironmentChanged` - when the workflow environment changes. .. seealso:: :func:`.Scheme.add_link()`, :func:`Scheme.remove_link`, :func:`.Scheme.runtime_env` """ #: A new QWidget was created and added by the manager. widget_for_node_added = Signal(SchemeNode, QWidget) #: A QWidget was removed, hidden and will be deleted when appropriate. widget_for_node_removed = Signal(SchemeNode, QWidget) class CreationPolicy(enum.Enum): """ Widget Creation Policy. """ #: Widgets are scheduled to be created from the event loop, or when #: first accessed with `widget_for_node` Normal = "Normal" #: Widgets are created immediately when a node is added to the #: workflow model. Immediate = "Immediate" #: Widgets are created only when first accessed with `widget_for_node` #: (e.g. when activated in the view). OnDemand = "OnDemand" Normal = CreationPolicy.Normal Immediate = CreationPolicy.Immediate OnDemand = CreationPolicy.OnDemand def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__workflow = None # type: Optional[Scheme] self.__creation_policy = WidgetManager.Normal self.__float_widgets_on_top = False self.__item_for_node = {} # type: Dict[SchemeNode, Item] self.__item_for_widget = {} # type: Dict[QWidget, Item] self.__init_queue = deque() # type: Deque[SchemeNode] self.__init_timer = QTimer(self, singleShot=True) self.__init_timer.timeout.connect(self.__process_init_queue) self.__activation_monitor = ActivationMonitor(self) self.__activation_counter = itertools.count() self.__activation_monitor.activated.connect(self.__mark_activated) def set_workflow(self, workflow): # type: (Scheme) -> None """ Set the workflow. """ if workflow is self.__workflow: return if self.__workflow is not None: # cleanup for node in self.__workflow.nodes: self.__remove_node(node) self.__workflow.node_added.disconnect(self.__on_node_added) self.__workflow.node_removed.disconnect(self.__on_node_removed) self.__workflow.link_added.disconnect(self.__on_link_added) self.__workflow.link_removed.disconnect(self.__on_link_removed) self.__workflow.runtime_env_changed.disconnect(self.__on_env_changed) self.__workflow.removeEventFilter(self) self.__workflow = workflow workflow.node_added.connect( self.__on_node_added, Qt.UniqueConnection) workflow.node_removed.connect( self.__on_node_removed, Qt.UniqueConnection) workflow.link_added.connect( self.__on_link_added, Qt.UniqueConnection) workflow.link_removed.connect( self.__on_link_removed, Qt.UniqueConnection) workflow.runtime_env_changed.connect( self.__on_env_changed, Qt.UniqueConnection) workflow.installEventFilter(self) for node in workflow.nodes: self.__add_node(node) def workflow(self): return self.__workflow scheme = workflow set_scheme = set_workflow def set_creation_policy(self, policy): # type: (CreationPolicy) -> None """ Set the widget creation policy. """ if self.__creation_policy != policy: self.__creation_policy = policy if self.__creation_policy == WidgetManager.Immediate: self.__init_timer.stop() # create all if self.__workflow is not None: for node in self.__workflow.nodes: self.ensure_created(node) elif self.__creation_policy == WidgetManager.Normal: if not self.__init_timer.isActive() and self.__init_queue: self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_timer.stop() else: assert False def creation_policy(self): """ Return the current widget creation policy. """ return self.__creation_policy def create_widget_for_node(self, node): # type: (SchemeNode) -> QWidget """ Create and initialize a widget for node. This is an abstract method. Subclasses must reimplemented it. """ raise NotImplementedError() def delete_widget_for_node(self, node, widget): """ Remove and delete widget for node. This is an abstract method. Subclasses must reimplemented it. """ raise NotImplementedError() def node_for_widget(self, widget): # type: (QWidget) -> Optional[SchemeNode] """ Return the node for widget. """ item = self.__item_for_widget.get(widget) if item is not None: return item.node else: return None def widget_for_node(self, node): # type: (SchemeNode) -> Optional[QWidget] """ Return the widget for node. """ self.ensure_created(node) item = self.__item_for_node.get(node) return item.widget if item is not None else None def __add_widget_for_node(self, node): # type: (SchemeNode) -> None item = self.__item_for_node.get(node) if item is not None: return if node not in self.__workflow.nodes: return if node in self.__init_queue: self.__init_queue.remove(node) item = Item(node, None, -1) # Insert on the node -> item mapping. self.__item_for_node[node] = item log.debug("Creating widget for node %s", node) try: w = self.create_widget_for_node(node) except Exception: # pylint: disable=broad-except log.critical("", exc_info=True) lines = traceback.format_exception(*sys.exc_info()) text = "".join(lines) errorwidget = QLabel( textInteractionFlags=Qt.TextSelectableByMouse, wordWrap=True, objectName="widgetmanager-error-placeholder", text="<pre>" + escape(text) + "</pre>" ) item.errorwidget = errorwidget node.set_state_message(UserMessage(text, UserMessage.Error, 0)) return else: item.widget = w self.__item_for_widget[w] = item self.__set_float_on_top_flag(w) w.installEventFilter(self.__activation_monitor) # Up shortcut (activate/open parent) up_shortcut = QShortcut( QKeySequence(Qt.ControlModifier + Qt.Key_Up), w) up_shortcut.activated.connect(self.__on_activate_parent) # send all the post creation notification events workflow = self.__workflow assert workflow is not None inputs = workflow.find_links(sink_node=node) for link in inputs: ev = LinkEvent(LinkEvent.InputLinkAdded, link) QCoreApplication.sendEvent(w, ev) outputs = workflow.find_links(source_node=node) for link in outputs: ev = LinkEvent(LinkEvent.OutputLinkAdded, link) QCoreApplication.sendEvent(w, ev) self.widget_for_node_added.emit(node, w) def ensure_created(self, node): # type: (SchemeNode) -> None """ Ensure that the widget for node is created. """ if node not in self.__workflow.nodes: return item = self.__item_for_node.get(node) if item is None: self.__add_widget_for_node(node) def __on_node_added(self, node): # type: (SchemeNode) -> None assert self.__workflow is not None assert node in self.__workflow.nodes assert node not in self.__item_for_node self.__add_node(node) def __add_node(self, node): # type: (SchemeNode) -> None # add node for tracking node.installEventFilter(self) if self.__creation_policy == WidgetManager.Immediate: self.ensure_created(node) elif self.__creation_policy == WidgetManager.Normal: self.__init_queue.append(node) self.__init_timer.start() def __on_node_removed(self, node): # type: (SchemeNode) -> None assert self.__workflow is not None assert node not in self.__workflow.nodes self.__remove_node(node) def __remove_node(self, node): # type: (SchemeNode) -> None # remove the node and its widget from tracking. node.removeEventFilter(self) if node in self.__init_queue: self.__init_queue.remove(node) item = self.__item_for_node.get(node) if item is not None and item.widget is not None: widget = item.widget assert widget in self.__item_for_widget del self.__item_for_widget[widget] widget.removeEventFilter(self.__activation_monitor) item.widget = None self.widget_for_node_removed.emit(node, widget) self.delete_widget_for_node(node, widget) if item is not None: del self.__item_for_node[node] @Slot() def __process_init_queue(self): log.debug("__process_init_queue") while self.__init_queue: node = self.__init_queue.popleft() assert node in self.__workflow.nodes self.ensure_created(node) def __on_link_added(self, link): # type: (SchemeLink) -> None assert link.source_node in self.__workflow.nodes assert link.sink_node in self.__workflow.nodes source = self.__item_for_widget.get(link.source_node) sink = self.__item_for_widget.get(link.sink_node) # notify the node gui of an added link if source is not None: ev = LinkEvent(LinkEvent.OutputLinkAdded, link) QCoreApplication.sendEvent(source.widget, ev) if sink is not None: ev = LinkEvent(LinkEvent.InputLinkAdded, link) QCoreApplication.sendEvent(sink.widget, ev) def __on_link_removed(self, link): # type: (SchemeLink) -> None assert link.source_node in self.__workflow.nodes assert link.sink_node in self.__workflow.nodes source = self.__item_for_widget.get(link.source_node) sink = self.__item_for_widget.get(link.sink_node) # notify the node gui of an removed link if source is not None: ev = LinkEvent(LinkEvent.OutputLinkRemoved, link) QCoreApplication.sendEvent(source.widget, ev) if sink is not None: ev = LinkEvent(LinkEvent.InputLinkRemoved, link) QCoreApplication.sendEvent(sink.widget, ev) def __mark_activated(self, widget): # type: (QWidget) -> None # Update the tracked stacking order for `widget` item = self.__item_for_widget.get(widget) if item is not None: item.activation_order = next(self.__activation_counter) def activate_widget_for_node(self, node, widget): # type: (SchemeNode, QWidget) -> None """ Activate the widget for node (show and raise above other) """ if widget.windowState() == Qt.WindowMinimized: widget.showNormal() widget.setVisible(True) widget.raise_() widget.activateWindow() def activate_window_group(self, group): # type: (Scheme.WindowGroup) -> None self.restore_window_state(group.state) def raise_widgets_to_front(self): """ Raise all current visible widgets to the front. The widgets will be stacked by activation order. """ workflow = self.__workflow if workflow is None: return items = filter( lambda item: ( item.widget.isVisible() if item is not None and item.widget is not None else False) , map(self.__item_for_node.get, workflow.nodes)) self.__raise_and_activate(items) def set_float_widgets_on_top(self, float_on_top): """ Set `Float Widgets on Top` flag on all widgets. """ self.__float_widgets_on_top = float_on_top for item in self.__item_for_node.values(): if item.widget is not None: self.__set_float_on_top_flag(item.widget) def save_window_state(self): # type: () -> List[Tuple[SchemeNode, bytes]] """ Save current open window arrangement. """ workflow = self.__workflow # type: Scheme state = [] for node in workflow.nodes: # type: SchemeNode item = self.__item_for_node.get(node, None) if item is None: continue stackorder = item.activation_order if item.widget is not None and not item.widget.isHidden(): data = self.save_widget_geometry(node, item.widget) state.append((stackorder, node, data)) state = [(node, data) for _, node, data in sorted(state, key=lambda t: t[0])] return state def restore_window_state(self, state): # type: (List[Tuple[SchemeNode, bytes]]) -> None """ Restore the window state. """ workflow = self.__workflow # type: Scheme visible = {node for node, _ in state} # first hide all other widgets for node in workflow.nodes: if node not in visible: # avoid creating widgets if not needed item = self.__item_for_node.get(node, None) if item is not None and item.widget is not None: item.widget.hide() allnodes = set(workflow.nodes) # restore state for visible group; windows are stacked as they appear # in the state list. w = None for node, state in filter(lambda t: t[0] in allnodes, state): w = self.widget_for_node(node) # also create it if needed if w is not None: w.show() self.restore_widget_geometry(node, w, state) w.raise_() self.__mark_activated(w) # activate (give focus to) the last window if w is not None: w.activateWindow() def save_widget_geometry(self, node, widget): # type: (SchemeNode, QWidget) -> bytes """ Save and return the current geometry and state for node. """ return b'' def restore_widget_geometry(self, node, widget, state): # type: (SchemeNode, QWidget, bytes) -> bool """ Restore the widget geometry and state for node. Return True if the geometry was restored successfully. The default implementation does nothing. """ return False def __raise_and_activate(self, items): # type: (Iterable[Item]) -> None """Show and raise a set of widgets.""" # preserve the tracked stacking order items = sorted(items, key=lambda item: item.activation_order) w = None for item in items: if item.widget is not None: w = item.widget elif item.errorwidget is not None: w = item.errorwidget else: continue w.show() w.raise_() if w is not None: # give focus to the last activated top window w.activateWindow() def __activate_widget_for_node(self, node): # type: (SchemeNode) -> None # activate the widget for the node. self.ensure_created(node) item = self.__item_for_node.get(node) if item is None: return if item.widget is not None: self.activate_widget_for_node(node, item.widget) elif item.errorwidget is not None: item.errorwidget.show() item.errorwidget.raise_() item.errorwidget.activateWindow() def __on_activate_parent(self): event = WorkflowEvent(WorkflowEvent.ActivateParentRequest) QCoreApplication.sendEvent(self.scheme(), event) def eventFilter(self, recv, event): # type: (QObject, QEvent) -> bool if event.type() == NodeEvent.NodeActivateRequest \ and isinstance(recv, SchemeNode): self.__activate_widget_for_node(recv) return False def __set_float_on_top_flag(self, widget): """Set or unset widget's float on top flag""" should_float_on_top = self.__float_widgets_on_top float_on_top = bool(widget.windowFlags() & Qt.WindowStaysOnTopHint) if float_on_top == should_float_on_top: return widget_was_visible = widget.isVisible() if should_float_on_top: widget.setWindowFlags( widget.windowFlags() | Qt.WindowStaysOnTopHint) else: widget.setWindowFlags( widget.windowFlags() & ~Qt.WindowStaysOnTopHint) # Changing window flags hid the widget if widget_was_visible: widget.show() def __on_env_changed(self, key, newvalue, oldvalue): # Notify widgets of a runtime environment change for item in self.__item_for_node.values(): if item.widget is not None: ev = WorkflowEnvChanged(key, newvalue, oldvalue) QCoreApplication.sendEvent(item.widget, ev) def actions_for_context_menu(self, node): # type: (SchemeNode) -> List[QAction] """ Return a list of extra actions that can be inserted into context menu in the workflow editor. Subclasses can reimplement this method to extend the default context menu. Parameters ---------- node: SchemeNode The node for which the context menu is requested. Return ------ actions: List[QAction] Actions that are appended to the default menu. """ return []
class CanvasView(QGraphicsView): """Canvas View handles the zooming. """ def __init__(self, *args): super().__init__(*args) self.setAlignment(Qt.AlignTop | Qt.AlignLeft) self.__backgroundIcon = QIcon() self.__autoScroll = False self.__autoScrollMargin = 16 self.__autoScrollTimer = QTimer(self) self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance) # scale factor accumulating partial increments from wheel events self.__zoomLevel = 100 # effective scale level(rounded to whole integers) self.__effectiveZoomLevel = 100 self.__zoomInAction = QAction( self.tr("Zoom in"), self, objectName="action-zoom-in", shortcut=QKeySequence.ZoomIn, triggered=self.zoomIn, ) self.__zoomOutAction = QAction( self.tr("Zoom out"), self, objectName="action-zoom-out", shortcut=QKeySequence.ZoomOut, triggered=self.zoomOut ) self.__zoomResetAction = QAction( self.tr("Reset Zoom"), self, objectName="action-zoom-reset", triggered=self.zoomReset, shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0) ) def setScene(self, scene): super().setScene(scene) self._ensureSceneRect(scene) def _ensureSceneRect(self, scene): r = scene.addRect(QRectF(0, 0, 400, 400)) scene.sceneRect() scene.removeItem(r) def setAutoScrollMargin(self, margin): self.__autoScrollMargin = margin def autoScrollMargin(self): return self.__autoScrollMargin def setAutoScroll(self, enable): self.__autoScroll = enable def autoScroll(self): return self.__autoScroll def mousePressEvent(self, event): super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: if not self.__autoScrollTimer.isActive() and \ self.__shouldAutoScroll(event.pos()): self.__startAutoScroll() super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() & Qt.LeftButton: self.__stopAutoScroll() return super().mouseReleaseEvent(event) def wheelEvent(self, event: QWheelEvent): if event.modifiers() & Qt.ControlModifier \ and event.buttons() == Qt.NoButton: delta = event.angleDelta().y() # use mouse position as anchor while zooming anchor = self.transformationAnchor() self.setTransformationAnchor(QGraphicsView.AnchorUnderMouse) self.__setZoomLevel(self.__zoomLevel + 10 * delta / 120) self.setTransformationAnchor(anchor) event.accept() else: super().wheelEvent(event) def zoomIn(self): self.__setZoomLevel(self.__zoomLevel + 10) def zoomOut(self): self.__setZoomLevel(self.__zoomLevel - 10) def zoomReset(self): """ Reset the zoom level. """ self.__setZoomLevel(100) def zoomLevel(self): # type: () -> float """ Return the current zoom level. Level is expressed in percentages; 100 is unscaled, 50 is half size, ... """ return self.__effectiveZoomLevel def setZoomLevel(self, level): self.__setZoomLevel(level) def __setZoomLevel(self, scale): self.__zoomLevel = max(30, min(scale, 300)) scale = round(self.__zoomLevel) self.__zoomOutAction.setEnabled(scale != 30) self.__zoomInAction.setEnabled(scale != 300) if self.__effectiveZoomLevel != scale: self.__effectiveZoomLevel = scale transform = QTransform() transform.scale(scale / 100, scale / 100) self.setTransform(transform) self.zoomLevelChanged.emit(scale) zoomLevelChanged = Signal(float) zoomLevel_ = Property( float, zoomLevel, setZoomLevel, notify=zoomLevelChanged ) def __shouldAutoScroll(self, pos): if self.__autoScroll: margin = self.__autoScrollMargin viewrect = self.contentsRect() rect = viewrect.adjusted(margin, margin, -margin, -margin) # only do auto scroll when on the viewport's margins return not rect.contains(pos) and viewrect.contains(pos) else: return False def __startAutoScroll(self): self.__autoScrollTimer.start(10) log.debug("Auto scroll timer started") def __stopAutoScroll(self): if self.__autoScrollTimer.isActive(): self.__autoScrollTimer.stop() log.debug("Auto scroll timer stopped") def __autoScrollAdvance(self): """Advance the auto scroll """ pos = QCursor.pos() pos = self.mapFromGlobal(pos) margin = self.__autoScrollMargin vvalue = self.verticalScrollBar().value() hvalue = self.horizontalScrollBar().value() vrect = QRect(0, 0, self.width(), self.height()) # What should be the speed advance = 10 # We only do auto scroll if the mouse is inside the view. if vrect.contains(pos): if pos.x() < vrect.left() + margin: self.horizontalScrollBar().setValue(hvalue - advance) if pos.y() < vrect.top() + margin: self.verticalScrollBar().setValue(vvalue - advance) if pos.x() > vrect.right() - margin: self.horizontalScrollBar().setValue(hvalue + advance) if pos.y() > vrect.bottom() - margin: self.verticalScrollBar().setValue(vvalue + advance) if self.verticalScrollBar().value() == vvalue and \ self.horizontalScrollBar().value() == hvalue: self.__stopAutoScroll() else: self.__stopAutoScroll() log.debug("Auto scroll advance") def setBackgroundIcon(self, icon): if not isinstance(icon, QIcon): raise TypeError("A QIcon expected.") if self.__backgroundIcon != icon: self.__backgroundIcon = icon self.viewport().update() def backgroundIcon(self): return QIcon(self.__backgroundIcon) def drawBackground(self, painter, rect): super().drawBackground(painter, rect) if not self.__backgroundIcon.isNull(): painter.setClipRect(rect) vrect = QRect(QPoint(0, 0), self.viewport().size()) vrect = self.mapToScene(vrect).boundingRect() pm = self.__backgroundIcon.pixmap( vrect.size().toSize().boundedTo(QSize(200, 200)) ) pmrect = QRect(QPoint(0, 0), pm.size()) pmrect.moveCenter(vrect.center().toPoint()) if rect.toRect().intersects(pmrect): painter.drawPixmap(pmrect, pm)
class OWScatterPlot(OWDataProjectionWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 keywords = [] class Inputs(OWDataProjectionWidget.Inputs): features = Input("Features", AttributeList) class Outputs(OWDataProjectionWidget.Outputs): features = Output("Features", AttributeList, dynamic=False) settings_version = 4 auto_sample = Setting(True) attr_x = ContextSetting(None) attr_y = ContextSetting(None) tooltip_shows_all = Setting(True) GRAPH_CLASS = OWScatterPlotGraph graph = SettingProvider(OWScatterPlotGraph) embedding_variables_names = None xy_changed_manually = Signal(Variable, Variable) class Warning(OWDataProjectionWidget.Warning): missing_coords = Msg( "Plot cannot be displayed because '{}' or '{}' " "is missing for all data points") no_continuous_vars = Msg("Data has no continuous variables") class Information(OWDataProjectionWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") missing_coords = Msg( "Points with missing '{}' or '{}' are not displayed") def __init__(self): self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) super().__init__() # manually register Matplotlib file writers self.graph_writers = self.graph_writers.copy() for w in [MatplotlibFormat, MatplotlibPDFFormat]: for ext in w.EXTENSIONS: self.graph_writers[ext] = w def _add_controls(self): self._add_controls_axis() self._add_controls_sampling() super()._add_controls() self.gui.add_widgets( [self.gui.ShowGridLines, self.gui.ToolTipShowsAll, self.gui.RegressionLine], self._plot_box) gui.checkBox( gui.indentedBox(self._plot_box), self, value="graph.orthonormal_regression", label="Treat variables as independent", callback=self.graph.update_regression_line, tooltip= "If checked, fit line to group (minimize distance from points);\n" "otherwise fit y as a function of x (minimize vertical distances)") def _add_controls_axis(self): common_options = dict( labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str, contentsLength=14 ) box = gui.vBox(self.controlArea, True) dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=ContinuousVariable) self.cb_attr_x = gui.comboBox( box, self, "attr_x", label="Axis x:", callback=self.set_attr_from_combo, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox( box, self, "attr_y", label="Axis y:", callback=self.set_attr_from_combo, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) def _add_controls_sampling(self): self.sampling = gui.auto_commit( self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) @property def effective_variables(self): return [self.attr_x, self.attr_y] def _vizrank_color_change(self): self.vizrank.initialize() is_enabled = self.data is not None and not self.data.is_sparse() and \ len(self.xy_model) > 2 and len(self.data[self.valid_data]) > 1 \ and np.all(np.nan_to_num(np.nanstd(self.data.X, 0)) != 0) self.vizrank_button.setEnabled( is_enabled and self.attr_color is not None and not np.isnan(self.data.get_column_view( self.attr_color)[0].astype(float)).all()) text = "Color variable has to be selected." \ if is_enabled and self.attr_color is None else "" self.vizrank_button.setToolTip(text) def set_data(self, data): if self.data and data and self.data.checksum() == data.checksum(): return super().set_data(data) def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.attr_label, str): self.attr_label = findvar(self.attr_label, self.gui.label_model) if isinstance(self.attr_color, str): self.attr_color = findvar(self.attr_color, self.gui.color_model) if isinstance(self.attr_shape, str): self.attr_shape = findvar(self.attr_shape, self.gui.shape_model) if isinstance(self.attr_size, str): self.attr_size = findvar(self.attr_size, self.gui.size_model) def check_data(self): self.clear_messages() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(self.data, SqlTable): if self.data.approx_len() < 4000: self.data = Table(self.data) else: self.Information.sampled_sql() self.sql_data = self.data data_sample = self.data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) self.data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if self.data is not None: if not self.data.domain.has_continuous_attributes(True, True): self.Warning.no_continuous_vars() self.data = None if self.data is not None and (len(self.data) == 0 or len(self.data.domain) == 0): self.data = None def get_embedding(self): self.valid_data = None if self.data is None: return None x_data = self.get_column(self.attr_x, filter_valid=False) y_data = self.get_column(self.attr_y, filter_valid=False) if x_data is None or y_data is None: return None self.Warning.missing_coords.clear() self.Information.missing_coords.clear() self.valid_data = np.isfinite(x_data) & np.isfinite(y_data) if self.valid_data is not None and not np.all(self.valid_data): msg = self.Information if np.any(self.valid_data) else self.Warning msg.missing_coords(self.attr_x.name, self.attr_y.name) return np.vstack((x_data, y_data)).T # Tooltip def _point_tooltip(self, point_id, skip_attrs=()): point_data = self.data[point_id] xy_attrs = (self.attr_x, self.attr_y) text = "<br/>".join( escape('{} = {}'.format(var.name, point_data[var])) for var in xy_attrs) if self.tooltip_shows_all: others = super()._point_tooltip(point_id, skip_attrs=xy_attrs) if others: text = "<b>{}</b><br/><br/>{}".format(text, others) return text def add_data(self, time=0.4): if self.data and len(self.data) > 2000: self.__timer.stop() return data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.handleNewSignals() def init_attr_values(self): super().init_attr_values() data = self.data domain = data.domain if data and len(data) else None self.xy_model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None super().set_subset_data(subset_data) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): if self.attribute_selection_list and self.data is not None and \ self.data.domain is not None and \ all(attr in self.data.domain for attr in self.attribute_selection_list): self.attr_x, self.attr_y = self.attribute_selection_list[:2] self.attribute_selection_list = None super().handleNewSignals() self._vizrank_color_change() @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] self._invalidated = self._invalidated \ or self.attr_x != attributes[0] \ or self.attr_y != attributes[1] else: self.attribute_selection_list = None def set_attr(self, attr_x, attr_y): if attr_x != self.attr_x or attr_y != self.attr_y: self.attr_x, self.attr_y = attr_x, attr_y self.attr_changed() def set_attr_from_combo(self): self.attr_changed() self.xy_changed_manually.emit(self.attr_x, self.attr_y) def attr_changed(self): self.setup_plot() self.commit() def get_axes(self): return {"bottom": self.attr_x, "left": self.attr_y} def colors_changed(self): super().colors_changed() self._vizrank_color_change() def commit(self): super().commit() self.send_features() def send_features(self): features = [attr for attr in [self.attr_x, self.attr_y] if attr] self.Outputs.features.send(features or None) def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) return None @classmethod def migrate_settings(cls, settings, version): if version < 2 and "selection" in settings and settings["selection"]: settings["selection_group"] = [(a, 1) for a in settings["selection"]] if version < 3: if "auto_send_selection" in settings: settings["auto_commit"] = settings["auto_send_selection"] if "selection_group" in settings: settings["selection"] = settings["selection_group"] @classmethod def migrate_context(cls, context, version): values = context.values if version < 3: values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"] if version < 4: if values["attr_x"][1] % 100 == 1 or values["attr_y"][1] % 100 == 1: raise IncompatibleContext()
class CanvasView(QGraphicsView): """Canvas View handles the zooming. """ def __init__(self, *args): super().__init__(*args) self.setAlignment(Qt.AlignTop | Qt.AlignLeft) self.__backgroundIcon = QIcon() self.__autoScroll = False self.__autoScrollMargin = 16 self.__autoScrollTimer = QTimer(self) self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance) # scale factor accumulating partial increments from wheel events self.__zoomLevel = 100 # effective scale level(rounded to whole integers) self.__effectiveZoomLevel = 100 self.__zoomInAction = QAction( self.tr("Zoom in"), self, objectName="action-zoom-in", shortcut=QKeySequence.ZoomIn, triggered=self.zoomIn, ) self.__zoomOutAction = QAction(self.tr("Zoom out"), self, objectName="action-zoom-out", shortcut=QKeySequence.ZoomOut, triggered=self.zoomOut) self.__zoomResetAction = QAction( self.tr("Reset Zoom"), self, objectName="action-zoom-reset", triggered=self.zoomReset, shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0)) def setScene(self, scene): super().setScene(scene) self._ensureSceneRect(scene) def _ensureSceneRect(self, scene): r = scene.addRect(QRectF(0, 0, 400, 400)) scene.sceneRect() scene.removeItem(r) def setAutoScrollMargin(self, margin): self.__autoScrollMargin = margin def autoScrollMargin(self): return self.__autoScrollMargin def setAutoScroll(self, enable): self.__autoScroll = enable def autoScroll(self): return self.__autoScroll def mousePressEvent(self, event): super().mousePressEvent(event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: if not self.__autoScrollTimer.isActive() and \ self.__shouldAutoScroll(event.pos()): self.__startAutoScroll() super().mouseMoveEvent(event) def mouseReleaseEvent(self, event): if event.button() & Qt.LeftButton: self.__stopAutoScroll() return super().mouseReleaseEvent(event) def wheelEvent(self, event: QWheelEvent): if event.modifiers() & Qt.ControlModifier \ and event.buttons() == Qt.NoButton: delta = event.angleDelta().y() # use mouse position as anchor while zooming anchor = self.transformationAnchor() self.setTransformationAnchor(QGraphicsView.AnchorUnderMouse) self.__setZoomLevel(self.__zoomLevel + 10 * delta / 120) self.setTransformationAnchor(anchor) event.accept() else: super().wheelEvent(event) def zoomIn(self): self.__setZoomLevel(self.__zoomLevel + 10) def zoomOut(self): self.__setZoomLevel(self.__zoomLevel - 10) def zoomReset(self): """ Reset the zoom level. """ self.__setZoomLevel(100) def zoomLevel(self): # type: () -> float """ Return the current zoom level. Level is expressed in percentages; 100 is unscaled, 50 is half size, ... """ return self.__effectiveZoomLevel def setZoomLevel(self, level): self.__setZoomLevel(level) def __setZoomLevel(self, scale): # type: (float) -> None self.__zoomLevel = max(30, min(scale, 300)) scale = round(self.__zoomLevel) self.__zoomOutAction.setEnabled(scale != 30) self.__zoomInAction.setEnabled(scale != 300) if self.__effectiveZoomLevel != scale: self.__effectiveZoomLevel = scale transform = QTransform() transform.scale(scale / 100, scale / 100) self.setTransform(transform) self.zoomLevelChanged.emit(scale) zoomLevelChanged = Signal(float) zoomLevel_ = Property(float, zoomLevel, setZoomLevel, notify=zoomLevelChanged) def __shouldAutoScroll(self, pos): if self.__autoScroll: margin = self.__autoScrollMargin viewrect = self.contentsRect() rect = viewrect.adjusted(margin, margin, -margin, -margin) # only do auto scroll when on the viewport's margins return not rect.contains(pos) and viewrect.contains(pos) else: return False def __startAutoScroll(self): self.__autoScrollTimer.start(10) log.debug("Auto scroll timer started") def __stopAutoScroll(self): if self.__autoScrollTimer.isActive(): self.__autoScrollTimer.stop() log.debug("Auto scroll timer stopped") def __autoScrollAdvance(self): """Advance the auto scroll """ pos = QCursor.pos() pos = self.mapFromGlobal(pos) margin = self.__autoScrollMargin vvalue = self.verticalScrollBar().value() hvalue = self.horizontalScrollBar().value() vrect = QRect(0, 0, self.width(), self.height()) # What should be the speed advance = 10 # We only do auto scroll if the mouse is inside the view. if vrect.contains(pos): if pos.x() < vrect.left() + margin: self.horizontalScrollBar().setValue(hvalue - advance) if pos.y() < vrect.top() + margin: self.verticalScrollBar().setValue(vvalue - advance) if pos.x() > vrect.right() - margin: self.horizontalScrollBar().setValue(hvalue + advance) if pos.y() > vrect.bottom() - margin: self.verticalScrollBar().setValue(vvalue + advance) if self.verticalScrollBar().value() == vvalue and \ self.horizontalScrollBar().value() == hvalue: self.__stopAutoScroll() else: self.__stopAutoScroll() log.debug("Auto scroll advance") def setBackgroundIcon(self, icon): if not isinstance(icon, QIcon): raise TypeError("A QIcon expected.") if self.__backgroundIcon != icon: self.__backgroundIcon = icon self.viewport().update() def backgroundIcon(self): return QIcon(self.__backgroundIcon) def drawBackground(self, painter, rect): super().drawBackground(painter, rect) if not self.__backgroundIcon.isNull(): painter.setClipRect(rect) vrect = QRect(QPoint(0, 0), self.viewport().size()) vrect = self.mapToScene(vrect).boundingRect() pm = self.__backgroundIcon.pixmap(vrect.size().toSize().boundedTo( QSize(200, 200))) pmrect = QRect(QPoint(0, 0), pm.size()) pmrect.moveCenter(vrect.center().toPoint()) if rect.toRect().intersects(pmrect): painter.drawPixmap(pmrect, pm)
class OWScatterPlot(OWWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 class Inputs: data = Input("Data", Table, default=True) data_subset = Input("Data Subset", Table) features = Input("Features", AttributeList) class Outputs: selected_data = Output("Selected Data", Table, default=True) annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table) features = Output("Features", Table, dynamic=False) settingsHandler = DomainContextHandler() auto_send_selection = Setting(True) auto_sample = Setting(True) toolbar_selection = Setting(0) attr_x = ContextSetting(None) attr_y = ContextSetting(None) selection = Setting(None, schema_only=True) graph = SettingProvider(OWScatterPlotGraph) jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10] graph_name = "graph.plot_widget.plotItem" class Information(OWWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") def __init__(self): super().__init__() box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWScatterPlotGraph(self, box, "ScatterPlot") box.layout().addWidget(self.graph.plot_widget) plot = self.graph.plot_widget axispen = QPen(self.palette().color(QPalette.Text)) axis = plot.getAxis("bottom") axis.setPen(axispen) axis = plot.getAxis("left") axis.setPen(axispen) self.data = None # Orange.data.Table self.subset_data = None # Orange.data.Table self.data_metas_X = None # self.data, where primitive metas are moved to X self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) common_options = dict( labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str) box = gui.vBox(self.controlArea, "Axis Data") dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) self.cb_attr_x = gui.comboBox( box, self, "attr_x", label="Axis x:", callback=self.update_attr, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox( box, self, "attr_y", label="Axis y:", callback=self.update_attr, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) gui.separator(vizrank_box, width=common_options["labelWidth"]) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) gui.separator(box) gui.valueSlider( box, self, value='graph.jitter_size', label='Jittering: ', values=self.jitter_sizes, callback=self.reset_graph_data, labelFormat=lambda x: "None" if x == 0 else ("%.1f %%" if x < 1 else "%d %%") % x) gui.checkBox( gui.indentedBox(box), self, 'graph.jitter_continuous', 'Jitter numeric values', callback=self.reset_graph_data) self.sampling = gui.auto_commit( self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) g = self.graph.gui g.point_properties_box(self.controlArea) self.models = [self.xy_model] + g.points_models box = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ShowGridLines], box) gui.checkBox( box, self, value='graph.tooltip_shows_all', label='Show all data on mouse hover') self.cb_class_density = gui.checkBox( box, self, value='graph.class_density', label='Show class density', callback=self.update_density) self.cb_reg_line = gui.checkBox( box, self, value='graph.show_reg_line', label='Show regression line', callback=self.update_regression_line) gui.checkBox( box, self, 'graph.label_only_selected', 'Label only selected points', callback=self.graph.update_labels) self.zoom_select_toolbar = g.zoom_select_toolbar( gui.vBox(self.controlArea, "Zoom/Select"), nomargin=True, buttons=[g.StateButtonsBegin, g.SimpleSelect, g.Pan, g.Zoom, g.StateButtonsEnd, g.ZoomReset] ) buttons = self.zoom_select_toolbar.buttons buttons[g.Zoom].clicked.connect(self.graph.zoom_button_clicked) buttons[g.Pan].clicked.connect(self.graph.pan_button_clicked) buttons[g.SimpleSelect].clicked.connect(self.graph.select_button_clicked) buttons[g.ZoomReset].clicked.connect(self.graph.reset_button_clicked) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict p = self.graph.plot_widget.palette() self.graph.set_palette(p) gui.auto_commit(self.controlArea, self, "auto_send_selection", "Send Selection", "Send Automatically") def zoom(s): """Zoom in/out by factor `s`.""" viewbox = plot.getViewBox() # scaleBy scales the view's bounds (the axis range) viewbox.scaleBy((1 / s, 1 / s)) def fit_to_view(): viewbox = plot.getViewBox() viewbox.autoRange() zoom_in = QAction( "Zoom in", self, triggered=lambda: zoom(1.25) ) zoom_in.setShortcuts([QKeySequence(QKeySequence.ZoomIn), QKeySequence(self.tr("Ctrl+="))]) zoom_out = QAction( "Zoom out", self, shortcut=QKeySequence.ZoomOut, triggered=lambda: zoom(1 / 1.25) ) zoom_fit = QAction( "Fit in view", self, shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0), triggered=fit_to_view ) self.addActions([zoom_in, zoom_out, zoom_fit]) def keyPressEvent(self, event): super().keyPressEvent(event) self.graph.update_tooltip(event.modifiers()) def keyReleaseEvent(self, event): super().keyReleaseEvent(event) self.graph.update_tooltip(event.modifiers()) # def settingsFromWidgetCallback(self, handler, context): # context.selectionPolygons = [] # for curve in self.graph.selectionCurveList: # xs = [curve.x(i) for i in range(curve.dataSize())] # ys = [curve.y(i) for i in range(curve.dataSize())] # context.selectionPolygons.append((xs, ys)) # def settingsToWidgetCallback(self, handler, context): # selections = getattr(context, "selectionPolygons", []) # for (xs, ys) in selections: # c = SelectionCurve("") # c.setData(xs,ys) # c.attach(self.graph) # self.graph.selectionCurveList.append(c) def reset_graph_data(self, *_): if self.data is not None: self.graph.rescale_data() self.update_graph() @Inputs.data def set_data(self, data): self.clear_messages() self.Information.sampled_sql.clear() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(data, SqlTable): if data.approx_len() < 4000: data = Table(data) else: self.Information.sampled_sql() self.sql_data = data data_sample = data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if data is not None and (len(data) == 0 or len(data.domain) == 0): data = None if self.data and data and self.data.checksum() == data.checksum(): return self.closeContext() same_domain = (self.data and data and data.domain.checksum() == self.data.domain.checksum()) self.data = data self.data_metas_X = self.move_primitive_metas_to_X(data) if not same_domain: self.init_attr_values() self.vizrank.initialize() self.vizrank.attrs = self.data.domain.attributes if self.data is not None else [] self.vizrank_button.setEnabled( self.data is not None and not self.data.is_sparse() and self.data.domain.class_var is not None and len(self.data.domain.attributes) > 1 and len(self.data) > 1) if self.data is not None and self.data.domain.class_var is None \ and len(self.data.domain.attributes) > 1 and len(self.data) > 1: self.vizrank_button.setToolTip( "Data with a class variable is required.") else: self.vizrank_button.setToolTip("") self.openContext(self.data) def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Orange.data.Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.graph.attr_label, str): self.graph.attr_label = findvar( self.graph.attr_label, self.graph.gui.label_model) if isinstance(self.graph.attr_color, str): self.graph.attr_color = findvar( self.graph.attr_color, self.graph.gui.color_model) if isinstance(self.graph.attr_shape, str): self.graph.attr_shape = findvar( self.graph.attr_shape, self.graph.gui.shape_model) if isinstance(self.graph.attr_size, str): self.graph.attr_size = findvar( self.graph.attr_size, self.graph.gui.size_model) def add_data(self, time=0.4): if self.data and len(self.data) > 2000: return self.__timer.stop() data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.data_metas_X = self.move_primitive_metas_to_X(self.data) self.handleNewSignals() def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() def move_primitive_metas_to_X(self, data): if data is not None: new_attrs = [a for a in data.domain.attributes + data.domain.metas if a.is_primitive()] new_metas = [m for m in data.domain.metas if not m.is_primitive()] new_domain = Domain(new_attrs, data.domain.class_vars, new_metas) data = data.transform(new_domain) return data @Inputs.data_subset def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None self.subset_data = self.move_primitive_metas_to_X(subset_data) self.controls.graph.alpha_value.setEnabled(subset_data is None) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): self.graph.new_data(self.sparse_to_dense(self.data_metas_X), self.sparse_to_dense(self.subset_data)) if self.attribute_selection_list and self.graph.domain and \ all(attr in self.graph.domain for attr in self.attribute_selection_list): self.attr_x = self.attribute_selection_list[0] self.attr_y = self.attribute_selection_list[1] self.attribute_selection_list = None self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line()) self.apply_selection() self.unconditional_commit() def prepare_data(self): """ Only when dealing with sparse matrices. GH-2152 """ self.graph.new_data(self.sparse_to_dense(self.data_metas_X), self.sparse_to_dense(self.subset_data), new=False) def sparse_to_dense(self, input_data=None): if input_data is None or not input_data.is_sparse(): return input_data keys = [] attrs = {self.attr_x, self.attr_y, self.graph.attr_color, self.graph.attr_shape, self.graph.attr_size, self.graph.attr_label} for i, attr in enumerate(input_data.domain): if attr in attrs: keys.append(i) new_domain = input_data.domain.select_columns(keys) dmx = input_data.transform(new_domain) dmx.X = dmx.X.toarray() # TODO: remove once we make sure Y is always dense. if sp.issparse(dmx.Y): dmx.Y = dmx.Y.toarray() return dmx def apply_selection(self): """Apply selection saved in workflow.""" if self.data is not None and self.selection is not None: self.graph.selection = np.zeros(len(self.data), dtype=np.uint8) self.selection = [x for x in self.selection if x < len(self.data)] self.graph.selection[self.selection] = 1 self.graph.update_colors(keep_colors=True) @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] else: self.attribute_selection_list = None def get_shown_attributes(self): return self.attr_x, self.attr_y def init_attr_values(self): domain = self.data and self.data.domain for model in self.models: model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x self.graph.attr_color = domain and self.data.domain.class_var or None self.graph.attr_shape = None self.graph.attr_size = None self.graph.attr_label = None def set_attr(self, attr_x, attr_y): self.attr_x, self.attr_y = attr_x, attr_y self.update_attr() def update_attr(self): self.prepare_data() self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line()) self.send_features() def update_colors(self): self.prepare_data() self.cb_class_density.setEnabled(self.graph.can_draw_density()) def update_density(self): self.update_graph(reset_view=False) def update_regression_line(self): self.update_graph(reset_view=False) def update_graph(self, reset_view=True, **_): self.graph.zoomStack = [] if self.graph.data is None: return self.graph.update_data(self.attr_x, self.attr_y, reset_view) def selection_changed(self): self.send_data() @staticmethod def create_groups_table(data, selection): if data is None: return None names = [var.name for var in data.domain.variables + data.domain.metas] name = get_next_name(names, "Selection group") metas = data.domain.metas + ( DiscreteVariable( name, ["Unselected"] + ["G{}".format(i + 1) for i in range(np.max(selection))]), ) domain = Domain(data.domain.attributes, data.domain.class_vars, metas) table = data.transform(domain) table.metas[:, len(data.domain.metas):] = \ selection.reshape(len(data), 1) return table def send_data(self): selected = None selection = None # TODO: Implement selection for sql data graph = self.graph if isinstance(self.data, SqlTable): selected = self.data elif self.data is not None: selection = graph.get_selection() if len(selection) > 0: selected = self.data[selection] if graph.selection is not None and np.max(graph.selection) > 1: annotated = self.create_groups_table(self.data, graph.selection) else: annotated = create_annotated_table(self.data, selection) self.Outputs.selected_data.send(selected) self.Outputs.annotated_data.send(annotated) # Store current selection in a setting that is stored in workflow if self.selection is not None and len(selection): self.selection = list(selection) def send_features(self): features = None if self.attr_x or self.attr_y: dom = Domain([], metas=(StringVariable(name="feature"),)) features = Table(dom, [[self.attr_x], [self.attr_y]]) features.name = "Features" self.Outputs.features.send(features) def commit(self): self.send_data() self.send_features() def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) def send_report(self): if self.data is None: return def name(var): return var and var.name caption = report.render_items_vert(( ("Color", name(self.graph.attr_color)), ("Label", name(self.graph.attr_label)), ("Shape", name(self.graph.attr_shape)), ("Size", name(self.graph.attr_size)), ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete or self.graph.jitter_continuous) and self.graph.jitter_size))) self.report_plot() if caption: self.report_caption(caption) def onDeleteWidget(self): super().onDeleteWidget() self.graph.plot_widget.getViewBox().deleteLater() self.graph.plot_widget.clear()
class WidgetManager(QObject): """ OWWidget instance manager class. This class handles the lifetime of OWWidget instances in a :class:`WidgetsScheme`. """ #: A new OWWidget was created and added by the manager. widget_for_node_added = Signal(SchemeNode, QWidget) #: An OWWidget was removed, hidden and will be deleted when appropriate. widget_for_node_removed = Signal(SchemeNode, QWidget) class ProcessingState(enum.IntEnum): """Widget processing state flags""" #: Signal manager is updating/setting the widget's inputs InputUpdate = 1 #: Widget has entered a blocking state (OWWidget.isBlocking) BlockingUpdate = 2 #: Widget has entered processing state ProcessingUpdate = 4 #: Widget is still in the process of initialization Initializing = 8 InputUpdate, BlockingUpdate, ProcessingUpdate, Initializing = ProcessingState #: State mask for widgets that cannot be deleted immediately #: (see __try_delete) _DelayDeleteMask = InputUpdate | BlockingUpdate #: Widget initialization states Delayed = namedtuple("Delayed", ["node"]) PartiallyInitialized = namedtuple("Materializing", ["node", "partially_initialized_widget"]) Materialized = namedtuple("Materialized", ["node", "widget"]) class CreationPolicy(enum.Enum): """Widget Creation Policy""" #: Widgets are scheduled to be created from the event loop, or when #: first accessed with `widget_for_node` Normal = "Normal" #: Widgets are created immediately when added to the workflow model Immediate = "Immediate" #: Widgets are created only when first accessed with `widget_for_node` OnDemand = "OnDemand" Normal, Immediate, OnDemand = CreationPolicy def __init__(self, parent=None): QObject.__init__(self, parent) self.__scheme = None self.__signal_manager = None self.__widgets = [] self.__initstate_for_node = {} self.__creation_policy = WidgetManager.Normal #: a queue of all nodes whose widgets are scheduled for #: creation/initialization self.__init_queue = deque() # type: Deque[SchemeNode] #: Timer for scheduling widget initialization self.__init_timer = QTimer(self, interval=0, singleShot=True) self.__init_timer.timeout.connect(self.__create_delayed) #: A mapping of SchemeNode -> OWWidget (note: a mapping is only added #: after the widget is actually created) self.__widget_for_node = {} #: a mapping of OWWidget -> SchemeNode self.__node_for_widget = {} # Widgets that were 'removed' from the scheme but were at # the time in an input update loop and could not be deleted # immediately self.__delay_delete = set() #: processing state flags for all widgets (including the ones #: in __delay_delete). #: Note: widgets which have not yet been created do not have an entry self.__widget_processing_state = {} # Tracks the widget in the update loop by the SignalManager self.__updating_widget = None # Widgets float above other windows self.__float_widgets_on_top = False if hasattr(qApp, "applicationStateChanged"): # disables/enables widget floating when app (de)activates # available in Qt >= 5.2 def reapply_float_on_top(): self.set_float_widgets_on_top(self.__float_widgets_on_top) qApp.applicationStateChanged.connect(reapply_float_on_top) def set_scheme(self, scheme): """ Set the :class:`WidgetsScheme` instance to manage. """ self.__scheme = scheme self.__signal_manager = scheme.findChild(SignalManager) self.__signal_manager.processingStarted[SchemeNode].connect( self.__on_processing_started) self.__signal_manager.processingFinished[SchemeNode].connect( self.__on_processing_finished) scheme.node_added.connect(self.add_widget_for_node) scheme.node_removed.connect(self.remove_widget_for_node) scheme.runtime_env_changed.connect(self.__on_env_changed) scheme.installEventFilter(self) def scheme(self): """ Return the scheme instance on which this manager is installed. """ return self.__scheme def signal_manager(self): """ Return the signal manager in use on the :func:`scheme`. """ return self.__signal_manager def widget_for_node(self, node): """ Return the OWWidget instance for the scheme node. """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Delayed): # Create the widget now if it is still pending state = self.__materialize(state) return state.widget elif isinstance(state, WidgetManager.PartiallyInitialized): widget = state.partially_initialized_widget log.warning( "WidgetManager.widget_for_node: " "Accessing a partially created widget instance. " "This is most likely a result of explicit " "QApplication.processEvents call from the '%s.%s' " "widgets __init__.", type(widget).__module__, type(widget).__name__) return widget elif isinstance(state, WidgetManager.Materialized): return state.widget else: assert False def node_for_widget(self, widget): """ Return the SchemeNode instance for the OWWidget. Raise a KeyError if the widget does not map to a node in the scheme. """ return self.__node_for_widget[widget] def widget_properties(self, node): """ Return the current widget properties/settings. Parameters ---------- node : SchemeNode Returns ------- settings : dict """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Materialized): return state.widget.settingsHandler.pack_data(state.widget) else: return node.properties def set_creation_policy(self, policy): """ Set the widget creation policy Parameters ---------- policy : WidgetManager.CreationPolicy """ if self.__creation_policy != policy: self.__creation_policy = policy if self.__creation_policy == WidgetManager.Immediate: self.__init_timer.stop() while self.__init_queue: state = self.__init_queue.popleft() self.__materialize(state) elif self.__creation_policy == WidgetManager.Normal: if not self.__init_timer.isActive() and self.__init_queue: self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_timer.stop() else: assert False def creation_policy(self): """ Return the current widget creation policy Returns ------- policy: WidgetManager.CreationPolicy """ return self.__creation_policy def add_widget_for_node(self, node): """ Create a new OWWidget instance for the corresponding scheme node. """ state = WidgetManager.Delayed(node) self.__initstate_for_node[node] = state if self.__creation_policy == WidgetManager.Immediate: self.__initstate_for_node[node] = self.__materialize(state) elif self.__creation_policy == WidgetManager.Normal: self.__init_queue.append(state) if not self.__init_timer.isActive(): self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_queue.append(state) def __materialize(self, state): # Create and initialize an OWWidget for a Delayed # widget initialization assert isinstance(state, WidgetManager.Delayed) if state in self.__init_queue: self.__init_queue.remove(state) node = state.node widget = self.create_widget_instance(node) self.__widgets.append(widget) self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__initialize_widget_state(node, widget) state = WidgetManager.Materialized(node, widget) self.__initstate_for_node[node] = state self.widget_for_node_added.emit(node, widget) return state def remove_widget_for_node(self, node): """ Remove the OWWidget instance for node. """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Delayed): del self.__initstate_for_node[node] self.__init_queue.remove(state) elif isinstance(state, WidgetManager.Materialized): # Update the node's stored settings/properties dict before # removing the widget. # TODO: Update/sync whenever the widget settings change. node.properties = self._widget_settings(state.widget) self.__widgets.remove(state.widget) del self.__initstate_for_node[node] del self.__widget_for_node[node] del self.__node_for_widget[state.widget] node.title_changed.disconnect(state.widget.setCaption) state.widget.progressBarValueChanged.disconnect(node.set_progress) del state.widget._Report__report_view self.widget_for_node_removed.emit(node, state.widget) self._delete_widget(state.widget) elif isinstance(state, WidgetManager.PartiallyInitialized): widget = state.partially_initialized_widget raise RuntimeError( "A widget/node {} was removed while being initialized. " "This is most likely a result of an explicit " "QApplication.processEvents call from the '{}.{}' " "widgets __init__.\n".format(state.node.title, type(widget).__module__, type(widget).__init__)) def _widget_settings(self, widget): return widget.settingsHandler.pack_data(widget) def _delete_widget(self, widget): """ Delete the OWBaseWidget instance. """ widget.close() # Save settings to user global settings. widget.saveSettings() # Notify the widget it will be deleted. widget.onDeleteWidget() state = self.__widget_processing_state[widget] if state & WidgetManager._DelayDeleteMask: # If the widget is in an update loop and/or blocking we # delay the scheduled deletion until the widget is done. log.debug( "Widget %s removed but still in state :%s. " "Deferring deletion.", widget, state) self.__delay_delete.add(widget) else: widget.deleteLater() del self.__widget_processing_state[widget] def create_widget_instance(self, node): """ Create a OWWidget instance for the node. """ desc = node.description klass = widget = None initialized = False error = None # First try to actually retrieve the class. try: klass = name_lookup(desc.qualified_name) except (ImportError, AttributeError): sys.excepthook(*sys.exc_info()) error = "Could not import {0!r}\n\n{1}".format( node.description.qualified_name, traceback.format_exc()) except Exception: sys.excepthook(*sys.exc_info()) error = "An unexpected error during import of {0!r}\n\n{1}".format( node.description.qualified_name, traceback.format_exc()) if klass is None: widget = mock_error_owwidget(node, error) initialized = True if widget is None: log.info("WidgetManager: Creating '%s.%s' instance '%s'.", klass.__module__, klass.__name__, node.title) widget = klass.__new__( klass, None, captionTitle=node.title, signal_manager=self.signal_manager(), stored_settings=node.properties, # NOTE: env is a view of the real env and reflects # changes to the environment. env=self.scheme().runtime_env()) initialized = False # Init the node/widget mapping and state before calling __init__ # Some OWWidgets might already send data in the constructor # (should this be forbidden? Raise a warning?) triggering the signal # manager which would request the widget => node mapping or state # Furthermore they can (though they REALLY REALLY REALLY should not) # explicitly call qApp.processEvents. assert node not in self.__widget_for_node self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__widget_processing_state[widget] = WidgetManager.Initializing self.__initstate_for_node[node] = \ WidgetManager.PartiallyInitialized(node, widget) if not initialized: try: widget.__init__() except Exception: sys.excepthook(*sys.exc_info()) msg = traceback.format_exc() msg = "Could not create {0!r}\n\n{1}".format( node.description.name, msg) # remove state tracking for widget ... del self.__widget_for_node[node] del self.__node_for_widget[widget] del self.__widget_processing_state[widget] # ... and substitute it with a mock error widget. widget = mock_error_owwidget(node, msg) self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__widget_processing_state[widget] = 0 self.__initstate_for_node[node] = \ WidgetManager.Materialized(node, widget) self.__initstate_for_node[node] = \ WidgetManager.Materialized(node, widget) # Clear Initializing flag self.__widget_processing_state[widget] &= ~WidgetManager.Initializing node.title_changed.connect(widget.setCaption) # Widget's info/warning/error messages. widget.messageActivated.connect(self.__on_widget_state_changed) widget.messageDeactivated.connect(self.__on_widget_state_changed) # Widget's statusTip node.set_status_message(widget.statusMessage()) widget.statusMessageChanged.connect(node.set_status_message) # Widget's progress bar value state. widget.progressBarValueChanged.connect(node.set_progress) # Widget processing state (progressBarInit/Finished) # and the blocking state. widget.processingStateChanged.connect( self.__on_processing_state_changed) widget.blockingStateChanged.connect(self.__on_blocking_state_changed) if widget.isBlocking(): # A widget can already enter blocking state in __init__ self.__widget_processing_state[widget] |= self.BlockingUpdate if widget.processingState != 0: # It can also start processing (initialization of resources, ...) self.__widget_processing_state[widget] |= self.ProcessingUpdate node.set_processing_state(1) node.set_progress(widget.progressBarValue) # Install a help shortcut on the widget help_action = widget.findChild(QAction, "action-help") if help_action is not None: help_action.setEnabled(True) help_action.setVisible(True) help_action.triggered.connect(self.__on_help_request) # Up shortcut (activate/open parent) up_shortcut = QShortcut(QKeySequence(Qt.ControlModifier + Qt.Key_Up), widget) up_shortcut.activated.connect(self.__on_activate_parent) # Call setters only after initialization. widget.setWindowIcon(icon_loader.from_description(desc).get(desc.icon)) widget.setCaption(node.title) # befriend class Report widget._Report__report_view = self.scheme().report_view self.__set_float_on_top_flag(widget) # Schedule an update with the signal manager, due to the cleared # implicit Initializing flag self.signal_manager()._update() return widget def node_processing_state(self, node): """ Return the processing state flags for the node. Same as `manager.widget_processing_state(manger.widget_for_node(node))` """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Materialized): return self.__widget_processing_state[state.widget] elif isinstance(state, WidgetManager.PartiallyInitialized): return self.__widget_processing_state[ state.partially_initialized_widget] else: return WidgetManager.Initializing def widget_processing_state(self, widget): """ Return the processing state flags for the widget. The state is an bitwise or of `InputUpdate` and `BlockingUpdate`. """ return self.__widget_processing_state[widget] def set_float_widgets_on_top(self, float_on_top): """ Set `Float Widgets on Top` flag on all widgets. """ self.__float_widgets_on_top = float_on_top for widget in self.__widget_for_node.values(): self.__set_float_on_top_flag(widget) def __create_delayed(self): if self.__init_queue: state = self.__init_queue.popleft() node = state.node self.__initstate_for_node[node] = self.__materialize(state) if self.__creation_policy == WidgetManager.Normal and \ self.__init_queue: # restart the timer if pending widgets still in the queue self.__init_timer.start() def eventFilter(self, receiver, event): if event.type() == QEvent.Close and receiver is self.__scheme: self.signal_manager().stop() # Notify the widget instances. for widget in list(self.__widget_for_node.values()): widget.close() widget.saveSettings() widget.onDeleteWidget() widget.deleteLater() return QObject.eventFilter(self, receiver, event) def __on_help_request(self): """ Help shortcut was pressed. We send a `QWhatsThisClickedEvent` to the scheme and hope someone responds to it. """ # Sender is the QShortcut, and parent the OWBaseWidget widget = self.sender().parent() try: node = self.node_for_widget(widget) except KeyError: pass else: qualified_name = node.description.qualified_name help_url = "help://search?" + urlencode({"id": qualified_name}) event = QWhatsThisClickedEvent(help_url) QCoreApplication.sendEvent(self.scheme(), event) def __on_activate_parent(self): """ Activate parent shortcut was pressed. """ event = ActivateParentEvent() QCoreApplication.sendEvent(self.scheme(), event) def __initialize_widget_state(self, node, widget): """ Initialize the tracked info/warning/error message state. """ for message_group in widget.message_groups: message = user_message_from_state(message_group) if message: node.set_state_message(message) def __on_widget_state_changed(self, msg): """ The OWBaseWidget info/warning/error state has changed. """ widget = msg.group.widget try: node = self.node_for_widget(widget) except KeyError: pass else: self.__initialize_widget_state(node, widget) def __on_processing_state_changed(self, state): """ A widget processing state has changed (progressBarInit/Finished) """ widget = self.sender() if state: self.__widget_processing_state[widget] |= self.ProcessingUpdate else: self.__widget_processing_state[widget] &= ~self.ProcessingUpdate # propagate the change to the workflow model. try: # we can still track widget state after it was removed from the # workflow model (`__delay_delete`) node = self.node_for_widget(widget) except KeyError: pass else: self.__update_node_processing_state(node) def __on_processing_started(self, node): """ Signal manager entered the input update loop for the node. """ widget = self.widget_for_node(node) # Remember the widget instance. The node and the node->widget mapping # can be removed between this and __on_processing_finished. self.__updating_widget = widget self.__widget_processing_state[widget] |= self.InputUpdate self.__update_node_processing_state(node) def __on_processing_finished(self, node): """ Signal manager exited the input update loop for the node. """ widget = self.__updating_widget self.__widget_processing_state[widget] &= ~self.InputUpdate if widget in self.__node_for_widget: self.__update_node_processing_state(node) elif widget in self.__delay_delete: self.__try_delete(widget) else: raise ValueError("%r is not managed" % widget) self.__updating_widget = None def __on_blocking_state_changed(self, state): """ OWWidget blocking state has changed. """ if not state: # schedule an update pass. self.signal_manager()._update() widget = self.sender() if state: self.__widget_processing_state[widget] |= self.BlockingUpdate else: self.__widget_processing_state[widget] &= ~self.BlockingUpdate if widget in self.__node_for_widget: node = self.node_for_widget(widget) self.__update_node_processing_state(node) elif widget in self.__delay_delete: self.__try_delete(widget) def __update_node_processing_state(self, node): """ Update the `node.processing_state` to reflect the widget state. """ state = self.node_processing_state(node) node.set_processing_state(1 if state else 0) def __try_delete(self, widget): if not (self.__widget_processing_state[widget] & WidgetManager._DelayDeleteMask): log.debug("Delayed delete for widget %s", widget) self.__delay_delete.remove(widget) del self.__widget_processing_state[widget] widget.blockingStateChanged.disconnect( self.__on_blocking_state_changed) widget.processingStateChanged.disconnect( self.__on_processing_state_changed) widget.deleteLater() def __on_env_changed(self, key, newvalue, oldvalue): # Notify widgets of a runtime environment change for widget in self.__widget_for_node.values(): widget.workflowEnvChanged(key, newvalue, oldvalue) def __set_float_on_top_flag(self, widget): """Set or unset widget's float on top flag""" should_float_on_top = self.__float_widgets_on_top if hasattr(qApp, "applicationState"): # only float on top when the application is active # available in Qt >= 5.2 should_float_on_top &= qApp.applicationState( ) == Qt.ApplicationActive float_on_top = widget.windowFlags() & Qt.WindowStaysOnTopHint if float_on_top == should_float_on_top: return widget_was_visible = widget.isVisible() if should_float_on_top: widget.setWindowFlags(Qt.WindowStaysOnTopHint) else: widget.setWindowFlags(widget.windowFlags() & ~Qt.WindowStaysOnTopHint) # Changing window flags hid the widget if widget_was_visible: widget.show()
class OWtSNE(OWDataProjectionWidget): name = "t-SNE" description = "Two-dimensional data projection with t-SNE." icon = "icons/TSNE.svg" priority = 920 keywords = ["tsne"] settings_version = 3 max_iter = Setting(300) perplexity = Setting(30) pca_components = Setting(20) GRAPH_CLASS = OWtSNEGraph graph = SettingProvider(OWtSNEGraph) embedding_variables_names = ("t-SNE-x", "t-SNE-y") #: Runtime state Running, Finished, Waiting = 1, 2, 3 class Outputs(OWDataProjectionWidget.Outputs): preprocessor = Output("Preprocessor", Preprocess) class Error(OWDataProjectionWidget.Error): not_enough_rows = Msg("Input data needs at least 2 rows") constant_data = Msg("Input data is constant") no_attributes = Msg("Data has no attributes") out_of_memory = Msg("Out of memory") optimization_error = Msg("Error during optimization\n{}") no_valid_data = Msg("No projection due to no valid data") def __init__(self): super().__init__() self.pca_data = None self.projection = None self.__invalidated = True self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=1, timeout=self.__next_step) self.__state = OWtSNE.Waiting self.__in_next_step = False self.__draw_similar_pairs = False def _add_controls(self): self._add_controls_start_box() super()._add_controls() # Because sc data frequently has many genes, # showing all attributes in combo boxes can cause problems # QUICKFIX: Remove a separator and attributes from order # (leaving just the class and metas) self.models = self.graph.gui.points_models for model in self.models: model.order = model.order[:-2] def _add_controls_start_box(self): box = gui.vBox(self.controlArea, True) form = QFormLayout( labelAlignment=Qt.AlignLeft, formAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow, verticalSpacing=10 ) form.addRow( "Max iterations:", gui.spin(box, self, "max_iter", 1, 2000, step=50)) form.addRow( "Perplexity:", gui.spin(box, self, "perplexity", 1, 100, step=1)) box.layout().addLayout(form) gui.separator(box, 10) self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run) gui.separator(box, 10) gui.hSlider(box, self, "pca_components", label="PCA components:", minValue=2, maxValue=50, step=1) def set_data(self, data): self.__invalidated = not (self.data and data and np.array_equal(self.data.X, data.X)) super().set_data(data) def check_data(self): def error(err): err() self.data = None super().check_data() if self.data is not None: if len(self.data) < 2: error(self.Error.not_enough_rows) elif not self.data.domain.attributes: error(self.Error.no_attributes) elif not self.data.is_sparse() and \ np.allclose(self.data.X - self.data.X[0], 0): error(self.Error.constant_data) elif not self.data.is_sparse() and \ np.all(~np.isfinite(self.data.X)): error(self.Error.no_valid_data) def get_embedding(self): if self.data is None: self.valid_data = None return None elif self.projection is None: embedding = np.random.normal(size=(len(self.data), 2)) else: embedding = self.projection.embedding.X self.valid_data = np.ones(len(embedding), dtype=bool) return embedding def _toggle_run(self): if self.__state == OWtSNE.Running: self.stop() self.commit() else: self.start() def start(self): if not self.data or self.__state == OWtSNE.Running: self.graph.update_coordinates() elif self.__state in (OWtSNE.Finished, OWtSNE.Waiting): self.__start() def stop(self): if self.__state == OWtSNE.Running: self.__set_update_loop(None) def pca_preprocessing(self): if self.pca_data is not None and \ self.pca_data.X.shape[1] == self.pca_components: return pca = PCA(n_components=self.pca_components, random_state=0) model = pca(self.data) self.pca_data = model(self.data) def __start(self): self.pca_preprocessing() initial = 'random' if self.projection is None \ else self.projection.embedding.X step_size = 50 def update_loop(data, max_iter, step, embedding): # NOTE: this code MUST NOT call into QApplication.processEvents done = False iterations_done = 0 while not done: step_iter = min(max_iter - iterations_done, step) projection = compute_tsne( data, self.perplexity, step_iter, embedding) embedding = projection.embedding.X iterations_done += step_iter if iterations_done >= max_iter: done = True yield projection, iterations_done / max_iter self.__set_update_loop(update_loop( self.pca_data, self.max_iter, step_size, initial)) self.progressBarInit(processEvents=None) def __set_update_loop(self, loop): if self.__update_loop is not None: self.__update_loop.close() self.__update_loop = None self.progressBarFinished(processEvents=None) self.__update_loop = loop if loop is not None: self.setBlocking(True) self.progressBarInit(processEvents=None) self.setStatusMessage("Running") self.runbutton.setText("Stop") self.__state = OWtSNE.Running self.__timer.start() else: self.setBlocking(False) self.setStatusMessage("") self.runbutton.setText("Start") self.__state = OWtSNE.Finished self.__timer.stop() def __next_step(self): if self.__update_loop is None: return assert not self.__in_next_step self.__in_next_step = True loop = self.__update_loop self.Error.out_of_memory.clear() self.Error.optimization_error.clear() try: projection, progress = next(self.__update_loop) assert self.__update_loop is loop except StopIteration: self.__set_update_loop(None) self.unconditional_commit() except MemoryError: self.Error.out_of_memory() self.__set_update_loop(None) except Exception as exc: self.Error.optimization_error(str(exc)) self.__set_update_loop(None) else: self.progressBarSet(100.0 * progress, processEvents=None) self.projection = projection self.graph.update_coordinates() self.graph.update_density() # schedule next update self.__timer.start() self.__in_next_step = False def handleNewSignals(self): if self.__invalidated: self.__invalidated = False self.setup_plot() self.start() else: self.graph.update_point_props() self.commit() def commit(self): super().commit() self.send_preprocessor() def _get_projection_data(self): if self.data is None or self.projection is None: return None data = self.data.transform( Domain(self.data.domain.attributes, self.data.domain.class_vars, self.data.domain.metas + self.projection.domain.attributes)) data.metas[:, -2:] = self.get_embedding() return data def send_preprocessor(self): prep = None if self.data is not None and self.projection is not None: prep = ApplyDomain(self.projection.domain, self.projection.name) self.Outputs.preprocessor.send(prep) def clear(self): if self.__invalidated: super().clear() self.__set_update_loop(None) self.__state = OWtSNE.Waiting self.pca_data = None self.projection = None @classmethod def migrate_settings(cls, settings, version): if version < 3: if "selection_indices" in settings: settings["selection"] = settings["selection_indices"] @classmethod def migrate_context(cls, context, version): if version < 3: values = context.values values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"]
class SignalManager(QObject): """ SignalManager handles the runtime signal propagation for a :class:`.Scheme` instance. Note ---- If a scheme instance is passed as a parent to the constructor it is also set as the workflow model. """ class State(enum.IntEnum): """ SignalManager state flags. .. seealso:: :func:`SignalManager.state()` """ #: The manager is running, i.e. it propagates signals Running = 0 #: The manager is stopped. It does not track node output changes, #: and does not deliver signals to dependent nodes Stopped = 1 #: The manager is paused. It still tracks node output changes, but #: does not deliver new signals to dependent nodes. The pending signals #: will be delivered once it enters Running state again Paused = 2 #: The manager is running, i.e. it propagates signals Running = State.Running #: The manager is stopped. It does not track node ouput changes, #: and does not deliver signals to dependent nodes Stopped = State.Stopped #: The manager is paused. It still tracks node output changes, but #: does not deliver new signals to dependent nodes. The pending signals #: will be delivered once it enters Running state again Paused = Stopped.Paused # unused; back-compatibility Error = 3 class RuntimeState(enum.IntEnum): """ SignalManager runtime state. See Also -------- SignalManager.runtime_state """ #: Waiting, idle state. The signal queue is empty Waiting = 0 #: ... Processing = 1 Waiting = RuntimeState.Waiting Processing = RuntimeState.Processing #: Emitted when the state of the signal manager changes. stateChanged = pyqtSignal(int) #: Emitted when signals are added to the queue. updatesPending = pyqtSignal() #: Emitted right before a `SchemeNode` instance has its inputs updated. processingStarted = pyqtSignal([], [SchemeNode]) #: Emitted right after a `SchemeNode` instance has had its inputs updated. processingFinished = pyqtSignal([], [SchemeNode]) #: Emitted when `SignalManager`'s runtime state changes. runtimeStateChanged = pyqtSignal(int) def __init__(self, parent=None, **kwargs): super().__init__(parent, **kwargs) self.__workflow = None # type: Optional[Scheme] self.__input_queue = [] # type: List[Signal] # mapping a node to its current outputs self.__node_outputs = {} # type: Dict[Node, Dict[OutputSignal, Dict[Any, Any]]] self.__state = SignalManager.Running self.__runtime_state = SignalManager.Waiting # A flag indicating if UpdateRequest event should be rescheduled self.__reschedule = False self.__update_timer = QTimer(self, interval=100, singleShot=True) self.__update_timer.timeout.connect(self.__process_next) if isinstance(parent, Scheme): self.set_workflow(parent) def _can_process(self): """ Return a bool indicating if the manger can enter the main processing loop. """ return self.__state not in [SignalManager.Error, SignalManager.Stopped] def workflow(self): # type: () -> Scheme """ Return the :class:`Scheme` instance. """ return self.__workflow #: Alias scheme = workflow def set_workflow(self, workflow): # type: (Scheme) -> None """ Set the workflow model. Parameters ---------- workflow : Scheme """ if workflow is self.__workflow: return if self.__workflow is not None: for link in self.__workflow.links: link.enabled_changed.disconnect(self.link_enabled_changed) self.__workflow.node_added.disconnect(self.on_node_added) self.__workflow.node_removed.disconnect(self.on_node_removed) self.__workflow.link_added.disconnect(self.link_added) self.__workflow.link_removed.disconnect(self.link_removed) self.__workflow.removeEventFilter(self) self.__node_outputs = {} self.__input_queue = [] self.__workflow = workflow if workflow is not None: workflow.node_added.connect(self.on_node_added) workflow.node_removed.connect(self.on_node_removed) workflow.link_added.connect(self.link_added) workflow.link_removed.connect(self.link_removed) for node in workflow.nodes: self.__node_outputs[node] = defaultdict(dict) for link in workflow.links: link.enabled_changed.connect(self.link_enabled_changed) workflow.installEventFilter(self) def has_pending(self): """ Does the manager have any signals to deliver? """ return bool(self.__input_queue) def start(self): """ Start the update loop. Note ---- The updates will not happen until the control reaches the Qt event loop. """ if self.__state != SignalManager.Running: self.__state = SignalManager.Running self.stateChanged.emit(SignalManager.Running) self._update() def stop(self): """ Stop the update loop. Note ---- If the `SignalManager` is currently in `process_queues` it will still update all current pending signals, but will not re-enter until `start()` is called again. """ if self.__state != SignalManager.Stopped: self.__state = SignalManager.Stopped self.stateChanged.emit(SignalManager.Stopped) self.__update_timer.stop() def pause(self): """ Pause the delivery of signals. """ if self.__state != SignalManager.Paused: self.__state = SignalManager.Paused self.stateChanged.emit(SignalManager.Paused) self.__update_timer.stop() def resume(self): """ Resume the delivery of signals. """ if self.__state == SignalManager.Paused: self.__state = SignalManager.Running self.stateChanged.emit(self.__state) self._update() def step(self): """ Deliver signals to a single node (only applicable while the `state()` is `Paused`). """ if self.__state == SignalManager.Paused: self.process_queued() def state(self): # type: () -> State """ Return the current state. Return ------ state : SignalManager.State """ return self.__state def _set_runtime_state(self, state): """ Set the runtime state. Should only be called by `SignalManager` implementations. """ if self.__runtime_state != state: self.__runtime_state = state self.runtimeStateChanged.emit(self.__runtime_state) def runtime_state(self): # type: () -> RuntimeState """ Return the runtime state. This can be `SignalManager.Waiting` or `SignalManager.Processing`. """ return self.__runtime_state def on_node_removed(self, node): # remove all pending input signals for node so we don't get # stale references in process_node. # NOTE: This does not remove output signals for this node. In # particular the final 'None' will be delivered to the sink # nodes even after the source node is no longer in the scheme. log.info("Removing pending signals for '%s'.", node.title) self.remove_pending_signals(node) del self.__node_outputs[node] def on_node_added(self, node): self.__node_outputs[node] = defaultdict(dict) def link_added(self, link): # push all current source values to the sink link.set_runtime_state(SchemeLink.Empty) if link.enabled: log.info("Scheduling signal data update for '%s'.", link) self._schedule(self.signals_on_link(link)) self._update() link.enabled_changed.connect(self.link_enabled_changed) def link_removed(self, link): # purge all values in sink's queue log.info("Scheduling signal data purge (%s).", link) self.purge_link(link) link.enabled_changed.disconnect(self.link_enabled_changed) def link_enabled_changed(self, enabled): if enabled: link = self.sender() log.info("Link %s enabled. Scheduling signal data update.", link) self._schedule(self.signals_on_link(link)) def signals_on_link(self, link): # type: (SchemeLink) -> List[Signal] """ Return :class:`Signal` instances representing the current values present on the link. """ items = self.link_contents(link) signals = [] for key, value in items.items(): signals.append(Signal(link, value, key)) return signals def link_contents(self, link): """ Return the contents on link. """ node, channel = link.source_node, link.source_channel if node in self.__node_outputs: return self.__node_outputs[node][channel] else: # if the the node was already removed its tracked outputs in # __node_outputs are cleared, however the final 'None' signal # deliveries for the link are left in the _input_queue. pending = [sig for sig in self.__input_queue if sig.link is link] return {sig.id: sig.value for sig in pending} def send(self, node, channel, value, id): # type: (SchemeNode, OutputSignal, Any, Any) -> None """ Send the `value` with `id` on an output `channel` from node. Schedule the signal delivery to all dependent nodes Parameters ---------- node : SchemeNode The originating node. channel : OutputSignal The nodes output on which the value is sent. value : Any The value to send, id : Any Signal id. """ log.debug("%r sending %r (id: %r) on channel %r", node.title, type(value), id, channel.name) scheme = self.scheme() self.__node_outputs[node][channel][id] = value links = scheme.find_links(source_node=node, source_channel=channel) links = filter(is_enabled, links) signals = [] for link in links: signals.append(Signal(link, value, id)) self._schedule(signals) def purge_link(self, link): """ Purge the link (send None for all ids currently present) """ contents = self.link_contents(link) ids = contents.keys() signals = [Signal(link, None, id) for id in ids] self._schedule(signals) def _schedule(self, signals): """ Schedule a list of :class:`Signal` for delivery. """ self.__input_queue.extend(signals) for link in {sig.link for sig in signals}: # update the SchemeLink's runtime state flags contents = self.link_contents(link) if any(value is not None for value in contents.values()): state = SchemeLink.Active else: state = SchemeLink.Empty link.set_runtime_state(state | SchemeLink.Pending) if signals: self.updatesPending.emit() self._update() def _update_link(self, link): """ Schedule update of a single link. """ signals = self.signals_on_link(link) self._schedule(signals) def process_queued(self, max_nodes=None): """ Process queued signals. Take one node node from the pending input queue and deliver all scheduled signals. """ if not (max_nodes is None or max_nodes == 1): warnings.warn( "`max_nodes` is deprecated and unused (will always equal 1)", DeprecationWarning, stacklevel=2) if self.__runtime_state == SignalManager.Processing: raise RuntimeError("Cannot re-enter 'process_queued'") if not self._can_process(): raise RuntimeError("Can't process in state %i" % self.__state) log.info("SignalManager: Processing queued signals") node_update_front = self.node_update_front() log.debug("SignalManager: Nodes eligible for update %s", [node.title for node in node_update_front]) if node_update_front: node = node_update_front[0] self._set_runtime_state(SignalManager.Processing) try: self.process_node(node) finally: self._set_runtime_state(SignalManager.Waiting) def process_node(self, node): """ Process pending input signals for `node`. """ signals_in = self.pending_input_signals(node) self.remove_pending_signals(node) signals_in = self.compress_signals(signals_in) log.debug("Processing %r, sending %i signals.", node.title, len(signals_in)) # Clear the link's pending flag. for link in {sig.link for sig in signals_in}: link.set_runtime_state(link.runtime_state() & ~SchemeLink.Pending) def process_dynamic(signals): # type: (List[Signal]) -> List[Signal] """ Process dynamic signals; Update the link's dynamic_enabled flag if the value is valid; replace values that do not type check with `None` """ res = [] for sig in signals: # Check and update the dynamic link state link = sig.link if sig.link.is_dynamic(): link.dynamic_enabled = can_enable_dynamic(link, sig.value) if not link.dynamic_enabled: # Send None instead sig = Signal(link, None, sig.id) res.append(sig) return res signals_in = process_dynamic(signals_in) assert ({sig.link for sig in self.__input_queue} .intersection({sig.link for sig in signals_in}) == set([])) self.processingStarted.emit() self.processingStarted[SchemeNode].emit(node) try: self.send_to_node(node, signals_in) finally: self.processingFinished.emit() self.processingFinished[SchemeNode].emit(node) def compress_signals(self, signals): # type: (List[Signal]) -> List[Signal] """ Compress a list of :class:`Signal` instances to be delivered. Before the signal values are delivered to the sink node they can be optionally `compressed`, i.e. values can be merged or dropped depending on the execution semantics. The input list is in the order that the signals were enqueued. The base implementation returns the list unmodified. Parameters ---------- signals : List[Signal] Return ------ signals : List[Signal] """ return signals def send_to_node(self, node, signals): # type: (SchemeNode, List[Signal]) -> None """ Abstract. Reimplement in subclass. Send/notify the `node` instance (or whatever object/instance it is a representation of) that it has new inputs as represented by the `signals` list). Parameters ---------- node : SchemeNode signals : List[Signal] """ raise NotImplementedError def is_pending(self, node): # type: (SchemeNode) -> bool """ Is `node` (class:`SchemeNode`) scheduled for processing (i.e. it has incoming pending signals). Parameters ---------- node : SchemeNode Returns ------- pending : bool """ return node in [signal.link.sink_node for signal in self.__input_queue] def pending_nodes(self): # type: () -> List[SchemeNode] """ Return a list of pending nodes. The nodes are returned in the order they were enqueued for signal delivery. Returns ------- nodes : List[SchemeNode] """ return list(unique(sig.link.sink_node for sig in self.__input_queue)) def pending_input_signals(self, node): # type: (SchemeNode) -> List[Signal] """ Return a list of pending input signals for node. """ return [signal for signal in self.__input_queue if node is signal.link.sink_node] def remove_pending_signals(self, node): # type: (SchemeNode) -> None """ Remove pending signals for `node`. """ for signal in self.pending_input_signals(node): try: self.__input_queue.remove(signal) except ValueError: pass def blocking_nodes(self): # type: () -> List[SchemeNode] """ Return a list of nodes in a blocking state. """ scheme = self.scheme() return [node for node in scheme.nodes if self.is_blocking(node)] def is_blocking(self, node): # type: (SchemeNode) -> bool """ Is the node in `blocking` state. Is it currently in a state where will produce new outputs and therefore no signals should be delivered to dependent nodes until it does so. The default implementation returns False. """ # TODO: this needs a different name return False def node_update_front(self): # type: () -> List[SchemeNode] """ Return a list of nodes on the update front, i.e. nodes scheduled for an update that have no ancestor which is either itself scheduled for update or is in a blocking state). Note ---- The node's ancestors are only computed over enabled links. """ scheme = self.scheme() def expand(node): return [link.sink_node for link in scheme.find_links(source_node=node) if link.enabled] components = strongly_connected_components(scheme.nodes, expand) node_scc = {node: scc for scc in components for node in scc} def isincycle(node): return len(node_scc[node]) > 1 # a list of all nodes currently active/executing a task. blocking_nodes = set(self.blocking_nodes()) dependents = partial(dependent_nodes, scheme) blocked_nodes = reduce(set.union, map(dependents, blocking_nodes), set(blocking_nodes)) pending = self.pending_nodes() pending_downstream = set() for n in pending: depend = set(dependents(n)) if isincycle(n): # a pending node in a cycle would would have a circular # dependency on itself, preventing any progress being made # by the workflow execution. cc = node_scc[n] depend -= set(cc) pending_downstream.update(depend) log.debug("Pending nodes: %s", pending) log.debug("Blocking nodes: %s", blocking_nodes) noneligible = pending_downstream | blocked_nodes return [node for node in pending if node not in noneligible] @Slot() def __process_next(self): if not self.__state == SignalManager.Running: log.debug("Received 'UpdateRequest' while not in 'Running' state") return if self.__runtime_state == SignalManager.Processing: # This happens if QCoreApplication.processEvents is called from # the input handlers. A `__process_next` must be rescheduled when # exiting process_queued. log.warning("Received 'UpdateRequest' while in 'process_queued'. " "An update will be re-scheduled when exiting the " "current update.") self.__reschedule = True return nbusy = len(self.blocking_nodes()) log.info("'UpdateRequest' event, queued signals: %i, nbusy: %i " "(MAX_CONCURRENT: %i)", len(self.__input_queue), nbusy, MAX_CONCURRENT) if self.__input_queue and nbusy < MAX_CONCURRENT: self.process_queued() if self.__reschedule and self.__state == SignalManager.Running: self.__reschedule = False log.debug("Rescheduling signal update") self.__update_timer.start() nbusy = len(self.blocking_nodes()) if self.node_update_front() and nbusy < MAX_CONCURRENT: log.debug("More nodes are eligible for an update. " "Scheduling another update.") self._update() def _update(self): """ Schedule processing at a later time. """ if self.__state == SignalManager.Running and \ not self.__update_timer.isActive(): self.__update_timer.start() def eventFilter(self, receiver, event): """ Reimplemented. """ if event.type() == QEvent.DeferredDelete \ and receiver is self.__workflow: # ?? This is really, probably, mostly, likely not needed. Should # just raise error from __process_next. state = self.runtime_state() if state == SignalManager.Processing: log.critical( "The workflow model %r received a deferred delete request " "while performing an input update. " "Deferring a 'DeferredDelete' event for the workflow " "until SignalManager exits the current update step.", self.__workflow ) warnings.warn( "The workflow model received a deferred delete request " "while updating inputs. In the future this will raise " "a RuntimeError", _FutureRuntimeWarning, ) event.setAccepted(False) self.processingFinished.connect(self.__workflow.deleteLater) self.stop() return True return super().eventFilter(receiver, event)
class SignalManager(QObject): """ Handle all runtime signal propagation for a :clas:`Scheme` instance. The scheme must be passed to the constructor and will become the parent of this object. Furthermore this should happen before any items (nodes, links) are added to the scheme. """ Running, Stoped, Paused, Error = range(4) """SignalManger state flags.""" Waiting, Processing = range(2) """SignalManager runtime state flags.""" stateChanged = Signal(int) """Emitted when the state of the signal manager changes.""" updatesPending = Signal() """Emitted when signals are added to the queue.""" processingStarted = Signal([], [SchemeNode]) """Emitted right before a `SchemeNode` instance has its inputs updated. """ processingFinished = Signal([], [SchemeNode]) """Emitted right after a `SchemeNode` instance has had its inputs updated. """ runtimeStateChanged = Signal(int) """Emitted when `SignalManager`'s runtime state changes.""" def __init__(self, scheme): assert(scheme) QObject.__init__(self, scheme) self._input_queue = [] # mapping a node to it's current outputs # {node: {channel: {id: signal_value}}} self._node_outputs = {} self.__state = SignalManager.Running self.__runtime_state = SignalManager.Waiting # A flag indicating if UpdateRequest event should be rescheduled self.__reschedule = False self.__update_timer = QTimer(self, interval=100, singleShot=True) self.__update_timer.timeout.connect(self.__process_next) def _can_process(self): """ Return a bool indicating if the manger can enter the main processing loop. """ return self.__state not in [SignalManager.Error, SignalManager.Stoped] def scheme(self): """ Return the parent class:`Scheme` instance. """ return self.parent() def start(self): """ Start the update loop. .. note:: The updates will not happen until the control reaches the Qt event loop. """ if self.__state != SignalManager.Running: self.__state = SignalManager.Running self.stateChanged.emit(SignalManager.Running) self._update() def stop(self): """ Stop the update loop. .. note:: If the `SignalManager` is currently in `process_queues` it will still update all current pending signals, but will not re-enter until `start()` is called again """ if self.__state != SignalManager.Stoped: self.__state = SignalManager.Stoped self.stateChanged.emit(SignalManager.Stoped) self.__update_timer.stop() def pause(self): """ Pause the updates. """ if self.__state != SignalManager.Paused: self.__state = SignalManager.Paused self.stateChanged.emit(SignalManager.Paused) self.__update_timer.stop() def resume(self): if self.__state == SignalManager.Paused: self.__state = SignalManager.Running self.stateChanged.emit(self.__state) self._update() def step(self): if self.__state == SignalManager.Paused: self.process_queued() def state(self): """ Return the current state. """ return self.__state def _set_runtime_state(self, state): """ Set the runtime state. Should only be called by `SignalManager` implementations. """ if self.__runtime_state != state: self.__runtime_state = state self.runtimeStateChanged.emit(self.__runtime_state) def runtime_state(self): """ Return the runtime state. This can be `SignalManager.Waiting` or `SignalManager.Processing`. """ return self.__runtime_state def on_node_removed(self, node): # remove all pending input signals for node so we don't get # stale references in process_node. # NOTE: This does not remove output signals for this node. In # particular the final 'None' will be delivered to the sink # nodes even after the source node is no longer in the scheme. log.info("Node %r removed. Removing pending signals.", node.title) self.remove_pending_signals(node) del self._node_outputs[node] def on_node_added(self, node): self._node_outputs[node] = defaultdict(dict) def link_added(self, link): # push all current source values to the sink link.set_runtime_state(SchemeLink.Empty) if link.enabled: log.info("Link added (%s). Scheduling signal data update.", link) self._schedule(self.signals_on_link(link)) self._update() link.enabled_changed.connect(self.link_enabled_changed) def link_removed(self, link): # purge all values in sink's queue log.info("Link removed (%s). Scheduling signal data purge.", link) self.purge_link(link) link.enabled_changed.disconnect(self.link_enabled_changed) def link_enabled_changed(self, enabled): if enabled: link = self.sender() log.info("Link %s enabled. Scheduling signal data update.", link) self._schedule(self.signals_on_link(link)) def signals_on_link(self, link): """ Return _Signal instances representing the current values present on the link. """ items = self.link_contents(link) signals = [] for key, value in items.items(): signals.append(_Signal(link, value, key)) return signals def link_contents(self, link): """ Return the contents on link. """ node, channel = link.source_node, link.source_channel if node in self._node_outputs: return self._node_outputs[node][channel] else: # if the the node was already removed it's tracked outputs in # _node_outputs are cleared, however the final 'None' signal # deliveries for the link are left in the _input_queue. pending = [sig for sig in self._input_queue if sig.link is link] return {sig.id: sig.value for sig in pending} def send(self, node, channel, value, id): """ """ log.debug("%r sending %r (id: %r) on channel %r", node.title, type(value), id, channel.name) scheme = self.scheme() self._node_outputs[node][channel][id] = value links = scheme.find_links(source_node=node, source_channel=channel) links = filter(is_enabled, links) signals = [] for link in links: signals.append(_Signal(link, value, id)) self._schedule(signals) def purge_link(self, link): """ Purge the link (send None for all ids currently present) """ contents = self.link_contents(link) ids = contents.keys() signals = [_Signal(link, None, id) for id in ids] self._schedule(signals) def _schedule(self, signals): """ Schedule a list of :class:`_Signal` for delivery. """ self._input_queue.extend(signals) for link in {sig.link for sig in signals}: # update the SchemeLink's runtime state flags contents = self.link_contents(link) if any(value is not None for value in contents.values()): state = SchemeLink.Active else: state = SchemeLink.Empty link.set_runtime_state(state | SchemeLink.Pending) if signals: self.updatesPending.emit() self._update() def _update_link(self, link): """ Schedule update of a single link. """ signals = self.signals_on_link(link) self._schedule(signals) def process_queued(self, max_nodes=None): """ Process queued signals. Take one node node from the pending input queue and deliver all scheduled signals. """ if not (max_nodes is None or max_nodes == 1): warnings.warn( "`max_nodes` is deprecated and unused (will always equal 1)", DeprecationWarning, stacklevel=2) if self.__runtime_state == SignalManager.Processing: raise RuntimeError("Cannot re-enter 'process_queued'") if not self._can_process(): raise RuntimeError("Can't process in state %i" % self.__state) log.info("SignalManager: Processing queued signals") node_update_front = self.node_update_front() log.debug("SignalManager: Nodes eligible for update %s", [node.title for node in node_update_front]) if node_update_front: node = node_update_front[0] self._set_runtime_state(SignalManager.Processing) try: self.process_node(node) finally: self._set_runtime_state(SignalManager.Waiting) def process_node(self, node): """ Process pending input signals for `node`. """ signals_in = self.pending_input_signals(node) self.remove_pending_signals(node) signals_in = self.compress_signals(signals_in) log.debug("Processing %r, sending %i signals.", node.title, len(signals_in)) # Clear the link's pending flag. for link in {sig.link for sig in signals_in}: link.set_runtime_state(link.runtime_state() & ~SchemeLink.Pending) assert ({sig.link for sig in self._input_queue} .intersection({sig.link for sig in signals_in}) == set([])) self.processingStarted.emit() self.processingStarted[SchemeNode].emit(node) try: self.send_to_node(node, signals_in) finally: self.processingFinished.emit() self.processingFinished[SchemeNode].emit(node) def compress_signals(self, signals): """ Compress a list of :class:`_Signal` instances to be delivered. The base implementation returns the list unmodified. """ return signals def send_to_node(self, node, signals): """ Abstract. Reimplement in subclass. Send/notify the :class:`SchemeNode` instance (or whatever object/instance it is a representation of) that it has new inputs as represented by the signals list (list of :class:`_Signal`). """ raise NotImplementedError def is_pending(self, node): """ Is `node` (class:`SchemeNode`) scheduled for processing (i.e. it has incoming pending signals). """ return node in [signal.link.sink_node for signal in self._input_queue] def pending_nodes(self): """ Return a list of pending nodes. The nodes are returned in the order they were enqueued for signal delivery. Returns ------- nodes : List[SchemeNode] """ return list(unique(sig.link.sink_node for sig in self._input_queue)) def pending_input_signals(self, node): """ Return a list of pending input signals for node. """ return [signal for signal in self._input_queue if node is signal.link.sink_node] def remove_pending_signals(self, node): """ Remove pending signals for `node`. """ for signal in self.pending_input_signals(node): try: self._input_queue.remove(signal) except ValueError: pass def blocking_nodes(self): """ Return a list of nodes in a blocking state. """ scheme = self.scheme() return [node for node in scheme.nodes if self.is_blocking(node)] def is_blocking(self, node): return False def node_update_front(self): """ Return a list of nodes on the update front, i.e. nodes scheduled for an update that have no ancestor which is either itself scheduled for update or is in a blocking state) .. note:: The node's ancestors are only computed over enabled links. """ scheme = self.scheme() def expand(node): return [link.sink_node for link in scheme.find_links(source_node=node) if link.enabled] components = strongly_connected_components(scheme.nodes, expand) node_scc = {node: scc for scc in components for node in scc} def isincycle(node): return len(node_scc[node]) > 1 # a list of all nodes currently active/executing a task. blocking_nodes = set(self.blocking_nodes()) dependents = partial(dependent_nodes, scheme) blocked_nodes = reduce(set.union, map(dependents, blocking_nodes), set(blocking_nodes)) pending = self.pending_nodes() pending_downstream = set() for n in pending: depend = set(dependents(n)) if isincycle(n): # a pending node in a cycle would would have a circular # dependency on itself, preventing any progress being made # by the workflow execution. cc = node_scc[n] depend -= set(cc) pending_downstream.update(depend) log.debug("Pending nodes: %s", pending) log.debug("Blocking nodes: %s", blocking_nodes) noneligible = pending_downstream | blocked_nodes return [node for node in pending if node not in noneligible] @Slot() def __process_next(self): if not self.__state == SignalManager.Running: log.debug("Received 'UpdateRequest' while not in 'Running' state") return if self.__runtime_state == SignalManager.Processing: # This happens if someone calls QCoreApplication.processEvents # from the signal handlers. # A `__process_next` must be rescheduled when exiting # process_queued. log.warning("Received 'UpdateRequest' while in 'process_queued'. " "An update will be re-scheduled when exiting the " "current update.") self.__reschedule = True return nbusy = len(self.blocking_nodes()) log.info("'UpdateRequest' event, queued signals: %i, nbusy: %i " "(MAX_CONCURRENT: %i)", len(self._input_queue), nbusy, MAX_CONCURRENT) if self._input_queue and nbusy < MAX_CONCURRENT: self.process_queued() if self.__reschedule and self.__state == SignalManager.Running: self.__reschedule = False log.debug("Rescheduling signal update") self.__update_timer.start() nbusy = len(self.blocking_nodes()) if self.node_update_front() and nbusy < MAX_CONCURRENT: log.debug("More nodes are eligible for an update. " "Scheduling another update.") self._update() def _update(self): """ Schedule processing at a later time. """ if self.__state == SignalManager.Running and \ not self.__update_timer.isActive(): self.__update_timer.start()
class OWSelectAttributes(widget.OWWidget): # pylint: disable=too-many-instance-attributes name = "Select Columns" description = "Select columns from the data table and assign them to " \ "data features, classes or meta variables." icon = "icons/SelectColumns.svg" priority = 100 keywords = ["filter"] class Inputs: data = Input("Data", Table, default=True) features = Input("Features", AttributeList) class Outputs: data = Output("Data", Table) features = Output("Features", AttributeList, dynamic=False) want_main_area = False want_control_area = True settingsHandler = SelectAttributesDomainContextHandler() domain_role_hints = ContextSetting({}) use_input_features = Setting(False) auto_commit = Setting(True) class Warning(widget.OWWidget.Warning): mismatching_domain = Msg("Features and data domain do not match") def __init__(self): super().__init__() self.data = None self.features = None # Schedule interface updates (enabled buttons) using a coalescing # single shot timer (complex interactions on selection and filtering # updates in the 'available_attrs_view') self.__interface_update_timer = QTimer(self, interval=0, singleShot=True) self.__interface_update_timer.timeout.connect( self.__update_interface_state) # The last view that has the selection for move operation's source self.__last_active_view = None # type: Optional[QListView] def update_on_change(view): # Schedule interface state update on selection change in `view` self.__last_active_view = view self.__interface_update_timer.start() self.controlArea = QWidget(self.controlArea) self.layout().addWidget(self.controlArea) layout = QGridLayout() self.controlArea.setLayout(layout) layout.setContentsMargins(4, 4, 4, 4) box = gui.vBox(self.controlArea, "Available Variables", addToLayout=False) self.available_attrs = VariablesListItemModel() filter_edit, self.available_attrs_view = variables_filter( parent=self, model=self.available_attrs) box.layout().addWidget(filter_edit) def dropcompleted(action): if action == Qt.MoveAction: self.commit() self.available_attrs_view.selectionModel().selectionChanged.connect( partial(update_on_change, self.available_attrs_view)) self.available_attrs_view.dragDropActionDidComplete.connect(dropcompleted) box.layout().addWidget(self.available_attrs_view) layout.addWidget(box, 0, 0, 3, 1) box = gui.vBox(self.controlArea, "Features", addToLayout=False) self.used_attrs = VariablesListItemModel() filter_edit, self.used_attrs_view = variables_filter( parent=self, model=self.used_attrs, accepted_type=(Orange.data.DiscreteVariable, Orange.data.ContinuousVariable)) self.used_attrs.rowsInserted.connect(self.__used_attrs_changed) self.used_attrs.rowsRemoved.connect(self.__used_attrs_changed) self.used_attrs_view.selectionModel().selectionChanged.connect( partial(update_on_change, self.used_attrs_view)) self.used_attrs_view.dragDropActionDidComplete.connect(dropcompleted) self.use_features_box = gui.auto_commit( self.controlArea, self, "use_input_features", "Use input features", "Always use input features", box=False, commit=self.__use_features_clicked, callback=self.__use_features_changed, addToLayout=False ) self.enable_use_features_box() box.layout().addWidget(self.use_features_box) box.layout().addWidget(filter_edit) box.layout().addWidget(self.used_attrs_view) layout.addWidget(box, 0, 2, 1, 1) box = gui.vBox(self.controlArea, "Target Variable", addToLayout=False) self.class_attrs = VariablesListItemModel() self.class_attrs_view = VariablesListItemView( acceptedType=(Orange.data.DiscreteVariable, Orange.data.ContinuousVariable)) self.class_attrs_view.setModel(self.class_attrs) self.class_attrs_view.selectionModel().selectionChanged.connect( partial(update_on_change, self.class_attrs_view)) self.class_attrs_view.dragDropActionDidComplete.connect(dropcompleted) self.class_attrs_view.setMaximumHeight(72) box.layout().addWidget(self.class_attrs_view) layout.addWidget(box, 1, 2, 1, 1) box = gui.vBox(self.controlArea, "Meta Attributes", addToLayout=False) self.meta_attrs = VariablesListItemModel() self.meta_attrs_view = VariablesListItemView( acceptedType=Orange.data.Variable) self.meta_attrs_view.setModel(self.meta_attrs) self.meta_attrs_view.selectionModel().selectionChanged.connect( partial(update_on_change, self.meta_attrs_view)) self.meta_attrs_view.dragDropActionDidComplete.connect(dropcompleted) box.layout().addWidget(self.meta_attrs_view) layout.addWidget(box, 2, 2, 1, 1) bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0) layout.addWidget(bbox, 0, 1, 1, 1) self.up_attr_button = gui.button(bbox, self, "Up", callback=partial(self.move_up, self.used_attrs_view)) self.move_attr_button = gui.button(bbox, self, ">", callback=partial(self.move_selected, self.used_attrs_view) ) self.down_attr_button = gui.button(bbox, self, "Down", callback=partial(self.move_down, self.used_attrs_view)) bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0) layout.addWidget(bbox, 1, 1, 1, 1) self.up_class_button = gui.button(bbox, self, "Up", callback=partial(self.move_up, self.class_attrs_view)) self.move_class_button = gui.button(bbox, self, ">", callback=partial(self.move_selected, self.class_attrs_view, exclusive=False) ) self.down_class_button = gui.button(bbox, self, "Down", callback=partial(self.move_down, self.class_attrs_view)) bbox = gui.vBox(self.controlArea, addToLayout=False, margin=0) layout.addWidget(bbox, 2, 1, 1, 1) self.up_meta_button = gui.button(bbox, self, "Up", callback=partial(self.move_up, self.meta_attrs_view)) self.move_meta_button = gui.button(bbox, self, ">", callback=partial(self.move_selected, self.meta_attrs_view) ) self.down_meta_button = gui.button(bbox, self, "Down", callback=partial(self.move_down, self.meta_attrs_view)) autobox = gui.auto_commit(None, self, "auto_commit", "Send") layout.addWidget(autobox, 3, 0, 1, 3) reset = gui.button(None, self, "Reset", callback=self.reset, width=120) autobox.layout().insertWidget(0, reset) autobox.layout().insertStretch(1, 20) layout.setRowStretch(0, 4) layout.setRowStretch(1, 0) layout.setRowStretch(2, 2) layout.setHorizontalSpacing(0) self.controlArea.setLayout(layout) self.output_data = None self.original_completer_items = [] self.resize(600, 600) @property def features_from_data_attributes(self): if self.data is None or self.features is None: return [] domain = self.data.domain return [domain[feature.name] for feature in self.features if feature.name in domain and domain[feature.name] in domain.attributes] def can_use_features(self): return bool(self.features_from_data_attributes) and \ self.features_from_data_attributes != self.used_attrs[:] def __use_features_changed(self): # Use input features check box # Needs a check since callback is invoked before object is created if not hasattr(self, "use_features_box"): return self.enable_used_attrs(not self.use_input_features) if self.use_input_features and self.can_use_features(): self.use_features() if not self.use_input_features: self.enable_use_features_box() def __use_features_clicked(self): # Use input features button self.use_features() def __used_attrs_changed(self): self.enable_use_features_box() @Inputs.data def set_data(self, data=None): self.update_domain_role_hints() self.closeContext() self.data = data if data is not None: self.openContext(data) all_vars = data.domain.variables + data.domain.metas var_sig = lambda attr: (attr.name, vartype(attr)) domain_hints = {var_sig(attr): ("attribute", i) for i, attr in enumerate(data.domain.attributes)} domain_hints.update({var_sig(attr): ("meta", i) for i, attr in enumerate(data.domain.metas)}) if data.domain.class_vars: domain_hints.update( {var_sig(attr): ("class", i) for i, attr in enumerate(data.domain.class_vars)}) # update the hints from context settings domain_hints.update(self.domain_role_hints) attrs_for_role = lambda role: [ (domain_hints[var_sig(attr)][1], attr) for attr in all_vars if domain_hints[var_sig(attr)][0] == role] attributes = [ attr for place, attr in sorted(attrs_for_role("attribute"), key=lambda a: a[0])] classes = [ attr for place, attr in sorted(attrs_for_role("class"), key=lambda a: a[0])] metas = [ attr for place, attr in sorted(attrs_for_role("meta"), key=lambda a: a[0])] available = [ attr for place, attr in sorted(attrs_for_role("available"), key=lambda a: a[0])] self.used_attrs[:] = attributes self.class_attrs[:] = classes self.meta_attrs[:] = metas self.available_attrs[:] = available else: self.used_attrs[:] = [] self.class_attrs[:] = [] self.meta_attrs[:] = [] self.available_attrs[:] = [] def update_domain_role_hints(self): """ Update the domain hints to be stored in the widgets settings. """ hints_from_model = lambda role, model: [ ((attr.name, vartype(attr)), (role, i)) for i, attr in enumerate(model)] hints = dict(hints_from_model("available", self.available_attrs)) hints.update(hints_from_model("attribute", self.used_attrs)) hints.update(hints_from_model("class", self.class_attrs)) hints.update(hints_from_model("meta", self.meta_attrs)) self.domain_role_hints = hints @Inputs.features def set_features(self, features): self.features = features def handleNewSignals(self): self.check_data() self.enable_used_attrs() self.enable_use_features_box() if self.use_input_features and len(self.features_from_data_attributes): self.enable_used_attrs(False) self.use_features() self.unconditional_commit() def check_data(self): self.Warning.mismatching_domain.clear() if self.data is not None and self.features is not None and \ not len(self.features_from_data_attributes): self.Warning.mismatching_domain() def enable_used_attrs(self, enable=True): self.up_attr_button.setEnabled(enable) self.move_attr_button.setEnabled(enable) self.down_attr_button.setEnabled(enable) self.used_attrs_view.setEnabled(enable) self.used_attrs_view.repaint() def enable_use_features_box(self): self.use_features_box.button.setEnabled(self.can_use_features()) enable_checkbox = bool(self.features_from_data_attributes) self.use_features_box.setHidden(not enable_checkbox) self.use_features_box.repaint() def use_features(self): attributes = self.features_from_data_attributes available, used = self.available_attrs[:], self.used_attrs[:] self.available_attrs[:] = [attr for attr in used + available if attr not in attributes] self.used_attrs[:] = attributes self.commit() def selected_rows(self, view): """ Return the selected rows in the view. """ rows = view.selectionModel().selectedRows() model = view.model() if isinstance(model, QSortFilterProxyModel): rows = [model.mapToSource(r) for r in rows] return [r.row() for r in rows] def move_rows(self, view, rows, offset): model = view.model() newrows = [min(max(0, row + offset), len(model) - 1) for row in rows] for row, newrow in sorted(zip(rows, newrows), reverse=offset > 0): model[row], model[newrow] = model[newrow], model[row] selection = QItemSelection() for nrow in newrows: index = model.index(nrow, 0) selection.select(index, index) view.selectionModel().select( selection, QItemSelectionModel.ClearAndSelect) self.commit() def move_up(self, view): selected = self.selected_rows(view) self.move_rows(view, selected, -1) def move_down(self, view): selected = self.selected_rows(view) self.move_rows(view, selected, 1) def move_selected(self, view, exclusive=False): if self.selected_rows(view): self.move_selected_from_to(view, self.available_attrs_view) elif self.selected_rows(self.available_attrs_view): self.move_selected_from_to(self.available_attrs_view, view, exclusive) def move_selected_from_to(self, src, dst, exclusive=False): self.move_from_to(src, dst, self.selected_rows(src), exclusive) def move_from_to(self, src, dst, rows, exclusive=False): src_model = source_model(src) attrs = [src_model[r] for r in rows] for s1, s2 in reversed(list(slices(rows))): del src_model[s1:s2] dst_model = source_model(dst) dst_model.extend(attrs) self.commit() def __update_interface_state(self): last_view = self.__last_active_view if last_view is not None: self.update_interface_state(last_view) def update_interface_state(self, focus=None, selected=None, deselected=None): for view in [self.available_attrs_view, self.used_attrs_view, self.class_attrs_view, self.meta_attrs_view]: if view is not focus and not view.hasFocus() \ and view.selectionModel().hasSelection(): view.selectionModel().clear() def selected_vars(view): model = source_model(view) return [model[i] for i in self.selected_rows(view)] available_selected = selected_vars(self.available_attrs_view) attrs_selected = selected_vars(self.used_attrs_view) class_selected = selected_vars(self.class_attrs_view) meta_selected = selected_vars(self.meta_attrs_view) available_types = set(map(type, available_selected)) all_primitive = all(var.is_primitive() for var in available_types) move_attr_enabled = \ ((available_selected and all_primitive) or attrs_selected) and \ self.used_attrs_view.isEnabled() self.move_attr_button.setEnabled(bool(move_attr_enabled)) if move_attr_enabled: self.move_attr_button.setText(">" if available_selected else "<") move_class_enabled = (all_primitive and available_selected) or class_selected self.move_class_button.setEnabled(bool(move_class_enabled)) if move_class_enabled: self.move_class_button.setText(">" if available_selected else "<") move_meta_enabled = available_selected or meta_selected self.move_meta_button.setEnabled(bool(move_meta_enabled)) if move_meta_enabled: self.move_meta_button.setText(">" if available_selected else "<") self.__last_active_view = None self.__interface_update_timer.stop() def commit(self): self.update_domain_role_hints() if self.data is not None: attributes = list(self.used_attrs) class_var = list(self.class_attrs) metas = list(self.meta_attrs) domain = Orange.data.Domain(attributes, class_var, metas) newdata = self.data.transform(domain) self.output_data = newdata self.Outputs.data.send(newdata) self.Outputs.features.send(AttributeList(attributes)) else: self.output_data = None self.Outputs.data.send(None) self.Outputs.features.send(None) def reset(self): self.enable_used_attrs() self.use_features_box.checkbox.setChecked(False) if self.data is not None: self.available_attrs[:] = [] self.used_attrs[:] = self.data.domain.attributes self.class_attrs[:] = self.data.domain.class_vars self.meta_attrs[:] = self.data.domain.metas self.update_domain_role_hints() self.commit() def send_report(self): if not self.data or not self.output_data: return in_domain, out_domain = self.data.domain, self.output_data.domain self.report_domain("Input data", self.data.domain) if (in_domain.attributes, in_domain.class_vars, in_domain.metas) == ( out_domain.attributes, out_domain.class_vars, out_domain.metas): self.report_paragraph("Output data", "No changes.") else: self.report_domain("Output data", self.output_data.domain) diff = list(set(in_domain.variables + in_domain.metas) - set(out_domain.variables + out_domain.metas)) if diff: text = "%i (%s)" % (len(diff), ", ".join(x.name for x in diff)) self.report_items((("Removed", text),))
class OWMDS(OWWidget): name = "MDS" description = "Two-dimensional data projection by multidimensional " \ "scaling constructed from a distance matrix." icon = "icons/MDS.svg" class Inputs: data = Input("Data", Orange.data.Table, default=True) distances = Input("Distances", Orange.misc.DistMatrix) data_subset = Input("Data Subset", Orange.data.Table) class Outputs: selected_data = Output("Selected Data", Orange.data.Table, default=True) annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table) settings_version = 2 #: Initialization type PCA, Random = 0, 1 #: Refresh rate RefreshRate = [ ("Every iteration", 1), ("Every 5 steps", 5), ("Every 10 steps", 10), ("Every 25 steps", 25), ("Every 50 steps", 50), ("None", -1) ] #: Runtime state Running, Finished, Waiting = 1, 2, 3 settingsHandler = settings.DomainContextHandler() max_iter = settings.Setting(300) initialization = settings.Setting(PCA) refresh_rate = settings.Setting(3) # output embedding role. NoRole, AttrRole, AddAttrRole, MetaRole = 0, 1, 2, 3 auto_commit = settings.Setting(True) selection_indices = settings.Setting(None, schema_only=True) #: Percentage of all pairs displayed (ranges from 0 to 20) connected_pairs = settings.Setting(5) legend_anchor = settings.Setting(((1, 0), (1, 0))) graph = SettingProvider(OWMDSGraph) jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10] graph_name = "graph.plot_widget.plotItem" class Error(OWWidget.Error): not_enough_rows = Msg("Input data needs at least 2 rows") matrix_too_small = Msg("Input matrix must be at least 2x2") no_attributes = Msg("Data has no attributes") mismatching_dimensions = \ Msg("Data and distances dimensions do not match.") out_of_memory = Msg("Out of memory") optimization_error = Msg("Error during optimization\n{}") def __init__(self): super().__init__() #: Input dissimilarity matrix self.matrix = None # type: Optional[Orange.misc.DistMatrix] #: Effective data used for plot styling/annotations. Can be from the #: input signal (`self.signal_data`) or the input matrix #: (`self.matrix.data`) self.data = None # type: Optional[Orange.data.Table] #: Input subset data table self.subset_data = None # type: Optional[Orange.data.Table] #: Data table from the `self.matrix.row_items` (if present) self.matrix_data = None # type: Optional[Orange.data.Table] #: Input data table self.signal_data = None self._similar_pairs = None self._subset_mask = None # type: Optional[np.ndarray] self._invalidated = False self.effective_matrix = None self._curve = None self.variable_x = ContinuousVariable("mds-x") self.variable_y = ContinuousVariable("mds-y") self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=0) self.__timer.timeout.connect(self.__next_step) self.__state = OWMDS.Waiting self.__in_next_step = False self.__draw_similar_pairs = False box = gui.vBox(self.controlArea, "MDS Optimization") form = QFormLayout( labelAlignment=Qt.AlignLeft, formAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow, verticalSpacing=10 ) form.addRow( "Max iterations:", gui.spin(box, self, "max_iter", 10, 10 ** 4, step=1)) form.addRow( "Initialization:", gui.radioButtons(box, self, "initialization", btnLabels=("PCA (Torgerson)", "Random"), callback=self.__invalidate_embedding)) box.layout().addLayout(form) form.addRow( "Refresh:", gui.comboBox(box, self, "refresh_rate", items=[t for t, _ in OWMDS.RefreshRate], callback=self.__invalidate_refresh)) gui.separator(box, 10) self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run) box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWMDSGraph(self, box, "MDSGraph", view_box=MDSInteractiveViewBox) box.layout().addWidget(self.graph.plot_widget) self.plot = self.graph.plot_widget g = self.graph.gui box = g.point_properties_box(self.controlArea) self.models = g.points_models self.size_model = self.models[2] self.label_model = self.models[3] self.size_model.order = \ self.size_model.order[:1] + ("Stress", ) + self.models[2].order[1:] gui.hSlider(box, self, "connected_pairs", label="Show similar pairs:", minValue=0, maxValue=20, createLabel=False, callback=self._on_connected_changed) g.add_widgets(ids=[g.JitterSizeSlider], widget=box) box = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ToolTipShowsAll, g.ClassDensity, g.LabelOnlySelected], box) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict palette = self.graph.plot_widget.palette() self.graph.set_palette(palette) gui.rubber(self.controlArea) self.graph.box_zoom_select(self.controlArea) gui.auto_commit(box, self, "auto_commit", "Send Selected", checkbox_label="Send selected automatically", box=None) self.plot.getPlotItem().hideButtons() self.plot.setRenderHint(QPainter.Antialiasing) self.graph.jitter_continuous = True self._initialize() def reset_graph_data(self, *_): if self.data is not None: self.graph.rescale_data() self.update_graph() self.connect_pairs() def update_colors(self): pass def update_density(self): self.update_graph(reset_view=False) def update_regression_line(self): self.update_graph(reset_view=False) def init_attr_values(self): self.graph.set_domain(self.data) def prepare_data(self): pass def update_graph(self, reset_view=True, **_): self.graph.zoomStack = [] if self.graph.data is None: return self.graph.update_data(self.variable_x, self.variable_y, True) def selection_changed(self): self.commit() @Inputs.data @check_sql_input def set_data(self, data): """Set the input dataset. Parameters ---------- data : Optional[Orange.data.Table] """ if data is not None and len(data) < 2: self.Error.not_enough_rows() data = None else: self.Error.not_enough_rows.clear() self.signal_data = data if self.matrix is not None and data is not None and len(self.matrix) == len(data): self.closeContext() self.data = data self.init_attr_values() self.openContext(data) else: self._invalidated = True @Inputs.distances def set_disimilarity(self, matrix): """Set the dissimilarity (distance) matrix. Parameters ---------- matrix : Optional[Orange.misc.DistMatrix] """ if matrix is not None and len(matrix) < 2: self.Error.matrix_too_small() matrix = None else: self.Error.matrix_too_small.clear() self.matrix = matrix self.matrix_data = matrix.row_items if matrix is not None else None self._invalidated = True @Inputs.data_subset def set_subset_data(self, subset_data): """Set a subset of `data` input to highlight in the plot. Parameters ---------- subset_data: Optional[Orange.data.Table] """ self.subset_data = subset_data # invalidate the pen/brush when the subset is changed self._subset_mask = None # type: Optional[np.ndarray] self.controls.graph.alpha_value.setEnabled(subset_data is None) def _clear(self): self._similar_pairs = None self.__set_update_loop(None) self.__state = OWMDS.Waiting def _clear_plot(self): self.graph.plot_widget.clear() def _initialize(self): # clear everything self.closeContext() self._clear() self.Error.clear() self.data = None self.effective_matrix = None self.embedding = None self.init_attr_values() # if no data nor matrix is present reset plot if self.signal_data is None and self.matrix is None: return if self.signal_data is not None and self.matrix is not None and \ len(self.signal_data) != len(self.matrix): self.Error.mismatching_dimensions() self._update_plot() return if self.signal_data is not None: self.data = self.signal_data elif self.matrix_data is not None: self.data = self.matrix_data if self.matrix is not None: self.effective_matrix = self.matrix if self.matrix.axis == 0 and self.data is self.matrix_data: self.data = None elif self.data.domain.attributes: preprocessed_data = Orange.projection.MDS().preprocess(self.data) self.effective_matrix = Orange.distance.Euclidean(preprocessed_data) else: self.Error.no_attributes() return self.init_attr_values() self.openContext(self.data) def _toggle_run(self): if self.__state == OWMDS.Running: self.stop() self._invalidate_output() else: self.start() def start(self): if self.__state == OWMDS.Running: return elif self.__state == OWMDS.Finished: # Resume/continue from a previous run self.__start() elif self.__state == OWMDS.Waiting and \ self.effective_matrix is not None: self.__start() def stop(self): if self.__state == OWMDS.Running: self.__set_update_loop(None) def __start(self): self.__draw_similar_pairs = False X = self.effective_matrix init = self.embedding # number of iterations per single GUI update step _, step_size = OWMDS.RefreshRate[self.refresh_rate] if step_size == -1: step_size = self.max_iter def update_loop(X, max_iter, step, init): """ return an iterator over successive improved MDS point embeddings. """ # NOTE: this code MUST NOT call into QApplication.processEvents done = False iterations_done = 0 oldstress = np.finfo(np.float).max init_type = "PCA" if self.initialization == OWMDS.PCA else "random" while not done: step_iter = min(max_iter - iterations_done, step) mds = Orange.projection.MDS( dissimilarity="precomputed", n_components=2, n_init=1, max_iter=step_iter, init_type=init_type, init_data=init) mdsfit = mds(X) iterations_done += step_iter embedding, stress = mdsfit.embedding_, mdsfit.stress_ stress /= np.sqrt(np.sum(embedding ** 2, axis=1)).sum() if iterations_done >= max_iter: done = True elif (oldstress - stress) < mds.params["eps"]: done = True init = embedding oldstress = stress yield embedding, mdsfit.stress_, iterations_done / max_iter self.__set_update_loop(update_loop(X, self.max_iter, step_size, init)) self.progressBarInit(processEvents=None) def __set_update_loop(self, loop): """ Set the update `loop` coroutine. The `loop` is a generator yielding `(embedding, stress, progress)` tuples where `embedding` is a `(N, 2) ndarray` of current updated MDS points, `stress` is the current stress and `progress` a float ratio (0 <= progress <= 1) If an existing update coroutine loop is already in place it is interrupted (i.e. closed). .. note:: The `loop` must not explicitly yield control flow to the event loop (i.e. call `QApplication.processEvents`) """ if self.__update_loop is not None: self.__update_loop.close() self.__update_loop = None self.progressBarFinished(processEvents=None) self.__update_loop = loop if loop is not None: self.setBlocking(True) self.progressBarInit(processEvents=None) self.setStatusMessage("Running") self.runbutton.setText("Stop") self.__state = OWMDS.Running self.__timer.start() else: self.setBlocking(False) self.setStatusMessage("") self.runbutton.setText("Start") self.__state = OWMDS.Finished self.__timer.stop() def __next_step(self): if self.__update_loop is None: return assert not self.__in_next_step self.__in_next_step = True loop = self.__update_loop self.Error.out_of_memory.clear() try: embedding, _, progress = next(self.__update_loop) assert self.__update_loop is loop except StopIteration: self.__set_update_loop(None) self.unconditional_commit() self.__draw_similar_pairs = True self._update_plot() except MemoryError: self.Error.out_of_memory() self.__set_update_loop(None) self.__draw_similar_pairs = True except Exception as exc: self.Error.optimization_error(str(exc)) self.__set_update_loop(None) self.__draw_similar_pairs = True else: self.progressBarSet(100.0 * progress, processEvents=None) self.embedding = embedding self._update_plot() # schedule next update self.__timer.start() self.__in_next_step = False def __invalidate_embedding(self): # reset/invalidate the MDS embedding, to the default initialization # (Random or PCA), restarting the optimization if necessary. if self.embedding is None: return state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) X = self.effective_matrix if self.initialization == OWMDS.PCA: self.embedding = torgerson(X) else: self.embedding = np.random.rand(len(X), 2) self._update_plot() # restart the optimization if it was interrupted. if state == OWMDS.Running: self.__start() def __invalidate_refresh(self): state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) # restart the optimization if it was interrupted. # TODO: decrease the max iteration count by the already # completed iterations count. if state == OWMDS.Running: self.__start() def handleNewSignals(self): if self._invalidated: self.__draw_similar_pairs = False self._invalidated = False self._initialize() self.start() if self._subset_mask is None and self.subset_data is not None and \ self.data is not None: self._subset_mask = np.in1d(self.data.ids, self.subset_data.ids) self._update_plot(new=True) self.unconditional_commit() def _invalidate_output(self): self.commit() def _on_connected_changed(self): self._similar_pairs = None self.connect_pairs() def _update_plot(self, new=False): self._clear_plot() if self.embedding is not None: self._setup_plot(new=new) else: self.graph.new_data(None) def connect_pairs(self): if self._curve: self.graph.plot_widget.removeItem(self._curve) if not (self.connected_pairs and self.__draw_similar_pairs): return emb_x, emb_y = self.graph.get_xy_data_positions( self.variable_x, self.variable_y, self.graph.valid_data) if self._similar_pairs is None: # This code requires storing lower triangle of X (n x n / 2 # doubles), n x n / 2 * 2 indices to X, n x n / 2 indices for # argsort result. If this becomes an issue, it can be reduced to # n x n argsort indices by argsorting the entire X. Then we # take the first n + 2 * p indices. We compute their coordinates # i, j in the original matrix. We keep those for which i < j. # n + 2 * p will suffice to exclude the diagonal (i = j). If the # number of those for which i < j is smaller than p, we instead # take i > j. Among those that remain, we take the first p. # Assuming that MDS can't show so many points that memory could # become an issue, I preferred using simpler code. m = self.effective_matrix n = len(m) p = min(n * (n - 1) // 2 * self.connected_pairs // 100, MAX_N_PAIRS * self.connected_pairs // 20) indcs = np.triu_indices(n, 1) sorted = np.argsort(m[indcs])[:p] self._similar_pairs = fpairs = np.empty(2 * p, dtype=int) fpairs[::2] = indcs[0][sorted] fpairs[1::2] = indcs[1][sorted] emb_x_pairs = emb_x[self._similar_pairs].reshape((-1, 2)) emb_y_pairs = emb_y[self._similar_pairs].reshape((-1, 2)) # Filter out zero distance lines (in embedding coords). # Null (zero length) line causes bad rendering artifacts # in Qt when using the raster graphics system (see gh-issue: 1668). (x1, x2), (y1, y2) = (emb_x_pairs.T, emb_y_pairs.T) pairs_mask = ~(np.isclose(x1, x2) & np.isclose(y1, y2)) emb_x_pairs = emb_x_pairs[pairs_mask, :] emb_y_pairs = emb_y_pairs[pairs_mask, :] self._curve = pg.PlotCurveItem( emb_x_pairs.ravel(), emb_y_pairs.ravel(), pen=pg.mkPen(0.8, width=2, cosmetic=True), connect="pairs", antialias=True) self.graph.plot_widget.addItem(self._curve) def _setup_plot(self, new=False): emb_x, emb_y = self.embedding[:, 0], self.embedding[:, 1] coords = np.vstack((emb_x, emb_y)).T data = self.data attributes = data.domain.attributes + (self.variable_x, self.variable_y) domain = Domain(attributes=attributes, class_vars=data.domain.class_vars, metas=data.domain.metas) data = Table.from_numpy(domain, X=hstack((data.X, coords)), Y=data.Y, metas=data.metas) subset_data = data[self._subset_mask] if self._subset_mask is not None else None self.graph.new_data(data, subset_data=subset_data, new=new) self.graph.update_data(self.variable_x, self.variable_y, True) self.connect_pairs() def commit(self): if self.embedding is not None: names = get_unique_names([v.name for v in self.data.domain.variables], ["mds-x", "mds-y"]) output = embedding = Orange.data.Table.from_numpy( Orange.data.Domain([ContinuousVariable(names[0]), ContinuousVariable(names[1])]), self.embedding ) else: output = embedding = None if self.embedding is not None and self.data is not None: domain = self.data.domain domain = Orange.data.Domain(domain.attributes, domain.class_vars, domain.metas + embedding.domain.attributes) output = self.data.transform(domain) output.metas[:, -2:] = embedding.X selection = self.graph.get_selection() if output is not None and len(selection) > 0: selected = output[selection] else: selected = None if self.graph.selection is not None and np.max(self.graph.selection) > 1: annotated = create_groups_table(output, self.graph.selection) else: annotated = create_annotated_table(output, selection) self.Outputs.selected_data.send(selected) self.Outputs.annotated_data.send(annotated) def onDeleteWidget(self): super().onDeleteWidget() self._clear_plot() self._clear() def send_report(self): if self.data is None: return def name(var): return var and var.name caption = report.render_items_vert(( ("Color", name(self.graph.attr_color)), ("Label", name(self.graph.attr_label)), ("Shape", name(self.graph.attr_shape)), ("Size", name(self.graph.attr_size)), ("Jittering", self.graph.jitter_size != 0 and "{} %".format(self.graph.jitter_size)))) self.report_plot() if caption: self.report_caption(caption) @classmethod def migrate_settings(cls, settings_, version): if version < 2: settings_graph = {} for old, new in (("label_only_selected", "label_only_selected"), ("symbol_opacity", "alpha_value"), ("symbol_size", "point_width"), ("jitter", "jitter_size")): settings_graph[new] = settings_[old] settings_["graph"] = settings_graph settings_["auto_commit"] = settings_["autocommit"] @classmethod def migrate_context(cls, context, version): if version < 2: domain = context.ordered_domain n_domain = [t for t in context.ordered_domain if t[1] == 2] c_domain = [t for t in context.ordered_domain if t[1] == 1] context_values_graph = {} for _, old_val, new_val in ((domain, "color_value", "attr_color"), (c_domain, "shape_value", "attr_shape"), (n_domain, "size_value", "attr_size"), (domain, "label_value", "attr_label")): tmp = context.values[old_val] if tmp[1] >= 0: context_values_graph[new_val] = (tmp[0], tmp[1] + 100) elif tmp[0] != "Stress": context_values_graph[new_val] = None else: context_values_graph[new_val] = tmp context.values["graph"] = context_values_graph
class OWScatterPlot(OWDataProjectionWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 keywords = [] class Inputs(OWDataProjectionWidget.Inputs): features = Input("Features", AttributeList) class Outputs(OWDataProjectionWidget.Outputs): features = Output("Features", AttributeList, dynamic=False) settings_version = 3 auto_sample = Setting(True) attr_x = ContextSetting(None) attr_y = ContextSetting(None) tooltip_shows_all = Setting(True) GRAPH_CLASS = OWScatterPlotGraph graph = SettingProvider(OWScatterPlotGraph) embedding_variables_names = None class Warning(OWDataProjectionWidget.Warning): missing_coords = Msg("Plot cannot be displayed because '{}' or '{}' " "is missing for all data points") class Information(OWDataProjectionWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") missing_coords = Msg( "Points with missing '{}' or '{}' are not displayed") def __init__(self): self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) super().__init__() # manually register Matplotlib file writers self.graph_writers = self.graph_writers.copy() for w in [MatplotlibFormat, MatplotlibPDFFormat]: for ext in w.EXTENSIONS: self.graph_writers[ext] = w def _add_controls(self): self._add_controls_axis() self._add_controls_sampling() super()._add_controls() self.gui.add_widget(self.gui.JitterNumericValues, self._effects_box) self.gui.add_widgets([ self.gui.ShowGridLines, self.gui.ToolTipShowsAll, self.gui.RegressionLine ], self._plot_box) def _add_controls_axis(self): common_options = dict(labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str, contentsLength=14) box = gui.vBox(self.controlArea, True) dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) self.cb_attr_x = gui.comboBox(box, self, "attr_x", label="Axis x:", callback=self.attr_changed, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox(box, self, "attr_y", label="Axis y:", callback=self.attr_changed, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) def _add_controls_sampling(self): self.sampling = gui.auto_commit(self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) @property def effective_variables(self): return [self.attr_x, self.attr_y] def _vizrank_color_change(self): self.vizrank.initialize() is_enabled = self.data is not None and not self.data.is_sparse() and \ len(self.xy_model) > 2 and len(self.data[self.valid_data]) > 1 \ and np.all(np.nan_to_num(np.nanstd(self.data.X, 0)) != 0) self.vizrank_button.setEnabled( is_enabled and self.attr_color is not None and not np.isnan( self.data.get_column_view( self.attr_color)[0].astype(float)).all()) text = "Color variable has to be selected." \ if is_enabled and self.attr_color is None else "" self.vizrank_button.setToolTip(text) def set_data(self, data): if self.data and data and self.data.checksum() == data.checksum(): return super().set_data(data) def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.attr_label, str): self.attr_label = findvar(self.attr_label, self.gui.label_model) if isinstance(self.attr_color, str): self.attr_color = findvar(self.attr_color, self.gui.color_model) if isinstance(self.attr_shape, str): self.attr_shape = findvar(self.attr_shape, self.gui.shape_model) if isinstance(self.attr_size, str): self.attr_size = findvar(self.attr_size, self.gui.size_model) def check_data(self): self.clear_messages() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(self.data, SqlTable): if self.data.approx_len() < 4000: self.data = Table(self.data) else: self.Information.sampled_sql() self.sql_data = self.data data_sample = self.data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) self.data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if self.data is not None and (len(self.data) == 0 or len(self.data.domain) == 0): self.data = None def get_embedding(self): self.valid_data = None if self.data is None: return None x_data = self.get_column(self.attr_x, filter_valid=False) y_data = self.get_column(self.attr_y, filter_valid=False) if x_data is None or y_data is None: return None self.Warning.missing_coords.clear() self.Information.missing_coords.clear() self.valid_data = np.isfinite(x_data) & np.isfinite(y_data) if self.valid_data is not None and not np.all(self.valid_data): msg = self.Information if np.any(self.valid_data) else self.Warning msg.missing_coords(self.attr_x.name, self.attr_y.name) return np.vstack((x_data, y_data)).T # Tooltip def _point_tooltip(self, point_id, skip_attrs=()): point_data = self.data[point_id] xy_attrs = (self.attr_x, self.attr_y) text = "<br/>".join( escape('{} = {}'.format(var.name, point_data[var])) for var in xy_attrs) if self.tooltip_shows_all: others = super()._point_tooltip(point_id, skip_attrs=xy_attrs) if others: text = "<b>{}</b><br/><br/>{}".format(text, others) return text def can_draw_regresssion_line(self): return self.data is not None and\ self.data.domain is not None and \ self.attr_x.is_continuous and \ self.attr_y.is_continuous def add_data(self, time=0.4): if self.data and len(self.data) > 2000: self.__timer.stop() return data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.handleNewSignals() def init_attr_values(self): super().init_attr_values() data = self.data domain = data.domain if data and len(data) else None self.xy_model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None super().set_subset_data(subset_data) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): if self.attribute_selection_list and self.data is not None and \ self.data.domain is not None and \ all(attr in self.data.domain for attr in self.attribute_selection_list): self.set_attr(self.attribute_selection_list[0], self.attribute_selection_list[1]) self.attribute_selection_list = None else: super().handleNewSignals() self._vizrank_color_change() self.cb_reg_line.setEnabled(self.can_draw_regresssion_line()) @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] else: self.attribute_selection_list = None def set_attr(self, attr_x, attr_y): if attr_x != self.attr_x or attr_y != self.attr_y: self.attr_x, self.attr_y = attr_x, attr_y self.attr_changed() def attr_changed(self): self.cb_reg_line.setEnabled(self.can_draw_regresssion_line()) self.setup_plot() self.commit() def setup_plot(self): super().setup_plot() for axis, var in (("bottom", self.attr_x), ("left", self.attr_y)): self.graph.set_axis_title(axis, var) if var and var.is_discrete: self.graph.set_axis_labels(axis, get_variable_values_sorted(var)) else: self.graph.set_axis_labels(axis, None) def colors_changed(self): super().colors_changed() self._vizrank_color_change() def commit(self): super().commit() self.send_features() def send_features(self): features = [attr for attr in [self.attr_x, self.attr_y] if attr] self.Outputs.features.send(features or None) def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) return None def _get_send_report_caption(self): return report.render_items_vert( (("Color", self._get_caption_var_name(self.attr_color)), ("Label", self._get_caption_var_name(self.attr_label)), ("Shape", self._get_caption_var_name(self.attr_shape)), ("Size", self._get_caption_var_name(self.attr_size)), ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete or self.graph.jitter_continuous) and self.graph.jitter_size))) @classmethod def migrate_settings(cls, settings, version): if version < 2 and "selection" in settings and settings["selection"]: settings["selection_group"] = [(a, 1) for a in settings["selection"]] if version < 3: if "auto_send_selection" in settings: settings["auto_commit"] = settings["auto_send_selection"] if "selection_group" in settings: settings["selection"] = settings["selection_group"] @classmethod def migrate_context(cls, context, version): if version < 3: values = context.values values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"]
class OWScatterPlot(OWWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 class Inputs: data = Input("Data", Table, default=True) data_subset = Input("Data Subset", Table) features = Input("Features", AttributeList) class Outputs: selected_data = Output("Selected Data", Table, default=True) annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table) features = Output("Features", AttributeList, dynamic=False) settings_version = 2 settingsHandler = DomainContextHandler() auto_send_selection = Setting(True) auto_sample = Setting(True) toolbar_selection = Setting(0) attr_x = ContextSetting(None) attr_y = ContextSetting(None) #: Serialized selection state to be restored selection_group = Setting(None, schema_only=True) graph = SettingProvider(OWScatterPlotGraph) jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10] graph_name = "graph.plot_widget.plotItem" class Information(OWWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") def __init__(self): super().__init__() box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWScatterPlotGraph(self, box, "ScatterPlot") box.layout().addWidget(self.graph.plot_widget) plot = self.graph.plot_widget axispen = QPen(self.palette().color(QPalette.Text)) axis = plot.getAxis("bottom") axis.setPen(axispen) axis = plot.getAxis("left") axis.setPen(axispen) self.data = None # Orange.data.Table self.subset_data = None # Orange.data.Table self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) #: Remember the saved state to restore self.__pending_selection_restore = self.selection_group self.selection_group = None common_options = dict( labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str) box = gui.vBox(self.controlArea, "Axis Data") dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) self.cb_attr_x = gui.comboBox( box, self, "attr_x", label="Axis x:", callback=self.update_attr, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox( box, self, "attr_y", label="Axis y:", callback=self.update_attr, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) gui.separator(vizrank_box, width=common_options["labelWidth"]) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) gui.separator(box) g = self.graph.gui g.add_widgets([g.JitterSizeSlider, g.JitterNumericValues], box) self.sampling = gui.auto_commit( self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) g.point_properties_box(self.controlArea) self.models = [self.xy_model] + g.points_models box_plot_prop = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ShowGridLines, g.ToolTipShowsAll, g.ClassDensity, g.RegressionLine, g.LabelOnlySelected], box_plot_prop) self.graph.box_zoom_select(self.controlArea) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict p = self.graph.plot_widget.palette() self.graph.set_palette(p) gui.auto_commit(self.controlArea, self, "auto_send_selection", "Send Selection", "Send Automatically") self.graph.zoom_actions(self) def keyPressEvent(self, event): super().keyPressEvent(event) self.graph.update_tooltip(event.modifiers()) def keyReleaseEvent(self, event): super().keyReleaseEvent(event) self.graph.update_tooltip(event.modifiers()) def reset_graph_data(self, *_): if self.data is not None: self.graph.rescale_data() self.update_graph() def _vizrank_color_change(self): self.vizrank.initialize() is_enabled = self.data is not None and not self.data.is_sparse() and \ len([v for v in chain(self.data.domain.variables, self.data.domain.metas) if v.is_primitive]) > 2\ and len(self.data) > 1 self.vizrank_button.setEnabled( is_enabled and self.graph.attr_color is not None and not np.isnan(self.data.get_column_view(self.graph.attr_color)[0].astype(float)).all()) if is_enabled and self.graph.attr_color is None: self.vizrank_button.setToolTip("Color variable has to be selected.") else: self.vizrank_button.setToolTip("") @Inputs.data def set_data(self, data): self.clear_messages() self.Information.sampled_sql.clear() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(data, SqlTable): if data.approx_len() < 4000: data = Table(data) else: self.Information.sampled_sql() self.sql_data = data data_sample = data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if data is not None and (len(data) == 0 or len(data.domain) == 0): data = None if self.data and data and self.data.checksum() == data.checksum(): return self.closeContext() same_domain = (self.data and data and data.domain.checksum() == self.data.domain.checksum()) self.data = data if not same_domain: self.init_attr_values() self.openContext(self.data) self._vizrank_color_change() def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Orange.data.Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.graph.attr_label, str): self.graph.attr_label = findvar( self.graph.attr_label, self.graph.gui.label_model) if isinstance(self.graph.attr_color, str): self.graph.attr_color = findvar( self.graph.attr_color, self.graph.gui.color_model) if isinstance(self.graph.attr_shape, str): self.graph.attr_shape = findvar( self.graph.attr_shape, self.graph.gui.shape_model) if isinstance(self.graph.attr_size, str): self.graph.attr_size = findvar( self.graph.attr_size, self.graph.gui.size_model) def add_data(self, time=0.4): if self.data and len(self.data) > 2000: return self.__timer.stop() data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.handleNewSignals() def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() @Inputs.data_subset def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None self.subset_data = subset_data self.controls.graph.alpha_value.setEnabled(subset_data is None) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): self.graph.new_data(self.data, self.subset_data) if self.attribute_selection_list and self.graph.domain and \ all(attr in self.graph.domain for attr in self.attribute_selection_list): self.attr_x = self.attribute_selection_list[0] self.attr_y = self.attribute_selection_list[1] self.attribute_selection_list = None self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line()) if self.data is not None and self.__pending_selection_restore is not None: self.apply_selection(self.__pending_selection_restore) self.__pending_selection_restore = None self.unconditional_commit() def apply_selection(self, selection): """Apply `selection` to the current plot.""" if self.data is not None: self.graph.selection = np.zeros(len(self.data), dtype=np.uint8) self.selection_group = [x for x in selection if x[0] < len(self.data)] selection_array = np.array(self.selection_group).T self.graph.selection[selection_array[0]] = selection_array[1] self.graph.update_colors(keep_colors=True) @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] else: self.attribute_selection_list = None def init_attr_values(self): domain = self.data and self.data.domain for model in self.models: model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x self.graph.attr_color = self.data.domain.class_var if domain else None self.graph.attr_shape = None self.graph.attr_size = None self.graph.attr_label = None def set_attr(self, attr_x, attr_y): self.attr_x, self.attr_y = attr_x, attr_y self.update_attr() def update_attr(self): self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line()) self.send_features() def update_colors(self): self._vizrank_color_change() self.cb_class_density.setEnabled(self.graph.can_draw_density()) def update_density(self): self.update_graph(reset_view=False) def update_regression_line(self): self.update_graph(reset_view=False) def update_graph(self, reset_view=True, **_): self.graph.zoomStack = [] if self.graph.data is None: return self.graph.update_data(self.attr_x, self.attr_y, reset_view) def selection_changed(self): # Store current selection in a setting that is stored in workflow if isinstance(self.data, SqlTable): selection = None elif self.data is not None: selection = self.graph.get_selection() else: selection = None if selection is not None and len(selection): self.selection_group = list(zip(selection, self.graph.selection[selection])) else: self.selection_group = None self.commit() def send_data(self): # TODO: Implement selection for sql data def _get_selected(): if not len(selection): return None return create_groups_table(data, graph.selection, False, "Group") def _get_annotated(): if graph.selection is not None and np.max(graph.selection) > 1: return create_groups_table(data, graph.selection) else: return create_annotated_table(data, selection) graph = self.graph data = self.data selection = graph.get_selection() self.Outputs.annotated_data.send(_get_annotated()) self.Outputs.selected_data.send(_get_selected()) def send_features(self): features = [attr for attr in [self.attr_x, self.attr_y] if attr] self.Outputs.features.send(features or None) def commit(self): self.send_data() self.send_features() def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) def send_report(self): if self.data is None: return def name(var): return var and var.name caption = report.render_items_vert(( ("Color", name(self.graph.attr_color)), ("Label", name(self.graph.attr_label)), ("Shape", name(self.graph.attr_shape)), ("Size", name(self.graph.attr_size)), ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete or self.graph.jitter_continuous) and self.graph.jitter_size))) self.report_plot() if caption: self.report_caption(caption) def onDeleteWidget(self): super().onDeleteWidget() self.graph.plot_widget.getViewBox().deleteLater() self.graph.plot_widget.clear() @classmethod def migrate_settings(cls, settings, version): if version < 2 and "selection" in settings and settings["selection"]: settings["selection_group"] = [(a, 1) for a in settings["selection"]]
class OWPCA(widget.OWWidget): name = "PCA" description = "Principal component analysis with a scree-diagram." icon = "icons/PCA.svg" priority = 3050 keywords = ["principal component analysis", "linear transformation"] class Inputs: data = Input("Data", Table) class Outputs: transformed_data = Output("Transformed data", Table) components = Output("Components", Table) pca = Output("PCA", PCA, dynamic=False) preprocessor = Output("Preprocessor", Preprocess) settingsHandler = settings.DomainContextHandler() ncomponents = settings.Setting(2) variance_covered = settings.Setting(100) batch_size = settings.Setting(100) address = settings.Setting('') auto_update = settings.Setting(True) auto_commit = settings.Setting(True) normalize = settings.ContextSetting(True) decomposition_idx = settings.ContextSetting(0) maxp = settings.Setting(20) axis_labels = settings.Setting(10) graph_name = "plot.plotItem" class Warning(widget.OWWidget.Warning): trivial_components = widget.Msg( "All components of the PCA are trivial (explain 0 variance). " "Input data is constant (or near constant).") class Error(widget.OWWidget.Error): no_features = widget.Msg("At least 1 feature is required") no_instances = widget.Msg("At least 1 data instance is required") sparse_data = widget.Msg("Sparse data is not supported") def __init__(self): super().__init__() self.data = None self._pca = None self._transformed = None self._variance_ratio = None self._cumulative = None self._line = False self._init_projector() # Components Selection box = gui.vBox(self.controlArea, "Components Selection") form = QFormLayout() box.layout().addLayout(form) self.components_spin = gui.spin( box, self, "ncomponents", 1, MAX_COMPONENTS, callback=self._update_selection_component_spin, keyboardTracking=False ) self.components_spin.setSpecialValueText("All") self.variance_spin = gui.spin( box, self, "variance_covered", 1, 100, callback=self._update_selection_variance_spin, keyboardTracking=False ) self.variance_spin.setSuffix("%") form.addRow("Components:", self.components_spin) form.addRow("Variance covered:", self.variance_spin) # Incremental learning self.sampling_box = gui.vBox(self.controlArea, "Incremental learning") self.addresstext = QLineEdit(box) self.addresstext.setPlaceholderText('Remote server') if self.address: self.addresstext.setText(self.address) self.sampling_box.layout().addWidget(self.addresstext) form = QFormLayout() self.sampling_box.layout().addLayout(form) self.batch_spin = gui.spin( self.sampling_box, self, "batch_size", 50, 100000, step=50, keyboardTracking=False) form.addRow("Batch size ~ ", self.batch_spin) self.start_button = gui.button( self.sampling_box, self, "Start remote computation", callback=self.start, autoDefault=False, tooltip="Start/abort computation on the server") self.start_button.setEnabled(False) gui.checkBox(self.sampling_box, self, "auto_update", "Periodically fetch model", callback=self.update_model) self.__timer = QTimer(self, interval=2000) self.__timer.timeout.connect(self.get_model) self.sampling_box.setVisible(remotely) # Decomposition self.decomposition_box = gui.radioButtons( self.controlArea, self, "decomposition_idx", [d.name for d in DECOMPOSITIONS], box="Decomposition", callback=self._update_decomposition ) # Options self.options_box = gui.vBox(self.controlArea, "Options") self.normalize_box = gui.checkBox( self.options_box, self, "normalize", "Normalize data", callback=self._update_normalize ) self.maxp_spin = gui.spin( self.options_box, self, "maxp", 1, MAX_COMPONENTS, label="Show only first", callback=self._setup_plot, keyboardTracking=False ) self.controlArea.layout().addStretch() gui.auto_commit(self.controlArea, self, "auto_commit", "Apply", checkbox_label="Apply automatically") self.plot = pg.PlotWidget(background="w") axis = self.plot.getAxis("bottom") axis.setLabel("Principal Components") axis = self.plot.getAxis("left") axis.setLabel("Proportion of variance") self.plot_horlabels = [] self.plot_horlines = [] self.plot.getViewBox().setMenuEnabled(False) self.plot.getViewBox().setMouseEnabled(False, False) self.plot.showGrid(True, True, alpha=0.5) self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0)) self.mainArea.layout().addWidget(self.plot) self._update_normalize() def update_model(self): self.get_model() if self.auto_update and self.rpca and not self.rpca.ready(): self.__timer.start(2000) else: self.__timer.stop() def update_buttons(self, sparse_data=False): if sparse_data: self.normalize = False buttons = self.decomposition_box.buttons for cls, button in zip(DECOMPOSITIONS, buttons): button.setDisabled(sparse_data and not cls.supports_sparse) if not buttons[self.decomposition_idx].isEnabled(): # Set decomposition index to first sparse-enabled decomposition for i, cls in enumerate(DECOMPOSITIONS): if cls.supports_sparse: self.decomposition_idx = i break self._init_projector() def start(self): if 'Abort' in self.start_button.text(): self.rpca.abort() self.__timer.stop() self.start_button.setText("Start remote computation") else: self.address = self.addresstext.text() with remote.server(self.address): from Orange.projection.pca import RemotePCA maxiter = (1e5 + self.data.approx_len()) / self.batch_size * 3 self.rpca = RemotePCA(self.data, self.batch_size, int(maxiter)) self.update_model() self.start_button.setText("Abort remote computation") @Inputs.data def set_data(self, data): self.closeContext() self.clear_messages() self.clear() self.start_button.setEnabled(False) self.information() self.data = None if isinstance(data, SqlTable): if data.approx_len() < AUTO_DL_LIMIT: data = Table(data) elif not remotely: self.information("Data has been sampled") data_sample = data.sample_time(1, no_cache=True) data_sample.download_data(2000, partial=True) data = Table(data_sample) else: # data was big and remote available self.sampling_box.setVisible(True) self.start_button.setText("Start remote computation") self.start_button.setEnabled(True) if not isinstance(data, SqlTable): self.sampling_box.setVisible(False) if isinstance(data, Table): if len(data.domain.attributes) == 0: self.Error.no_features() self.clear_outputs() return if len(data) == 0: self.Error.no_instances() self.clear_outputs() return self.openContext(data) sparse_data = data is not None and data.is_sparse() self.normalize_box.setDisabled(sparse_data) self.update_buttons(sparse_data=sparse_data) self.data = data self.fit() def fit(self): self.clear() self.Warning.trivial_components.clear() if self.data is None: return data = self.data self._pca_projector.preprocessors = \ self._pca_preprocessors + ([Normalize()] if self.normalize else []) if not isinstance(data, SqlTable): pca = self._pca_projector(data) variance_ratio = pca.explained_variance_ratio_ cumulative = numpy.cumsum(variance_ratio) if numpy.isfinite(cumulative[-1]): self.components_spin.setRange(0, len(cumulative)) self._pca = pca self._variance_ratio = variance_ratio self._cumulative = cumulative self._setup_plot() else: self.Warning.trivial_components() self.unconditional_commit() def clear(self): self._pca = None self._transformed = None self._variance_ratio = None self._cumulative = None self._line = None self.plot_horlabels = [] self.plot_horlines = [] self.plot.clear() def clear_outputs(self): self.Outputs.transformed_data.send(None) self.Outputs.components.send(None) self.Outputs.pca.send(self._pca_projector) self.Outputs.preprocessor.send(None) def get_model(self): if self.rpca is None: return if self.rpca.ready(): self.__timer.stop() self.start_button.setText("Restart (finished)") self._pca = self.rpca.get_state() if self._pca is None: return self._variance_ratio = self._pca.explained_variance_ratio_ self._cumulative = numpy.cumsum(self._variance_ratio) self._setup_plot() self._transformed = None self.commit() def _setup_plot(self): self.plot.clear() if self._pca is None: return explained_ratio = self._variance_ratio explained = self._cumulative p = min(len(self._variance_ratio), self.maxp) self.plot.plot(numpy.arange(p), explained_ratio[:p], pen=pg.mkPen(QColor(Qt.red), width=2), antialias=True, name="Variance") self.plot.plot(numpy.arange(p), explained[:p], pen=pg.mkPen(QColor(Qt.darkYellow), width=2), antialias=True, name="Cumulative Variance") cutpos = self._nselected_components() - 1 self._line = pg.InfiniteLine( angle=90, pos=cutpos, movable=True, bounds=(0, p - 1)) self._line.setCursor(Qt.SizeHorCursor) self._line.setPen(pg.mkPen(QColor(Qt.black), width=2)) self._line.sigPositionChanged.connect(self._on_cut_changed) self.plot.addItem(self._line) self.plot_horlines = ( pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)), pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine))) self.plot_horlabels = ( pg.TextItem(color=QColor(Qt.black), anchor=(1, 0)), pg.TextItem(color=QColor(Qt.black), anchor=(1, 1))) for item in self.plot_horlabels + self.plot_horlines: self.plot.addItem(item) self._set_horline_pos() self.plot.setRange(xRange=(0.0, p - 1), yRange=(0.0, 1.0)) self._update_axis() def _set_horline_pos(self): cutidx = self.ncomponents - 1 for line, label, curve in zip(self.plot_horlines, self.plot_horlabels, (self._variance_ratio, self._cumulative)): y = curve[cutidx] line.setData([-1, cutidx], 2 * [y]) label.setPos(cutidx, y) label.setPlainText("{:.3f}".format(y)) def _on_cut_changed(self, line): # cut changed by means of a cut line over the scree plot. value = int(round(line.value())) self._line.setValue(value) current = self._nselected_components() components = value + 1 if not (self.ncomponents == 0 and components == len(self._variance_ratio)): self.ncomponents = components self._set_horline_pos() if self._pca is not None: var = self._cumulative[components - 1] if numpy.isfinite(var): self.variance_covered = int(var * 100) if current != self._nselected_components(): self._invalidate_selection() def _update_selection_component_spin(self): # cut changed by "ncomponents" spin. if self._pca is None: self._invalidate_selection() return if self.ncomponents == 0: # Special "All" value cut = len(self._variance_ratio) else: cut = self.ncomponents var = self._cumulative[cut - 1] if numpy.isfinite(var): self.variance_covered = int(var * 100) if numpy.floor(self._line.value()) + 1 != cut: self._line.setValue(cut - 1) self._invalidate_selection() def _update_selection_variance_spin(self): # cut changed by "max variance" spin. if self._pca is None: return cut = numpy.searchsorted(self._cumulative, self.variance_covered / 100.0) + 1 cut = min(cut, len(self._cumulative)) self.ncomponents = cut if numpy.floor(self._line.value()) + 1 != cut: self._line.setValue(cut - 1) self._invalidate_selection() def _update_normalize(self): self.fit() if self.data is None: self._invalidate_selection() def _init_projector(self): cls = DECOMPOSITIONS[self.decomposition_idx] self._pca_projector = cls(n_components=MAX_COMPONENTS) self._pca_projector.component = self.ncomponents self._pca_preprocessors = cls.preprocessors def _update_decomposition(self): self._init_projector() self._update_normalize() def _nselected_components(self): """Return the number of selected components.""" if self._pca is None: return 0 if self.ncomponents == 0: # Special "All" value max_comp = len(self._variance_ratio) else: max_comp = self.ncomponents var_max = self._cumulative[max_comp - 1] if var_max != numpy.floor(self.variance_covered / 100.0): cut = max_comp assert numpy.isfinite(var_max) self.variance_covered = int(var_max * 100) else: self.ncomponents = cut = numpy.searchsorted( self._cumulative, self.variance_covered / 100.0) + 1 return cut def _invalidate_selection(self): self.commit() def _update_axis(self): p = min(len(self._variance_ratio), self.maxp) axis = self.plot.getAxis("bottom") d = max((p-1)//(self.axis_labels-1), 1) axis.setTicks([[(i, str(i+1)) for i in range(0, p, d)]]) def commit(self): transformed = components = pp = None if self._pca is not None: if self._transformed is None: # Compute the full transform (MAX_COMPONENTS components) only once. self._transformed = self._pca(self.data) transformed = self._transformed domain = Domain( transformed.domain.attributes[:self.ncomponents], self.data.domain.class_vars, self.data.domain.metas ) transformed = transformed.from_table(domain, transformed) # prevent caching new features by defining compute_value dom = Domain([ContinuousVariable(a.name, compute_value=lambda _: None) for a in self._pca.orig_domain.attributes], metas=[StringVariable(name='component')]) metas = numpy.array([['PC{}'.format(i + 1) for i in range(self.ncomponents)]], dtype=object).T components = Table(dom, self._pca.components_[:self.ncomponents], metas=metas) components.name = 'components' pp = ApplyDomain(domain, "PCA") self._pca_projector.component = self.ncomponents self.Outputs.transformed_data.send(transformed) self.Outputs.components.send(components) self.Outputs.pca.send(self._pca_projector) self.Outputs.preprocessor.send(pp) def send_report(self): if self.data is None: return self.report_items(( ("Decomposition", DECOMPOSITIONS[self.decomposition_idx].name), ("Normalize data", str(self.normalize)), ("Selected components", self.ncomponents), ("Explained variance", "{:.3f} %".format(self.variance_covered)) )) self.report_plot() @classmethod def migrate_settings(cls, settings, version): if "variance_covered" in settings: # Due to the error in gh-1896 the variance_covered was persisted # as a NaN value, causing a TypeError in the widgets `__init__`. vc = settings["variance_covered"] if isinstance(vc, numbers.Real): if numpy.isfinite(vc): vc = int(vc) else: vc = 100 settings["variance_covered"] = vc if settings.get("ncomponents", 0) > MAX_COMPONENTS: settings["ncomponents"] = MAX_COMPONENTS
class EventSpy(QObject): """ A testing utility class (similar to QSignalSpy) to record events delivered to a QObject instance. Note ---- Only event types can be recorded (as QEvent instances are deleted on delivery). Note ---- Can only be used with a QCoreApplication running. Parameters ---------- object : QObject An object whose events need to be recorded. etype : Union[QEvent.Type, Sequence[QEvent.Type] A event type (or types) that should be recorded """ def __init__(self, object, etype, **kwargs): super().__init__(**kwargs) if not isinstance(object, QObject): raise TypeError self.__object = object try: len(etype) except TypeError: etypes = {etype} else: etypes = set(etype) self.__etypes = etypes self.__record = [] self.__loop = QEventLoop() self.__timer = QTimer(self, singleShot=True) self.__timer.timeout.connect(self.__loop.quit) self.__object.installEventFilter(self) def wait(self, timeout=5000): """ Start an event loop that runs until a spied event or a timeout occurred. Parameters ---------- timeout : int Timeout in milliseconds. Returns ------- res : bool True if the event occurred and False otherwise. Example ------- >>> app = QCoreApplication.instance() or QCoreApplication([]) >>> obj = QObject() >>> spy = EventSpy(obj, QEvent.User) >>> app.postEvent(obj, QEvent(QEvent.User)) >>> spy.wait() True >>> print(spy.events()) [1000] """ count = len(self.__record) self.__timer.stop() self.__timer.setInterval(timeout) self.__timer.start() self.__loop.exec_() self.__timer.stop() return len(self.__record) != count def eventFilter(self, reciever, event): if reciever is self.__object and event.type() in self.__etypes: self.__record.append(event.type()) if self.__loop.isRunning(): self.__loop.quit() return super().eventFilter(reciever, event) def events(self): """ Return a list of all (listened to) event types that occurred. Returns ------- events : List[QEvent.Type] """ return list(self.__record)
class OWLouvainClustering(widget.OWWidget): name = 'Louvain Clustering' description = 'Detects communities in a network of nearest neighbors.' icon = 'icons/LouvainClustering.svg' priority = 2110 want_main_area = False settingsHandler = DomainContextHandler() class Inputs: data = Input('Data', Table, default=True) if Graph is not None: class Outputs: annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table, default=True) graph = Output('Network', Graph) else: class Outputs: annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table, default=True) apply_pca = ContextSetting(True) pca_components = ContextSetting(_DEFAULT_PCA_COMPONENTS) metric_idx = ContextSetting(0) k_neighbors = ContextSetting(_DEFAULT_K_NEIGHBORS) resolution = ContextSetting(1.) auto_commit = Setting(False) class Information(widget.OWWidget.Information): modified = Msg("Press commit to recompute clusters and send new data") class Error(widget.OWWidget.Error): empty_dataset = Msg('No features in data') general_error = Msg('Error occured during clustering\n{}') def __init__(self): super().__init__() self.data = None # type: Optional[Table] self.preprocessed_data = None # type: Optional[Table] self.pca_projection = None # type: Optional[Table] self.graph = None # type: Optional[nx.Graph] self.partition = None # type: Optional[np.array] # Use a executor with a single worker, to limit CPU overcommitment for # cancelled tasks. The method does not have a fine cancellation # granularity so we assure that there are not N - 1 jobs executing # for no reason only to be thrown away. It would be better to use the # global pool but implement a limit on jobs from this source. self.__executor = futures.ThreadPoolExecutor(max_workers=1) self.__task = None # type: Optional[TaskState] self.__invalidated = False # coalescing commit timer self.__commit_timer = QTimer(self, singleShot=True) self.__commit_timer.timeout.connect(self.commit) pca_box = gui.vBox(self.controlArea, 'PCA Preprocessing') self.apply_pca_cbx = gui.checkBox( pca_box, self, 'apply_pca', label='Apply PCA preprocessing', callback=self._invalidate_graph, ) # type: QCheckBox self.pca_components_slider = gui.hSlider( pca_box, self, 'pca_components', label='Components: ', minValue=2, maxValue=_MAX_PCA_COMPONENTS, callback=self._invalidate_pca_projection, tracking=False ) # type: QSlider graph_box = gui.vBox(self.controlArea, 'Graph parameters') self.metric_combo = gui.comboBox( graph_box, self, 'metric_idx', label='Distance metric', items=[m[0] for m in METRICS], callback=self._invalidate_graph, orientation=Qt.Horizontal, ) # type: gui.OrangeComboBox self.k_neighbors_spin = gui.spin( graph_box, self, 'k_neighbors', minv=1, maxv=_MAX_K_NEIGBOURS, label='k neighbors', controlWidth=80, alignment=Qt.AlignRight, callback=self._invalidate_graph, ) # type: gui.SpinBoxWFocusOut self.resolution_spin = gui.hSlider( graph_box, self, 'resolution', minValue=0, maxValue=5., step=1e-1, label='Resolution', intOnly=False, labelFormat='%.1f', callback=self._invalidate_partition, tracking=False, ) # type: QSlider self.resolution_spin.parent().setToolTip( 'The resolution parameter affects the number of clusters to find. ' 'Smaller values tend to produce more clusters and larger values ' 'retrieve less clusters.' ) self.apply_button = gui.auto_commit( self.controlArea, self, 'auto_commit', 'Apply', box=None, commit=lambda: self.commit(), callback=lambda: self._on_auto_commit_changed(), ) # type: QWidget def _invalidate_pca_projection(self): self.pca_projection = None if not self.apply_pca: return self._invalidate_graph() self._set_modified(True) def _invalidate_graph(self): self.graph = None self._invalidate_partition() self._set_modified(True) def _invalidate_partition(self): self.partition = None self._invalidate_output() self.Information.modified() self._set_modified(True) def _invalidate_output(self): self.__invalidated = True if self.__task is not None: self.__cancel_task(wait=False) if self.auto_commit: self.__commit_timer.start() else: self.__set_state_ready() def _set_modified(self, state): """ Mark the widget (GUI) as containing modified state. """ if self.data is None: # does not apply when we have no data state = False elif self.auto_commit: # does not apply when auto commit is on state = False self.Information.modified(shown=state) def _on_auto_commit_changed(self): if self.auto_commit and self.__invalidated: self.commit() def cancel(self): """Cancel any running jobs.""" self.__cancel_task(wait=False) self.__set_state_ready() def commit(self): self.__commit_timer.stop() self.__invalidated = False self._set_modified(False) self.Error.clear() # Cancel current running task self.__cancel_task(wait=False) if self.data is None: self.__set_state_ready() return # Make sure the dataset is ok if len(self.data.domain.attributes) < 1: self.Error.empty_dataset() self.__set_state_ready() return if self.partition is not None: self.__set_state_ready() self._send_data() return # Preprocess the dataset if self.preprocessed_data is None: louvain = Louvain(random_state=0) self.preprocessed_data = louvain.preprocess(self.data) state = TaskState(self) # Prepare/assemble the task(s) to run; reuse partial results if self.apply_pca: if self.pca_projection is not None: data = self.pca_projection pca_components = None else: data = self.preprocessed_data pca_components = self.pca_components else: data = self.preprocessed_data pca_components = None if self.graph is not None: # run on graph only; no need to do PCA and k-nn search ... graph = self.graph k_neighbors = metric = None else: k_neighbors, metric = self.k_neighbors, METRICS[self.metric_idx][1] graph = None if graph is None: task = partial( run_on_data, data, pca_components=pca_components, k_neighbors=k_neighbors, metric=metric, resolution=self.resolution, state=state ) else: task = partial( run_on_graph, graph, resolution=self.resolution, state=state ) self.__set_state_busy() self.__start_task(task, state) @Slot(object) def __set_partial_results(self, result): # type: (Tuple[str, Any]) -> None which, res = result if which == "pca_projection": assert isinstance(res, Table) and len(res) == len(self.data) self.pca_projection = res elif which == "graph": assert isinstance(res, nx.Graph) self.graph = res elif which == "partition": assert isinstance(res, np.ndarray) self.partition = res else: assert False, which @Slot(object) def __on_done(self, future): # type: (Future['Results']) -> None assert future.done() assert self.__task is not None assert self.__task.future is future assert self.__task.watcher.future() is future self.__task, task = None, self.__task task.deleteLater() self.__set_state_ready() try: result = future.result() except Exception as err: # pylint: disable=broad-except self.Error.general_error(str(err), exc_info=True) else: self.__set_results(result) @Slot(str) def setStatusMessage(self, text): super().setStatusMessage(text) @Slot(float) def progressBarSet(self, value, *a, **kw): super().progressBarSet(value, *a, **kw) def __set_state_ready(self): self.progressBarFinished() self.setBlocking(False) self.setStatusMessage("") def __set_state_busy(self): self.progressBarInit() self.setBlocking(True) def __start_task(self, task, state): # type: (Callable[[], Any], TaskState) -> None assert self.__task is None state.status_changed.connect(self.setStatusMessage) state.progress_changed.connect(self.progressBarSet) state.partial_result_ready.connect(self.__set_partial_results) state.watcher.done.connect(self.__on_done) state.start(self.__executor, task) state.setParent(self) self.__task = state def __cancel_task(self, wait=True): # Cancel and dispose of the current task if self.__task is not None: state, self.__task = self.__task, None state.cancel() state.partial_result_ready.disconnect(self.__set_partial_results) state.status_changed.disconnect(self.setStatusMessage) state.progress_changed.disconnect(self.progressBarSet) state.watcher.done.disconnect(self.__on_done) if wait: futures.wait([state.future]) state.deleteLater() else: w = FutureWatcher(state.future, parent=state) w.done.connect(state.deleteLater) def __set_results(self, results): # type: ('Results') -> None # NOTE: All of these have already been set by __set_partial_results, # we double check that they are aliases if results.pca_projection is not None: assert self.pca_components == results.pca_components assert self.pca_projection is results.pca_projection self.pca_projection = results.pca_projection if results.graph is not None: assert results.metric == METRICS[self.metric_idx][1] assert results.k_neighbors == self.k_neighbors assert self.graph is results.graph self.graph = results.graph if results.partition is not None: assert results.resolution == self.resolution assert self.partition is results.partition self.partition = results.partition self._send_data() def _send_data(self): if self.partition is None or self.data is None: return domain = self.data.domain # Compute the frequency of each cluster index counts = np.bincount(self.partition) indices = np.argsort(counts)[::-1] index_map = {n: o for n, o in zip(indices, range(len(indices)))} new_partition = list(map(index_map.get, self.partition)) cluster_var = DiscreteVariable( get_unique_names(domain, 'Cluster'), values=['C%d' % (i + 1) for i, _ in enumerate(np.unique(new_partition))] ) new_domain = add_columns(domain, metas=[cluster_var]) new_table = self.data.transform(new_domain) new_table.get_column_view(cluster_var)[0][:] = new_partition self.Outputs.annotated_data.send(new_table) if Graph is not None: graph = Graph(self.graph) graph.set_items(new_table) self.Outputs.graph.send(graph) @Inputs.data def set_data(self, data): self.closeContext() self.Error.clear() prev_data, self.data = self.data, data self.openContext(self.data) # If X hasn't changed, there's no reason to recompute clusters if prev_data and self.data and np.array_equal(self.data.X, prev_data.X): if self.auto_commit: self._send_data() return # Clear the outputs self.Outputs.annotated_data.send(None) if Graph is not None: self.Outputs.graph.send(None) # Clear internal state self.clear() self._invalidate_pca_projection() if self.data is None: return # Can't have more PCA components than the number of attributes n_attrs = len(data.domain.attributes) self.pca_components_slider.setMaximum(min(_MAX_PCA_COMPONENTS, n_attrs)) self.pca_components_slider.setValue(min(_DEFAULT_PCA_COMPONENTS, n_attrs)) # Can't have more k neighbors than there are data points self.k_neighbors_spin.setMaximum(min(_MAX_K_NEIGBOURS, len(data) - 1)) self.k_neighbors_spin.setValue(min(_DEFAULT_K_NEIGHBORS, len(data) - 1)) self.commit() def clear(self): self.__cancel_task(wait=False) self.preprocessed_data = None self.pca_projection = None self.graph = None self.partition = None self.Error.clear() self.Information.modified.clear() def onDeleteWidget(self): self.__cancel_task(wait=True) self.__executor.shutdown(True) self.clear() self.data = None super().onDeleteWidget() def send_report(self): pca = report.bool_str(self.apply_pca) if self.apply_pca: pca += report.plural(', {number} component{s}', self.pca_components) self.report_items(( ('PCA preprocessing', pca), ('Metric', METRICS[self.metric_idx][0]), ('k neighbors', self.k_neighbors), ('Resolution', self.resolution), ))
class OWTimeSlice(widget.OWWidget): name = 'Time Slice' description = 'Select a slice of measurements on a time interval.' icon = 'icons/TimeSlice.svg' priority = 550 class Inputs: data = Input("Data", Table) class Outputs: subset = Output("Subset", Table) want_main_area = False class Error(widget.OWWidget.Error): no_time_variable = widget.Msg('Data contains no time variable') MAX_SLIDER_VALUE = 500 DATE_FORMATS = ('yyyy-MM-dd', 'HH:mm:ss.zzz') OVERLAP_AMOUNTS = OrderedDict(( ('all but one (= shift by one slider value)', 0), ('6/7 of interval', 6/7), ('3/4 of interval', 3/4), ('1/2 of interval', 1/2), ('1/3 of interval', 1/3), ('1/5 of interval', 1/5))) loop_playback = settings.Setting(True) steps_overlap = settings.Setting(True) overlap_amount = settings.Setting(next(iter(OVERLAP_AMOUNTS))) playback_interval = settings.Setting(1000) slider_values = settings.Setting((0, .2 * MAX_SLIDER_VALUE)) def __init__(self): super().__init__() self._delta = 0 self.play_timer = QTimer(self, interval=self.playback_interval, timeout=self.play_single_step) slider = self.slider = Slider(Qt.Horizontal, self, minimum=0, maximum=self.MAX_SLIDER_VALUE, tracking=False, valuesChanged=self.valuesChanged, minimumValue=self.slider_values[0], maximumValue=self.slider_values[1],) slider.setShowText(False) box = gui.vBox(self.controlArea, 'Time Slice') box.layout().addWidget(slider) hbox = gui.hBox(box) def _dateTimeChanged(editted): def handler(): minTime = self.date_from.dateTime().toMSecsSinceEpoch() / 1000 maxTime = self.date_to.dateTime().toMSecsSinceEpoch() / 1000 if minTime > maxTime: minTime = maxTime = minTime if editted == self.date_from else maxTime other = self.date_to if editted == self.date_from else self.date_from with blockSignals(other): other.setDateTime(editted.dateTime()) with blockSignals(self.slider): self.slider.setValues(self.slider.unscale(minTime), self.slider.unscale(maxTime)) self.send_selection(minTime, maxTime) return handler kwargs = dict(calendarPopup=True, displayFormat=' '.join(self.DATE_FORMATS), timeSpec=Qt.UTC) date_from = self.date_from = QDateTimeEdit(self, **kwargs) date_to = self.date_to = QDateTimeEdit(self, **kwargs) date_from.dateTimeChanged.connect(_dateTimeChanged(date_from)) date_to.dateTimeChanged.connect(_dateTimeChanged(date_to)) hbox.layout().addStretch(100) hbox.layout().addWidget(date_from) hbox.layout().addWidget(QLabel(' – ')) hbox.layout().addWidget(date_to) hbox.layout().addStretch(100) vbox = gui.vBox(self.controlArea, 'Step / Play Through') gui.checkBox(vbox, self, 'loop_playback', label='Loop playback') hbox = gui.hBox(vbox) gui.checkBox(hbox, self, 'steps_overlap', label='Stepping overlaps by:', toolTip='If enabled, the active interval moves forward ' '(backward) by half of the interval at each step.') gui.comboBox(hbox, self, 'overlap_amount', items=tuple(self.OVERLAP_AMOUNTS.keys()), sendSelectedValue=True) gui.spin(vbox, self, 'playback_interval', label='Playback delay (msec):', minv=100, maxv=30000, step=200, callback=lambda: self.play_timer.setInterval(self.playback_interval)) hbox = gui.hBox(vbox) self.step_backward = gui.button(hbox, self, '⏮', callback=lambda: self.play_single_step(backward=True), autoDefault=False) self.play_button = gui.button(hbox, self, '▶', callback=self.playthrough, toggleButton=True, default=True) self.step_forward = gui.button(hbox, self, '⏭', callback=self.play_single_step, autoDefault=False) gui.rubber(self.controlArea) self._set_disabled(True) def valuesChanged(self, minValue, maxValue): self.slider_values = (minValue, maxValue) self._delta = max(1, (maxValue - minValue)) minTime = self.slider.scale(minValue) maxTime = self.slider.scale(maxValue) from_dt = QDateTime.fromMSecsSinceEpoch(minTime * 1000).toUTC() to_dt = QDateTime.fromMSecsSinceEpoch(maxTime * 1000).toUTC() with blockSignals(self.date_from, self.date_to): self.date_from.setDateTime(from_dt) self.date_to.setDateTime(to_dt) self.send_selection(minTime, maxTime) def send_selection(self, minTime, maxTime): try: time_values = self.data.time_values except AttributeError: return indices = (minTime <= time_values) & (time_values <= maxTime) self.Outputs.subset.send(self.data[indices] if indices.any() else None) def playthrough(self): playing = self.play_button.isChecked() for widget in (self.slider, self.step_forward, self.step_backward): widget.setDisabled(playing) if playing: self.play_timer.start() self.play_button.setText('▮▮') else: self.play_timer.stop() self.play_button.setText('▶') def play_single_step(self, backward=False): op = operator.sub if backward else operator.add minValue, maxValue = self.slider.values() orig_delta = delta = self._delta if self.steps_overlap: overlap_amount = self.OVERLAP_AMOUNTS[self.overlap_amount] if overlap_amount: delta = max(1, int(round(delta * (1 - overlap_amount)))) else: delta = 1 # single slider step (== 1/self.MAX_SLIDER_VALUE) if maxValue == self.slider.maximum() and not backward: minValue = self.slider.minimum() maxValue = minValue + orig_delta if not self.loop_playback: self.play_button.click() assert not self.play_timer.isActive() assert not self.play_button.isChecked() elif minValue == self.slider.minimum() and backward: maxValue = self.slider.maximum() minValue = maxValue - orig_delta else: minValue = op(minValue, delta) maxValue = op(maxValue, delta) # Blocking signals because we want this to be synchronous to avoid # re-setting self._delta with blockSignals(self.slider): self.slider.setValues(minValue, maxValue) self.valuesChanged(self.slider.minimumValue(), self.slider.maximumValue()) self._delta = orig_delta # Override valuesChanged handler def _set_disabled(self, is_disabled): for func in [self.date_from, self.date_to, self.step_backward, self.play_button, self.step_forward, self.controls.loop_playback, self.controls.steps_overlap, self.controls.overlap_amount, self.controls.playback_interval, self.slider]: func.setDisabled(is_disabled) @Inputs.data def set_data(self, data): slider = self.slider self.data = data = None if data is None else Timeseries.from_data_table(data) def disabled(): slider.setFormatter(str) slider.setHistogram(None) slider.setScale(0, 0) slider.setValues(0, 0) self._set_disabled(True) self.Outputs.subset.send(None) if data is None: disabled() return if not isinstance(data.time_variable, TimeVariable): self.Error.no_time_variable() disabled() return self.Error.clear() var = data.time_variable time_values = data.time_values self._set_disabled(False) slider.setHistogram(time_values) slider.setFormatter(var.repr_val) slider.setScale(time_values.min(), time_values.max()) self.valuesChanged(slider.minimumValue(), slider.maximumValue()) # Update datetime edit fields min_dt = QDateTime.fromMSecsSinceEpoch(time_values[0] * 1000).toUTC() max_dt = QDateTime.fromMSecsSinceEpoch(time_values[-1] * 1000).toUTC() self.date_from.setDateTimeRange(min_dt, max_dt) self.date_to.setDateTimeRange(min_dt, max_dt) date_format = ' '.join((self.DATE_FORMATS[0] if var.have_date else '', self.DATE_FORMATS[1] if var.have_time else '')).strip() self.date_from.setDisplayFormat(date_format) self.date_to.setDisplayFormat(date_format)
class VizRankDialog(QDialog, ProgressBarMixin, WidgetMessagesMixin): """ Base class for VizRank dialogs, providing a GUI with a table and a button, and the skeleton for managing the evaluation of visualizations. Derived classes must provide methods - `iterate_states` for generating combinations (e.g. pairs of attritutes), - `compute_score(state)` for computing the score of a combination, - `row_for_state(state)` that returns a list of items inserted into the table for the given state. and, optionally, - `state_count` that returns the number of combinations (used for progress bar) - `on_selection_changed` that handles event triggered when the user selects a table row. The method should emit signal `VizRankDialog.selectionChanged(object)`. - `bar_length` returns the length of the bar corresponding to the score. The class provides a table and a button. A widget constructs a single instance of this dialog in its `__init__`, like (in Sieve) by using a convenience method :obj:`add_vizrank`:: self.vizrank, self.vizrank_button = SieveRank.add_vizrank( box, self, "Score Combinations", self.set_attr) When the widget receives new data, it must call the VizRankDialog's method :obj:`VizRankDialog.initialize()` to clear the GUI and reset the state. Clicking the Start button calls method `run` (and renames the button to Pause). Run sets up a progress bar by getting the number of combinations from :obj:`VizRankDialog.state_count()`. It restores the paused state (if any) and calls generator :obj:`VizRankDialog.iterate_states()`. For each generated state, it calls :obj:`VizRankDialog.score(state)`, which must return the score (lower is better) for this state. If the returned state is not `None`, the data returned by `row_for_state` is inserted at the appropriate place in the table. Args: master (Orange.widget.OWWidget): widget to which the dialog belongs Attributes: master (Orange.widget.OWWidget): widget to which the dialog belongs captionTitle (str): the caption for the dialog. This can be a class attribute. `captionTitle` is used by the `ProgressBarMixin`. """ captionTitle = "" processingStateChanged = Signal(int) progressBarValueChanged = Signal(float) messageActivated = Signal(Msg) messageDeactivated = Signal(Msg) selectionChanged = Signal(object) class Information(WidgetMessagesMixin.Information): nothing_to_rank = Msg("There is nothing to rank.") def __init__(self, master): """Initialize the attributes and set up the interface""" QDialog.__init__(self, master, windowTitle=self.captionTitle) WidgetMessagesMixin.__init__(self) self.setLayout(QVBoxLayout()) self.insert_message_bar() self.layout().insertWidget(0, self.message_bar) self.master = master self.keep_running = False self.scheduled_call = None self.saved_state = None self.saved_progress = 0 self.scores = [] self.add_to_model = queue.Queue() self.update_timer = QTimer(self) self.update_timer.timeout.connect(self._update) self.update_timer.setInterval(200) self._thread = None self._worker = None self.filter = QLineEdit() self.filter.setPlaceholderText("Filter ...") self.filter.textChanged.connect(self.filter_changed) self.layout().addWidget(self.filter) # Remove focus from line edit self.setFocus(Qt.ActiveWindowFocusReason) self.rank_model = QStandardItemModel(self) self.model_proxy = QSortFilterProxyModel( self, filterCaseSensitivity=False) self.model_proxy.setSourceModel(self.rank_model) self.rank_table = view = QTableView( selectionBehavior=QTableView.SelectRows, selectionMode=QTableView.SingleSelection, showGrid=False, editTriggers=gui.TableView.NoEditTriggers) if self._has_bars: view.setItemDelegate(TableBarItem()) else: view.setItemDelegate(HorizontalGridDelegate()) view.setModel(self.model_proxy) view.selectionModel().selectionChanged.connect( self.on_selection_changed) view.horizontalHeader().setStretchLastSection(True) view.horizontalHeader().hide() self.layout().addWidget(view) self.button = gui.button( self, self, "Start", callback=self.toggle, default=True) @property def _has_bars(self): return type(self).bar_length is not VizRankDialog.bar_length @classmethod def add_vizrank(cls, widget, master, button_label, set_attr_callback): """ Equip the widget with VizRank button and dialog, and monkey patch the widget's `closeEvent` and `hideEvent` to close/hide the vizrank, too. Args: widget (QWidget): the widget into whose layout to insert the button master (Orange.widgets.widget.OWWidget): the master widget button_label: the label for the button set_attr_callback: the callback for setting the projection chosen in the vizrank Returns: tuple with Vizrank dialog instance and push button """ # Monkey patching could be avoided by mixing-in the class (not # necessarily a good idea since we can make a mess of multiple # defined/derived closeEvent and hideEvent methods). Furthermore, # per-class patching would be better than per-instance, but we don't # want to mess with meta-classes either. vizrank = cls(master) button = gui.button( widget, master, button_label, callback=vizrank.reshow, enabled=False) vizrank.selectionChanged.connect(lambda args: set_attr_callback(*args)) master_close_event = master.closeEvent master_hide_event = master.hideEvent master_delete_event = master.onDeleteWidget def closeEvent(event): vizrank.close() master_close_event(event) def hideEvent(event): vizrank.hide() master_hide_event(event) def deleteEvent(): vizrank.keep_running = False if vizrank._thread is not None and vizrank._thread.isRunning(): vizrank._thread.quit() vizrank._thread.wait() master_delete_event() master.closeEvent = closeEvent master.hideEvent = hideEvent master.onDeleteWidget = deleteEvent return vizrank, button def reshow(self): """Put the widget on top of all windows """ self.show() self.raise_() self.activateWindow() def initialize(self): """ Clear and initialize the dialog. This method must be called by the widget when the data is reset, e.g. from `set_data` handler. """ if self._thread is not None and self._thread.isRunning(): self.keep_running = False self._thread.quit() self._thread.wait() self.keep_running = False self.scheduled_call = None self.saved_state = None self.saved_progress = 0 self.update_timer.stop() self.progressBarFinished() self.scores = [] self._update_model() # empty queue self.rank_model.clear() self.button.setText("Start") self.button.setEnabled(self.check_preconditions()) self._thread = QThread(self) self._worker = Worker(self) self._worker.moveToThread(self._thread) self._worker.stopped.connect(self._thread.quit) self._worker.stopped.connect(self._select_first_if_none) self._worker.stopped.connect(self._stopped) self._worker.done.connect(self._done) self._thread.started.connect(self._worker.do_work) def filter_changed(self, text): self.model_proxy.setFilterFixedString(text) def stop_and_reset(self, reset_method=None): if self.keep_running: self.scheduled_call = reset_method or self.initialize self.keep_running = False else: self.initialize() def check_preconditions(self): """Check whether there is sufficient data for ranking.""" return True def on_selection_changed(self, selected, deselected): """ Set the new visualization in the widget when the user select a row in the table. If derived class does not reimplement this, the table gives the information but the user can't click it to select the visualization. Args: selected: the index of the selected item deselected: the index of the previously selected item """ pass def iterate_states(self, initial_state): """ Generate all possible states (e.g. attribute combinations) for the given data. The content of the generated states is specific to the visualization. This method must be defined in the derived classes. Args: initial_state: initial state; None if this is the first call """ raise NotImplementedError def state_count(self): """ Return the number of states for the progress bar. Derived classes should implement this to ensure the proper behaviour of the progress bar""" return 0 def compute_score(self, state): """ Abstract method for computing the score for the given state. Smaller scores are better. Args: state: the state, e.g. the combination of attributes as generated by :obj:`state_count`. """ raise NotImplementedError def bar_length(self, score): """Compute the bar length (between 0 and 1) corresponding to the score. Return `None` if the score cannot be normalized. """ return None def row_for_state(self, score, state): """ Abstract method that return the items that are inserted into the table. Args: score: score, computed by :obj:`compute_score` state: the state, e.g. combination of attributes """ raise NotImplementedError def _select_first_if_none(self): if not self.rank_table.selectedIndexes(): self.rank_table.selectRow(0) def _done(self): self.button.setText("Finished") self.button.setEnabled(False) self.keep_running = False self.saved_state = None def _stopped(self): self.update_timer.stop() self.progressBarFinished() self._update_model() self.stopped() if self.scheduled_call: self.scheduled_call() def _update(self): self._update_model() self._update_progress() def _update_progress(self): self.progressBarSet(int(self.saved_progress * 100 / max(1, self.state_count()))) def _update_model(self): try: while True: pos, row_items = self.add_to_model.get_nowait() self.rank_model.insertRow(pos, row_items) except queue.Empty: pass def toggle(self): """Start or pause the computation.""" self.keep_running = not self.keep_running if self.keep_running: self.button.setText("Pause") self.progressBarInit() self.update_timer.start() self.before_running() self._thread.start() else: self.button.setText("Continue") self._thread.quit() # Need to sync state (the worker must read the keep_running # state and stop) for reliable restart. self._thread.wait() def before_running(self): """Code that is run before running vizrank in its own thread""" pass def stopped(self): """Code that is run after stopping the vizrank thread""" pass
class OWFilter(widget.OWWidget): name = "Filter" icon = 'icons/Filter.svg' description = "Filter cells/genes" priority = 210 class Inputs: data = widget.Input("Data", Orange.data.Table) class Outputs: data = widget.Output("Data", Orange.data.Table) class Warning(widget.OWWidget.Warning): sampling_in_effect = widget.Msg("Too many data points to display.\n" "Sampling {} of {} data points.") class Error(widget.OWWidget.Error): invalid_range = widget.Msg( "Negative values in input data.\n" "This filter is only defined for non-negative values.") invalid_domain = widget.Msg("Invalid domain\n" "Domain contains non numeric columns.") #: Filter mode. #: Filter out rows/columns or 'zap' data values in range. Cells, Genes, Data = Cells, Genes, Data settings_version = 3 #: The selected filter mode selected_filter_type = settings.Setting(Cells) # type: int #: Selected filter statistics / QC measure indexed by filter_type selected_filter_metric = settings.Setting(TotalCounts) # type: int #: Augment the violin plot with a dot plot (strip plot) of the (non-zero) #: measurement counts in Cells/Genes mode or data matrix values in Data #: mode. display_dotplot = settings.Setting(True) # type: bool #: Is min/max range selection enable limit_lower_enabled = settings.Setting(True) # type: bool limit_upper_enabled = settings.Setting(True) # type: bool #: The lower and upper selection limit for each filter type thresholds = settings.Setting({ (Cells, DetectionCount): (0, 2**31 - 1), (Cells, TotalCounts): (0, 2**31 - 1), (Genes, DetectionCount): (0, 2**31 - 1), (Genes, TotalCounts): (0, 2**31 - 1), (Data, -1): (0.0, 2.0**31 - 1) }) # type: Dict[Tuple[int, int], Tuple[float, float]] #: Plot scale: 'Linear' or 'Log1p' scale = settings.Setting(Scale.Linear.name) # type: str auto_commit = settings.Setting(True) # type: bool def __init__(self): super().__init__() self.data = None # type: Optional[Orange.data.Table] self._state = None # type: Optional[_FilterData] box = gui.widgetBox(self.controlArea, "Info") self._info = QLabel(box, wordWrap=True) self._info.setText("No data in input\n") box.layout().addWidget(self._info) box = gui.widgetBox(self.controlArea, "Filter Type", spacing=-1) rbg = QButtonGroup(box, exclusive=True) layout = QHBoxLayout() layout.setContentsMargins(0, 0, 0, 0) for id_ in [Cells, Genes, Data]: name, _, tip = FilterInfo[id_] b = QRadioButton(name, toolTip=tip, checked=id_ == self.selected_filter_type) rbg.addButton(b, id_) layout.addWidget(b, stretch=10, alignment=Qt.AlignCenter) box.layout().addLayout(layout) rbg.buttonClicked[int].connect(self.set_filter_type) self.filter_metric_cb = gui.comboBox( box, self, "selected_filter_metric", callback=self._update_metric, enabled=self.selected_filter_type != Data) for id_ in [DetectionCount, TotalCounts]: text, ttip = MeasureInfo[id_] self.filter_metric_cb.addItem(text) idx = self.filter_metric_cb.count() - 1 self.filter_metric_cb.setItemData(idx, ttip, Qt.ToolTipRole) self.filter_metric_cb.setCurrentIndex(self.selected_filter_metric) form = QFormLayout(labelAlignment=Qt.AlignLeft, formAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow) self._filter_box = box = gui.widgetBox( self.controlArea, "Filter", orientation=form) # type: QGroupBox self.threshold_stacks = ( QStackedWidget(enabled=self.limit_lower_enabled), QStackedWidget(enabled=self.limit_upper_enabled), ) finfo = np.finfo(np.float64) for filter_ in [Cells, Genes, Data]: if filter_ in {Cells, Genes}: minimum = 0.0 ndecimals = 1 metric = self.selected_filter_metric else: minimum = finfo.min ndecimals = 3 metric = -1 spinlower = QDoubleSpinBox( self, minimum=minimum, maximum=finfo.max, decimals=ndecimals, keyboardTracking=False, ) spinupper = QDoubleSpinBox( self, minimum=minimum, maximum=finfo.max, decimals=ndecimals, keyboardTracking=False, ) lower, upper = self.thresholds.get((filter_, metric), (0, 0)) spinlower.setValue(lower) spinupper.setValue(upper) self.threshold_stacks[0].addWidget(spinlower) self.threshold_stacks[1].addWidget(spinupper) spinlower.valueChanged.connect(self._limitchanged) spinupper.valueChanged.connect(self._limitchanged) self.threshold_stacks[0].setCurrentIndex(self.selected_filter_type) self.threshold_stacks[1].setCurrentIndex(self.selected_filter_type) self.limit_lower_enabled_cb = cb = QCheckBox( "Min", checked=self.limit_lower_enabled) cb.toggled.connect(self.set_lower_limit_enabled) cb.setAttribute(Qt.WA_LayoutUsesWidgetRect, True) form.addRow(cb, self.threshold_stacks[0]) self.limit_upper_enabled_cb = cb = QCheckBox( "Max", checked=self.limit_upper_enabled) cb.toggled.connect(self.set_upper_limit_enabled) cb.setAttribute(Qt.WA_LayoutUsesWidgetRect, True) form.addRow(cb, self.threshold_stacks[1]) box = gui.widgetBox(self.controlArea, "Plot Options") self._showpoints = gui.checkBox(box, self, "display_dotplot", "Show data points", callback=self._update_dotplot) self.log_scale_cb = QCheckBox("Log scale", checked=self.scale == Scale.Log1p.name) self.log_scale_cb.toggled[bool].connect( lambda state: self.set_filter_scale(Scale.Log1p if state else Scale.Linear)) box.layout().addWidget(self.log_scale_cb) self.controlArea.layout().addStretch(10) gui.auto_commit(self.controlArea, self, "auto_commit", "Commit") self._view = pg.GraphicsView() self._view.enableMouse(False) self._view.setAntialiasing(True) self._plot = plot = ViolinPlot() self._plot.setDataPointsVisible(self.display_dotplot) self._plot.setSelectionMode( (ViolinPlot.Low if self.limit_lower_enabled else 0) | (ViolinPlot.High if self.limit_upper_enabled else 0)) self._plot.setRange(QRectF(-1., 0., 2., 1.)) self._plot.selectionEdited.connect(self._limitchanged_plot) self._view.setCentralWidget(self._plot) bottom = self._plot.getAxis("bottom") # type: pg.AxisItem bottom.hide() plot.setMouseEnabled(False, False) plot.hideButtons() self.mainArea.layout().addWidget(self._view) # Coalescing commit timer self._committimer = QTimer(self, singleShot=True) self._committimer.timeout.connect(self.commit) self.addAction( QAction("Select All", self, shortcut=QKeySequence.SelectAll, triggered=self._select_all)) self._setup_axes() def sizeHint(self): sh = super().sizeHint() # type: QSize return sh.expandedTo(QSize(800, 600)) def set_filter_type(self, type_): if self.selected_filter_type != type_: assert type_ in (Cells, Genes, Data), str(type_) self.selected_filter_type = type_ self.threshold_stacks[0].setCurrentIndex(type_) self.threshold_stacks[1].setCurrentIndex(type_) self.filter_metric_cb.setEnabled(type_ != Data) self._setup_axes() if self.data is not None: self._setup(self.data, type_) self._schedule_commit() def filter_type(self): return self.selected_filter_type def set_filter_scale(self, scale): # type: (Scale) -> None if self.scale != scale: self.scale = scale.name self.log_scale_cb.setChecked(scale == Scale.Log1p) self._update_scale() def filter_scale(self): return Scale[self.scale] def _update_metric(self): self._update_scale() if self.data is not None: self._setup( self.data, self.selected_filter_type, ) def set_upper_limit_enabled(self, enabled): if enabled != self.limit_upper_enabled: self.limit_upper_enabled = enabled self.threshold_stacks[1].setEnabled(enabled) self.limit_upper_enabled_cb.setChecked(enabled) self._update_filter() self._schedule_commit() def set_lower_limit_enabled(self, enabled): if enabled != self.limit_lower_enabled: self.limit_lower_enabled = enabled self.threshold_stacks[0].setEnabled(enabled) self.limit_lower_enabled_cb.setChecked(enabled) self._update_filter() self._schedule_commit() def _update_filter(self): mode = 0 if self.limit_lower_enabled: mode |= ViolinPlot.Low if self.limit_upper_enabled: mode |= ViolinPlot.High self._plot.setSelectionMode(mode) self._update_info() self._schedule_commit() def _is_filter_enabled(self): return self.limit_lower_enabled or self.limit_upper_enabled @Inputs.data def set_data(self, data): # type: (Optional[Orange.data.Table]) -> None self.clear() if data is not None and \ any(type(v) is not Orange.data.ContinuousVariable for v in data.domain.attributes): self.Error.invalid_domain() data = None if data is not None and np.any(data.X < 0): self.Error.invalid_range() data = None self.data = data if data is not None: self._setup(data, self.filter_type()) self.unconditional_commit() def clear(self): self.data = None self._state = None self._plot.clear() # reset the plot range self._plot.setRange(QRectF(-1., 0., 2., 1.)) self._update_info() self.Warning.clear() self.Error.clear() def _update_info(self): text = [] if self.data is None: text += ["No data on input.\n"] else: N, M = len(self.data), len(self.data.domain.attributes) text = [] text += [ "Data with {N} cell{Np} and {M} gene{Mp}".format( N=N, Np="s" if N != 1 else "", M=M, Mp="s" if N != 1 else "") ] if self._is_filter_enabled() and \ self.filter_type() in [Cells, Genes]: counts = self._state.x mask = np.ones(counts.shape, dtype=bool) if self.limit_lower_enabled: mask &= self.limit_lower <= counts if self.limit_upper_enabled: mask &= counts <= self.limit_upper n = np.count_nonzero(mask) subject = "cell" if self.filter_type() == Cells else "gene" if n == 0: text += ["All {}s filtered out".format(subject)] else: text += [ "{} {subject}{s} in selection".format( n, subject=subject, s="s" if n != 1 else "") ] else: text += [""] self._info.setText("\n".join(text)) def _select_all(self): self.limit_lower = 0 self.limit_upper = 2**31 - 1 self._limitchanged() def _setup_axes(self): # Setup the plot axes and title filter_type = self.filter_type() info = FilterInfo[filter_type] _, title, _, *_ = info if filter_type in [Cells, Genes]: measure = self.selected_filter_metric else: measure = None if filter_type == Cells and measure == TotalCounts: axis_label = "Total counts (library size)" elif filter_type == Cells and measure == DetectionCount: axis_label = "Number of expressed genes" elif filter_type == Genes and measure == TotalCounts: axis_label = "Total counts" elif filter_type == Genes and measure == DetectionCount: # TODO: Too long axis_label = "Number of cells a gene is expressed in" elif filter_type == Data: axis_label = "Gene Expression" ax = self._plot.getAxis("left") if self.filter_scale() == Scale.Log1p: axis_label = "1 + '{}' <i>(in log scale)</i>".format(axis_label) ax.setLabel(axis_label) ax.setLogMode(True) else: ax.setLogMode(False) ax.setLabel(axis_label) # Reset the tick text area width ax.textWidth = 30 ax.setWidth(None) self._plot.setTitle(title) def _setup(self, data, filter_type): self._plot.clear() self._state = None self._setup_axes() span = -1.0 # data span measure = self.selected_filter_metric if filter_type != Data else None state = _FilterData() if filter_type in [Cells, Genes]: if filter_type == Cells: axis = 1 else: axis = 0 if measure == TotalCounts: counts = np.nansum(data.X, axis=axis) else: mask = (data.X != 0) & (np.isfinite(data.X)) counts = np.count_nonzero(mask, axis=axis) x = counts self.Warning.sampling_in_effect.clear() elif filter_type == Data: x = data.X.ravel() x = x[np.isfinite(x)] x = x[x != 0] MAX_DISPLAY_SIZE = 20000 if x.size > MAX_DISPLAY_SIZE: self.Warning.sampling_in_effect(MAX_DISPLAY_SIZE, x.size) # tails to preserve exactly tails = 1 assert x.flags.owndata x.partition(tails - 1) xrest = x[tails:] xrest.partition(xrest.size - tails) x1, x2, x3 = x[:tails], x[tails:x.size - tails], x[x.size - tails:] assert x1.size + x2.size + x3.size == x.size x2 = np.random.RandomState(0x667).choice( x2, size=MAX_DISPLAY_SIZE - 2 * tails, replace=False, ) x = np.r_[x1, x2, x3] else: self.Warning.sampling_in_effect.clear() else: assert False state.x = x scale = self.filter_scale() if scale == Scale.Log1p: scale_transform = log1p scale_transform_inv = expm1 else: scale_transform = lambda x: x scale_transform_inv = scale_transform state.transform = scale_transform state.transform_inv = scale_transform_inv if x.size: xmin, xmax = np.min(x), np.max(x) else: xmin = xmax = 0., 1. state.xmin, state.xmax = xmin, xmax xs = scale_transform(x) xs = xs[np.isfinite(xs)] state.xt = xs if xs.size: xsmin, xsmax = np.min(xs), np.max(xs) # find effective xmin, xmax (valid in both original and transformed # space xmin_, xmax_ = scale_transform_inv([xsmin, xsmax]) xmin, xmax = max(xmin, xmin_), min(xmax, xmax_) lower = np.clip(self.limit_lower, xmin, xmax) upper = np.clip(self.limit_upper, xmin, xmax) else: xmin, xmax = 0., 1. lower, upper = 0., 1. state.xtmin, state.xtmax = xsmin, xsmax spinlow = self.threshold_stacks[0].widget(filter_type) spinhigh = self.threshold_stacks[1].widget(filter_type) if filter_type == Data or measure == TotalCounts: span = xmax - xmin if span > 0: ndecimals = max(4 - int(np.floor(np.log10(span))), 1) else: ndecimals = 1 else: ndecimals = 1 # Round effective bounds (spin <=> plot cut lines) lower = round(lower, ndecimals) upper = round(upper, ndecimals) if xs.size > 0: # TODO: Need correction for lower bounded distribution (counts) # Use reflection around 0, but gaussian_kde does not provide # sufficient flexibility w.r.t bandwidth selection. self._plot.setData(xs, 1000) self._plot.setBoundary(*scale_transform([lower, upper])) spinlow.setDecimals(ndecimals) self.limit_lower = lower spinhigh.setDecimals(ndecimals) self.limit_upper = upper self._state = state self._update_info() def _update_dotplot(self): self._plot.setDataPointsVisible(self.display_dotplot) def current_filter_thresholds(self): if self.selected_filter_type in {Cells, Genes}: metric = self.selected_filter_metric else: metric = -1 return self.thresholds[self.selected_filter_type, metric] def set_current_filter_thesholds(self, lower, upper): if self.selected_filter_type in {Cells, Genes}: metric = self.selected_filter_metric else: metric = -1 self.thresholds[self.selected_filter_type, metric] = (lower, upper) def _update_scale(self): self._setup_axes() if self.data is not None: self._setup(self.data, self.filter_type()) @property def limit_lower(self): return self.current_filter_thresholds()[0] @limit_lower.setter def limit_lower(self, value): _, upper = self.current_filter_thresholds() self.set_current_filter_thesholds(value, upper) stacklower, _ = self.threshold_stacks sb = stacklower.widget(self.selected_filter_type) # prevent changes due to spin box rounding sb.setValue(value) @property def limit_upper(self): return self.current_filter_thresholds()[1] @limit_upper.setter def limit_upper(self, value): lower, _ = self.current_filter_thresholds() self.set_current_filter_thesholds(lower, value) _, stackupper = self.threshold_stacks sb = stackupper.widget(self.selected_filter_type) sb.setValue(value) @Slot() def _limitchanged(self): # Low/high limit changed via the spin boxes stacklow, stackhigh = self.threshold_stacks filter_ = self.selected_filter_type lower = stacklow.widget(filter_).value() upper = stackhigh.widget(filter_).value() self.set_current_filter_thesholds(lower, upper) state = self._state if state is not None and state.x.size: xmin, xmax = state.xmin, state.xmax lower = np.clip(lower, xmin, xmax) upper = np.clip(upper, xmin, xmax) lower, upper = state.transform([lower, upper]) self._plot.setBoundary(lower, upper) # TODO: Only when the actual selection/filter mask changes self._schedule_commit() self._update_info() def _limitchanged_plot(self): # Low/high limit changed via the plot if self._state is not None: state = self._state newlower_, newupper_ = self._plot.boundary() newlower, newupper = state.transform_inv([newlower_, newupper_]) filter_ = self.selected_filter_type lower, upper = self.current_filter_thresholds() stacklow, stackhigh = self.threshold_stacks spin_lower = stacklow.widget(filter_) spin_upper = stackhigh.widget(filter_) # do rounding to match the spin box's precision if self.limit_lower_enabled: newlower = round(newlower, spin_lower.decimals()) else: newlower = lower if self.limit_upper_enabled: newupper = round(newupper, spin_upper.decimals()) else: newupper = upper if self.limit_lower_enabled and newlower != lower: self.limit_lower = newlower if self.limit_upper_enabled and newupper != upper: self.limit_upper = newupper newlower_, newupper_ = state.transform([newlower, newupper]) self._plot.setBoundary(newlower_, newupper_) # TODO: Only when the actual selection/filter mask changes self._schedule_commit() self._update_info() def _schedule_commit(self): self._committimer.start() def commit(self): self._committimer.stop() data = self.data if data is not None and self._is_filter_enabled(): if self.filter_type() in [Cells, Genes]: state = self._state assert state is not None counts = state.x cmax = self.limit_upper cmin = self.limit_lower mask = np.ones(counts.shape, dtype=bool) if self.limit_lower_enabled: mask &= cmin <= counts if self.limit_upper_enabled: mask &= counts <= cmax if self.filter_type() == Cells: assert counts.size == len(data) data = data[mask] else: assert counts.size == len(data.domain.attributes) atts = [ v for v, m in zip(data.domain.attributes, mask) if m ] data = data.from_table( Orange.data.Domain(atts, data.domain.class_vars, data.domain.metas), data) if len(data) == 0 or \ len(data.domain) + len(data.domain.metas) == 0: data = None elif self.filter_type() == Data: dmin, dmax = self.limit_lower, self.limit_upper data = data.copy() assert data.X.base is None mask = None if self.limit_lower_enabled: mask = data.X < dmin if self.limit_upper_enabled: if mask is not None: mask |= data.X > dmax else: mask = data.X < dmax data.X[mask] = 0.0 else: assert False self.Outputs.data.send(data) def onDeleteWidget(self): self.clear() self._plot.close() super().onDeleteWidget() @classmethod def migrate_settings(cls, settings, version): if (version is None or version < 2) and \ ("limit_lower" in settings and "limit_upper" in settings): # v2 changed limit_lower, limit_upper to per filter limits stored # in a single dict lower = settings.pop("limit_lower") upper = settings.pop("limit_upper") settings["thresholds"] = { (Cells, TotalCounts): (lower, upper), (Cells, DetectionCount): (lower, upper), (Genes, TotalCounts): (lower, upper), (Genes, DetectionCount): (lower, upper), (Data, -1): (lower, upper), } if version == 2: thresholds = settings["thresholds"] c = thresholds.pop(Cells) g = thresholds.pop(Genes) d = thresholds.pop(Data) thresholds = { (Cells, TotalCounts): c, (Cells, DetectionCount): c, (Genes, TotalCounts): g, (Genes, DetectionCount): g, (Data, -1): d, } settings["thresholds"] = thresholds
class OWMDS(OWDataProjectionWidget): name = "MDS" description = "Two-dimensional data projection by multidimensional " \ "scaling constructed from a distance matrix." icon = "icons/MDS.svg" keywords = ["multidimensional scaling", "multi dimensional scaling"] class Inputs(OWDataProjectionWidget.Inputs): distances = Input("Distances", DistMatrix) settings_version = 3 #: Initialization type PCA, Random, Jitter = 0, 1, 2 #: Refresh rate RefreshRate = [ ("Every iteration", 1), ("Every 5 steps", 5), ("Every 10 steps", 10), ("Every 25 steps", 25), ("Every 50 steps", 50), ("None", -1) ] #: Runtime state Running, Finished, Waiting = 1, 2, 3 max_iter = settings.Setting(300) initialization = settings.Setting(PCA) refresh_rate = settings.Setting(3) GRAPH_CLASS = OWMDSGraph graph = SettingProvider(OWMDSGraph) embedding_variables_names = ("mds-x", "mds-y") class Error(OWDataProjectionWidget.Error): not_enough_rows = Msg("Input data needs at least 2 rows") matrix_too_small = Msg("Input matrix must be at least 2x2") no_attributes = Msg("Data has no attributes") mismatching_dimensions = \ Msg("Data and distances dimensions do not match.") out_of_memory = Msg("Out of memory") optimization_error = Msg("Error during optimization\n{}") def __init__(self): super().__init__() #: Input dissimilarity matrix self.matrix = None # type: Optional[DistMatrix] #: Data table from the `self.matrix.row_items` (if present) self.matrix_data = None # type: Optional[Table] #: Input data table self.signal_data = None self.__invalidated = True self.embedding = None self.effective_matrix = None self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=0) self.__timer.timeout.connect(self.__next_step) self.__state = OWMDS.Waiting self.__in_next_step = False self.graph.pause_drawing_pairs() self.size_model = self.gui.points_models[2] self.size_model.order = \ self.gui.points_models[2].order[:1] \ + ("Stress", ) + \ self.gui.points_models[2].order[1:] # self._initialize() def _add_controls(self): self._add_controls_optimization() super()._add_controls() self.gui.add_control( self._effects_box, gui.hSlider, "Show similar pairs:", master=self.graph, value="connected_pairs", minValue=0, maxValue=20, createLabel=False, callback=self._on_connected_changed ) def _add_controls_optimization(self): box = gui.vBox(self.controlArea, box=True) self.runbutton = gui.button(box, self, "Run optimization", callback=self._toggle_run) gui.comboBox(box, self, "refresh_rate", label="Refresh: ", orientation=Qt.Horizontal, items=[t for t, _ in OWMDS.RefreshRate], callback=self.__invalidate_refresh) hbox = gui.hBox(box, margin=0) gui.button(hbox, self, "PCA", callback=self.do_PCA) gui.button(hbox, self, "Randomize", callback=self.do_random) gui.button(hbox, self, "Jitter", callback=self.do_jitter) def set_data(self, data): """Set the input dataset. Parameters ---------- data : Optional[Table] """ if data is not None and len(data) < 2: self.Error.not_enough_rows() data = None else: self.Error.not_enough_rows.clear() self.signal_data = data @Inputs.distances def set_disimilarity(self, matrix): """Set the dissimilarity (distance) matrix. Parameters ---------- matrix : Optional[Orange.misc.DistMatrix] """ if matrix is not None and len(matrix) < 2: self.Error.matrix_too_small() matrix = None else: self.Error.matrix_too_small.clear() self.matrix = matrix self.matrix_data = matrix.row_items if matrix is not None else None def clear(self): super().clear() self.embedding = None self.graph.set_effective_matrix(None) self.__set_update_loop(None) self.__state = OWMDS.Waiting def _initialize(self): matrix_existed = self.effective_matrix is not None effective_matrix = self.effective_matrix self.__invalidated = True self.data = None self.effective_matrix = None self.closeContext() self.clear_messages() # if no data nor matrix is present reset plot if self.signal_data is None and self.matrix is None: self.clear() self.init_attr_values() return if self.signal_data is not None and self.matrix is not None and \ len(self.signal_data) != len(self.matrix): self.Error.mismatching_dimensions() self.clear() self.init_attr_values() return if self.signal_data is not None: self.data = self.signal_data elif self.matrix_data is not None: self.data = self.matrix_data if self.matrix is not None: self.effective_matrix = self.matrix if self.matrix.axis == 0 and self.data is self.matrix_data: self.data = None elif self.data.domain.attributes: preprocessed_data = MDS().preprocess(self.data) self.effective_matrix = Euclidean(preprocessed_data) else: self.Error.no_attributes() self.clear() self.init_attr_values() return self.init_attr_values() self.openContext(self.data) self.__invalidated = not (matrix_existed and self.effective_matrix is not None and np.array_equal(effective_matrix, self.effective_matrix)) if self.__invalidated: self.clear() self.graph.set_effective_matrix(self.effective_matrix) def _toggle_run(self): if self.__state == OWMDS.Running: self.stop() self._invalidate_output() else: self.start() def start(self): if self.__state == OWMDS.Running: return elif self.__state == OWMDS.Finished: # Resume/continue from a previous run self.__start() elif self.__state == OWMDS.Waiting and \ self.effective_matrix is not None: self.__start() def stop(self): if self.__state == OWMDS.Running: self.__set_update_loop(None) def __start(self): self.graph.pause_drawing_pairs() X = self.effective_matrix init = self.embedding # number of iterations per single GUI update step _, step_size = OWMDS.RefreshRate[self.refresh_rate] if step_size == -1: step_size = self.max_iter def update_loop(X, max_iter, step, init): """ return an iterator over successive improved MDS point embeddings. """ # NOTE: this code MUST NOT call into QApplication.processEvents done = False iterations_done = 0 oldstress = np.finfo(np.float).max init_type = "PCA" if self.initialization == OWMDS.PCA else "random" while not done: step_iter = min(max_iter - iterations_done, step) mds = MDS( dissimilarity="precomputed", n_components=2, n_init=1, max_iter=step_iter, init_type=init_type, init_data=init ) with warnings.catch_warnings(): warnings.filterwarnings( "ignore", ".*double_scalars.*", RuntimeWarning) mdsfit = mds(X) iterations_done += step_iter embedding, stress = mdsfit.embedding_, mdsfit.stress_ emb_norm = np.sqrt(np.sum(embedding ** 2, axis=1)).sum() if emb_norm > 0: stress /= emb_norm if iterations_done >= max_iter \ or (oldstress - stress) < mds.params["eps"] \ or stress == 0: done = True init = embedding oldstress = stress yield embedding, mdsfit.stress_, iterations_done / max_iter self.__set_update_loop(update_loop(X, self.max_iter, step_size, init)) self.progressBarInit(processEvents=None) def __set_update_loop(self, loop): """ Set the update `loop` coroutine. The `loop` is a generator yielding `(embedding, stress, progress)` tuples where `embedding` is a `(N, 2) ndarray` of current updated MDS points, `stress` is the current stress and `progress` a float ratio (0 <= progress <= 1) If an existing update coroutine loop is already in place it is interrupted (i.e. closed). .. note:: The `loop` must not explicitly yield control flow to the event loop (i.e. call `QApplication.processEvents`) """ if self.__update_loop is not None: self.__update_loop.close() self.__update_loop = None self.progressBarFinished(processEvents=None) self.__update_loop = loop if loop is not None: self.setBlocking(True) self.progressBarInit(processEvents=None) self.setStatusMessage("Running") self.runbutton.setText("Stop") self.__state = OWMDS.Running self.__timer.start() else: self.setBlocking(False) self.setStatusMessage("") self.runbutton.setText("Start") self.__state = OWMDS.Finished self.__timer.stop() def __next_step(self): if self.__update_loop is None: return assert not self.__in_next_step self.__in_next_step = True loop = self.__update_loop self.Error.out_of_memory.clear() try: embedding, _, progress = next(self.__update_loop) assert self.__update_loop is loop except StopIteration: self.__set_update_loop(None) self.unconditional_commit() self.graph.resume_drawing_pairs() except MemoryError: self.Error.out_of_memory() self.__set_update_loop(None) self.graph.resume_drawing_pairs() except Exception as exc: self.Error.optimization_error(str(exc)) self.__set_update_loop(None) self.graph.resume_drawing_pairs() else: self.progressBarSet(100.0 * progress, processEvents=None) self.embedding = embedding self.graph.update_coordinates() # schedule next update self.__timer.start() self.__in_next_step = False def do_PCA(self): self.__invalidate_embedding(self.PCA) def do_random(self): self.__invalidate_embedding(self.Random) def do_jitter(self): self.__invalidate_embedding(self.Jitter) def __invalidate_embedding(self, initialization=PCA): def jitter_coord(part): span = np.max(part) - np.min(part) part += np.random.uniform(-span / 20, span / 20, len(part)) # reset/invalidate the MDS embedding, to the default initialization # (Random or PCA), restarting the optimization if necessary. state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) if self.effective_matrix is None: self.graph.reset_graph() return X = self.effective_matrix if initialization == OWMDS.PCA: self.embedding = torgerson(X) elif initialization == OWMDS.Random: self.embedding = np.random.rand(len(X), 2) else: jitter_coord(self.embedding[:, 0]) jitter_coord(self.embedding[:, 1]) self.setup_plot() # restart the optimization if it was interrupted. if state == OWMDS.Running: self.__start() def __invalidate_refresh(self): state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) # restart the optimization if it was interrupted. # TODO: decrease the max iteration count by the already # completed iterations count. if state == OWMDS.Running: self.__start() def handleNewSignals(self): self._initialize() if self.__invalidated: self.graph.pause_drawing_pairs() self.__invalidated = False self.__invalidate_embedding() self.cb_class_density.setEnabled(self.can_draw_density()) self.start() else: self.graph.update_point_props() self.commit() def _invalidate_output(self): self.commit() def _on_connected_changed(self): self.graph.set_effective_matrix(self.effective_matrix) self.graph.update_pairs(reconnect=True) def setup_plot(self): super().setup_plot() if self.embedding is not None: self.graph.update_pairs(reconnect=True) def get_size_data(self): if self.attr_size == "Stress": return stress(self.embedding, self.effective_matrix) else: return super().get_size_data() def get_embedding(self): self.valid_data = np.ones(len(self.embedding), dtype=bool) \ if self.embedding is not None else None return self.embedding def _get_projection_data(self): if self.embedding is None: return None if self.data is None: x_name, y_name = self.embedding_variables_names variables = ContinuousVariable(x_name), ContinuousVariable(y_name) return Table(Domain(variables), self.embedding) return super()._get_projection_data() @classmethod def migrate_settings(cls, settings_, version): if version < 2: settings_graph = {} for old, new in (("label_only_selected", "label_only_selected"), ("symbol_opacity", "alpha_value"), ("symbol_size", "point_width"), ("jitter", "jitter_size")): settings_graph[new] = settings_[old] settings_["graph"] = settings_graph settings_["auto_commit"] = settings_["autocommit"] if version < 3: if "connected_pairs" in settings_: connected_pairs = settings_["connected_pairs"] settings_["graph"]["connected_pairs"] = connected_pairs @classmethod def migrate_context(cls, context, version): if version < 2: domain = context.ordered_domain n_domain = [t for t in context.ordered_domain if t[1] == 2] c_domain = [t for t in context.ordered_domain if t[1] == 1] context_values = {} for _, old_val, new_val in ((domain, "color_value", "attr_color"), (c_domain, "shape_value", "attr_shape"), (n_domain, "size_value", "attr_size"), (domain, "label_value", "attr_label")): tmp = context.values[old_val] if tmp[1] >= 0: context_values[new_val] = (tmp[0], tmp[1] + 100) elif tmp[0] != "Stress": context_values[new_val] = None else: context_values[new_val] = tmp context.values = context_values if version < 3 and "graph" in context.values: values = context.values values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"]
class QuickHelp(QTextBrowser): #: Emitted when the shown text changes. textChanged = Signal() def __init__(self, *args, **kwargs): QTextBrowser.__init__(self, *args, **kwargs) self.setOpenExternalLinks(False) self.setOpenLinks(False) self.__text = "" self.__permanentText = "" self.__timer = QTimer(self, timeout=self.__on_timeout, singleShot=True) self.anchorClicked.connect(self.__on_anchorClicked) def showHelp(self, text, timeout=0): """ Show help for `timeout` milliseconds. if timeout is 0 then show the text until it is cleared with clearHelp or showHelp is called with an empty string. """ if self.__text != text: self.__text = str(text) self.__update() self.textChanged.emit() if timeout > 0: self.__timer.start(timeout) def clearHelp(self): """ Clear help text previously set with `showHelp`. """ self.__timer.stop() self.showHelp("") def showPermanentHelp(self, text): """ Set permanent help text. The text may be temporarily overridden by showHelp but will be shown again when that is cleared. """ if self.__permanentText != text: self.__permanentText = text self.__update() self.textChanged.emit() def currentText(self): """ Return the current shown text. """ return self.__text or self.__permanentText def __update(self): if self.__text: self.setHtml(self.__text) else: self.setHtml(self.__permanentText) def __on_timeout(self): if self.__text: self.__text = "" self.__update() self.textChanged.emit() def __on_anchorClicked(self, anchor): ev = QuickHelpDetailRequestEvent(anchor.toString(), anchor) QCoreApplication.postEvent(self, ev)
class TabBarWidget(QWidget): """ A tab bar widget using tool buttons as tabs. """ # TODO: A uniform size box layout. currentChanged = Signal(int) def __init__(self, parent=None, **kwargs): QWidget.__init__(self, parent, **kwargs) layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.setLayout(layout) self.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Expanding) self.__tabs = [] self.__currentIndex = -1 self.__changeOnHover = False self.__iconSize = QSize(26, 26) self.__group = QButtonGroup(self, exclusive=True) self.__group.buttonPressed[QAbstractButton].connect( self.__onButtonPressed ) self.setMouseTracking(True) self.__sloppyButton = None self.__sloppyRegion = QRegion() self.__sloppyTimer = QTimer(self, singleShot=True) self.__sloppyTimer.timeout.connect(self.__onSloppyTimeout) def setChangeOnHover(self, changeOnHover): """ If set to ``True`` the tab widget will change the current index when the mouse hovers over a tab button. """ if self.__changeOnHover != changeOnHover: self.__changeOnHover = changeOnHover def changeOnHover(self): """ Does the current tab index follow the mouse cursor. """ return self.__changeOnHover def count(self): """ Return the number of tabs in the widget. """ return len(self.__tabs) def addTab(self, text, icon=None, toolTip=None): """ Add a new tab and return it's index. """ return self.insertTab(self.count(), text, icon, toolTip) def insertTab(self, index, text, icon=None, toolTip=None): """ Insert a tab at `index` """ button = TabButton(self, objectName="tab-button") button.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) button.setIconSize(self.__iconSize) button.setMouseTracking(True) self.__group.addButton(button) button.installEventFilter(self) tab = _Tab(text, icon, toolTip, button, None, None) self.layout().insertWidget(index, button) self.__tabs.insert(index, tab) self.__updateTab(index) if self.currentIndex() == -1: self.setCurrentIndex(0) return index def removeTab(self, index): """ Remove a tab at `index`. """ if index >= 0 and index < self.count(): self.layout().takeItem(index) tab = self.__tabs.pop(index) self.__group.removeButton(tab.button) tab.button.removeEventFilter(self) if tab.button is self.__sloppyButton: self.__sloppyButton = None self.__sloppyRegion = QRegion() tab.button.deleteLater() if self.currentIndex() == index: if self.count(): self.setCurrentIndex(max(index - 1, 0)) else: self.setCurrentIndex(-1) def setTabIcon(self, index, icon): """ Set the `icon` for tab at `index`. """ self.__tabs[index] = self.__tabs[index]._replace(icon=icon) self.__updateTab(index) def setTabToolTip(self, index, toolTip): """ Set `toolTip` for tab at `index`. """ self.__tabs[index] = self.__tabs[index]._replace(toolTip=toolTip) self.__updateTab(index) def setTabText(self, index, text): """ Set tab `text` for tab at `index` """ self.__tabs[index] = self.__tabs[index]._replace(text=text) self.__updateTab(index) def setTabPalette(self, index, palette): """ Set the tab button palette. """ self.__tabs[index] = self.__tabs[index]._replace(palette=palette) self.__updateTab(index) def setCurrentIndex(self, index): """ Set the current tab index. """ if self.__currentIndex != index: self.__currentIndex = index self.__sloppyRegion = QRegion() self.__sloppyButton = None if index != -1: self.__tabs[index].button.setChecked(True) self.currentChanged.emit(index) def currentIndex(self): """ Return the current index. """ return self.__currentIndex def button(self, index): """ Return the `TabButton` instance for index. """ return self.__tabs[index].button def setIconSize(self, size): if self.__iconSize != size: self.__iconSize = size for tab in self.__tabs: tab.button.setIconSize(self.__iconSize) def __updateTab(self, index): """ Update the tab button. """ tab = self.__tabs[index] b = tab.button if tab.text: b.setText(tab.text) if tab.icon is not None and not tab.icon.isNull(): b.setIcon(tab.icon) if tab.palette: b.setPalette(tab.palette) def __onButtonPressed(self, button): for i, tab in enumerate(self.__tabs): if tab.button is button: self.setCurrentIndex(i) break def __calcSloppyRegion(self, current): """ Given a current mouse cursor position return a region of the widget where hover/move events should change the current tab only on a timeout. """ p1 = current + QPoint(0, 2) p2 = current + QPoint(0, -2) p3 = self.pos() + QPoint(self.width()+10, 0) p4 = self.pos() + QPoint(self.width()+10, self.height()) return QRegion(QPolygon([p1, p2, p3, p4])) def __setSloppyButton(self, button): """ Set the current sloppy button (a tab button inside sloppy region) and reset the sloppy timeout. """ if not button.isChecked(): self.__sloppyButton = button delay = self.style().styleHint(QStyle.SH_Menu_SubMenuPopupDelay, None) # The delay timeout is the same as used by Qt in the QMenu. self.__sloppyTimer.start(delay) else: self.__sloppyTimer.stop() def __onSloppyTimeout(self): if self.__sloppyButton is not None: button = self.__sloppyButton self.__sloppyButton = None if not button.isChecked(): index = [tab.button for tab in self.__tabs].index(button) self.setCurrentIndex(index) def eventFilter(self, receiver, event): if event.type() == QEvent.MouseMove and \ isinstance(receiver, TabButton): pos = receiver.mapTo(self, event.pos()) if self.__sloppyRegion.contains(pos): self.__setSloppyButton(receiver) else: if not receiver.isChecked(): index = [tab.button for tab in self.__tabs].index(receiver) self.setCurrentIndex(index) #also update sloppy region if mouse is moved on the same icon self.__sloppyRegion = self.__calcSloppyRegion(pos) return QWidget.eventFilter(self, receiver, event) def leaveEvent(self, event): self.__sloppyButton = None self.__sloppyRegion = QRegion() return QWidget.leaveEvent(self, event)
class OWScatterPlot(OWDataProjectionWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 keywords = [] class Inputs(OWDataProjectionWidget.Inputs): features = Input("Features", AttributeList) class Outputs(OWDataProjectionWidget.Outputs): features = Output("Features", AttributeList, dynamic=False) settings_version = 5 auto_sample = Setting(True) attr_x = ContextSetting(None) attr_y = ContextSetting(None) tooltip_shows_all = Setting(True) GRAPH_CLASS = OWScatterPlotGraph graph = SettingProvider(OWScatterPlotGraph) embedding_variables_names = None xy_changed_manually = Signal(Variable, Variable) class Warning(OWDataProjectionWidget.Warning): missing_coords = Msg("Plot cannot be displayed because '{}' or '{}' " "is missing for all data points.") class Information(OWDataProjectionWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") missing_coords = Msg( "Points with missing '{}' or '{}' are not displayed") def __init__(self): self.attr_box: QGroupBox = None self.xy_model: DomainModel = None self.cb_attr_x: ComboBoxSearch = None self.cb_attr_y: ComboBoxSearch = None self.vizrank: ScatterPlotVizRank = None self.vizrank_button: QPushButton = None self.sampling: QGroupBox = None self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) super().__init__() # manually register Matplotlib file writers self.graph_writers = self.graph_writers.copy() for w in [MatplotlibFormat, MatplotlibPDFFormat]: self.graph_writers.append(w) def _add_controls(self): self._add_controls_axis() self._add_controls_sampling() super()._add_controls() self.gui.add_widget(self.gui.JitterNumericValues, self._effects_box) self.gui.add_widgets([ self.gui.ShowGridLines, self.gui.ToolTipShowsAll, self.gui.RegressionLine ], self._plot_box) gui.checkBox( self._plot_box, self, value="graph.orthonormal_regression", label="Treat variables as independent", callback=self.graph.update_regression_line, tooltip= "If checked, fit line to group (minimize distance from points);\n" "otherwise fit y as a function of x (minimize vertical distances)", disabledBy=self.cb_reg_line) def _add_controls_axis(self): common_options = dict(labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, contentsLength=12, searchable=True) self.attr_box = gui.vBox(self.controlArea, 'Axes', spacing=2 if gui.is_macstyle() else 8) dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) self.cb_attr_x = gui.comboBox( self.attr_box, self, "attr_x", label="Axis x:", callback=self.set_attr_from_combo, model=self.xy_model, **common_options, ) self.cb_attr_y = gui.comboBox( self.attr_box, self, "attr_y", label="Axis y:", callback=self.set_attr_from_combo, model=self.xy_model, **common_options, ) vizrank_box = gui.hBox(self.attr_box) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) def _add_controls_sampling(self): self.sampling = gui.auto_commit(self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) @property def effective_variables(self): return [self.attr_x, self.attr_y ] if self.attr_x and self.attr_y else [] @property def effective_data(self): eff_var = self.effective_variables if eff_var and self.attr_x.name == self.attr_y.name: eff_var = [self.attr_x] return self.data.transform(Domain(eff_var)) def _vizrank_color_change(self): self.vizrank.initialize() err_msg = "" if self.data is None: err_msg = "No data on input" elif self.data.is_sparse(): err_msg = "Data is sparse" elif len(self.xy_model) < 3: err_msg = "Not enough features for ranking" elif self.attr_color is None: err_msg = "Color variable is not selected" elif np.isnan( self.data.get_column_view( self.attr_color)[0].astype(float)).all(): err_msg = "Color variable has no values" self.vizrank_button.setEnabled(not err_msg) self.vizrank_button.setToolTip(err_msg) def set_data(self, data): super().set_data(data) self._vizrank_color_change() def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.attr_label, str): self.attr_label = findvar(self.attr_label, self.gui.label_model) if isinstance(self.attr_color, str): self.attr_color = findvar(self.attr_color, self.gui.color_model) if isinstance(self.attr_shape, str): self.attr_shape = findvar(self.attr_shape, self.gui.shape_model) if isinstance(self.attr_size, str): self.attr_size = findvar(self.attr_size, self.gui.size_model) def check_data(self): super().check_data() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(self.data, SqlTable): if self.data.approx_len() < 4000: self.data = Table(self.data) else: self.Information.sampled_sql() self.sql_data = self.data data_sample = self.data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) self.data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if self.data is not None and (len(self.data) == 0 or len(self.data.domain.variables) == 0): self.data = None def get_embedding(self): self.valid_data = None if self.data is None: return None x_data = self.get_column(self.attr_x, filter_valid=False) y_data = self.get_column(self.attr_y, filter_valid=False) if x_data is None or y_data is None: return None self.Warning.missing_coords.clear() self.Information.missing_coords.clear() self.valid_data = np.isfinite(x_data) & np.isfinite(y_data) if self.valid_data is not None and not np.all(self.valid_data): msg = self.Information if np.any(self.valid_data) else self.Warning msg.missing_coords(self.attr_x.name, self.attr_y.name) return np.vstack((x_data, y_data)).T # Tooltip def _point_tooltip(self, point_id, skip_attrs=()): point_data = self.data[point_id] xy_attrs = (self.attr_x, self.attr_y) text = "<br/>".join( escape('{} = {}'.format(var.name, point_data[var])) for var in xy_attrs) if self.tooltip_shows_all: others = super()._point_tooltip(point_id, skip_attrs=xy_attrs) if others: text = "<b>{}</b><br/><br/>{}".format(text, others) return text def can_draw_regresssion_line(self): return self.data is not None and \ self.data.domain is not None and \ self.attr_x.is_continuous and \ self.attr_y.is_continuous def add_data(self, time=0.4): if self.data and len(self.data) > 2000: self.__timer.stop() return data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.handleNewSignals() def init_attr_values(self): super().init_attr_values() data = self.data domain = data.domain if data and len(data) else None self.xy_model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None super().set_subset_data(subset_data) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): self.attr_box.setEnabled(True) self.vizrank.setEnabled(True) if self.attribute_selection_list and self.data is not None and \ self.data.domain is not None and \ all(attr in self.data.domain for attr in self.attribute_selection_list): self.attr_x, self.attr_y = self.attribute_selection_list[:2] self.attr_box.setEnabled(False) self.vizrank.setEnabled(False) super().handleNewSignals() if self._domain_invalidated: self.graph.update_axes() self._domain_invalidated = False self.cb_reg_line.setEnabled(self.can_draw_regresssion_line()) @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] self._invalidated = self._invalidated \ or self.attr_x != attributes[0] \ or self.attr_y != attributes[1] else: self.attribute_selection_list = None def set_attr(self, attr_x, attr_y): if attr_x != self.attr_x or attr_y != self.attr_y: self.attr_x, self.attr_y = attr_x, attr_y self.attr_changed() def set_attr_from_combo(self): self.attr_changed() self.xy_changed_manually.emit(self.attr_x, self.attr_y) def attr_changed(self): self.cb_reg_line.setEnabled(self.can_draw_regresssion_line()) self.setup_plot() self.commit.deferred() def get_axes(self): return {"bottom": self.attr_x, "left": self.attr_y} def colors_changed(self): super().colors_changed() self._vizrank_color_change() @gui.deferred def commit(self): super().commit() self.send_features() def send_features(self): features = [attr for attr in [self.attr_x, self.attr_y] if attr] self.Outputs.features.send(AttributeList(features) or None) def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) return None def _get_send_report_caption(self): return report.render_items_vert( (("Color", self._get_caption_var_name(self.attr_color)), ("Label", self._get_caption_var_name(self.attr_label)), ("Shape", self._get_caption_var_name(self.attr_shape)), ("Size", self._get_caption_var_name(self.attr_size)), ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete or self.graph.jitter_continuous) and self.graph.jitter_size))) @classmethod def migrate_settings(cls, settings, version): if version < 2 and "selection" in settings and settings["selection"]: settings["selection_group"] = [(a, 1) for a in settings["selection"]] if version < 3: if "auto_send_selection" in settings: settings["auto_commit"] = settings["auto_send_selection"] if "selection_group" in settings: settings["selection"] = settings["selection_group"] if version < 5: if "graph" in settings and \ "jitter_continuous" not in settings["graph"]: settings["graph"]["jitter_continuous"] = True @classmethod def migrate_context(cls, context, version): values = context.values if version < 3: values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"] if version < 4: if values["attr_x"][1] % 100 == 1 or values["attr_y"][1] % 100 == 1: raise IncompatibleContext()
class OWtSNE(OWDataProjectionWidget): name = "t-SNE" description = "Two-dimensional data projection with t-SNE." icon = "icons/TSNE.svg" priority = 920 keywords = ["tsne"] settings_version = 3 max_iter = Setting(300) perplexity = Setting(30) multiscale = Setting(False) exaggeration = Setting(1) pca_components = Setting(20) normalize = Setting(True) GRAPH_CLASS = OWtSNEGraph graph = SettingProvider(OWtSNEGraph) embedding_variables_names = ("t-SNE-x", "t-SNE-y") #: Runtime state Running, Finished, Waiting, Paused = 1, 2, 3, 4 class Error(OWDataProjectionWidget.Error): not_enough_rows = Msg("Input data needs at least 2 rows") constant_data = Msg("Input data is constant") no_attributes = Msg("Data has no attributes") out_of_memory = Msg("Out of memory") optimization_error = Msg("Error during optimization\n{}") no_valid_data = Msg("No projection due to no valid data") def __init__(self): super().__init__() self.pca_data = None self.projection = None self.tsne_runner = None self.tsne_iterator = None self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=1, timeout=self.__next_step) self.__state = OWtSNE.Waiting self.__in_next_step = False self.__draw_similar_pairs = False def reset_needs_to_draw(): self.needs_to_draw = True self.needs_to_draw = True self.__timer_draw = QTimer(self, interval=2000, timeout=reset_needs_to_draw) def _add_controls(self): self._add_controls_start_box() super()._add_controls() def _add_controls_start_box(self): box = gui.vBox(self.controlArea, True) form = QFormLayout( labelAlignment=Qt.AlignLeft, formAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow, verticalSpacing=10, ) self.perplexity_spin = gui.spin( box, self, "perplexity", 1, 500, step=1, alignment=Qt.AlignRight, callback=self._params_changed ) form.addRow("Perplexity:", self.perplexity_spin) self.perplexity_spin.setEnabled(not self.multiscale) form.addRow(gui.checkBox( box, self, "multiscale", label="Preserve global structure", callback=self._multiscale_changed )) sbe = gui.hBox(self.controlArea, False, addToLayout=False) gui.hSlider( sbe, self, "exaggeration", minValue=1, maxValue=4, step=1, callback=self._params_changed ) form.addRow("Exaggeration:", sbe) sbp = gui.hBox(self.controlArea, False, addToLayout=False) gui.hSlider( sbp, self, "pca_components", minValue=2, maxValue=50, step=1, callback=self._invalidate_pca_projection ) form.addRow("PCA components:", sbp) self.normalize_cbx = gui.checkBox( box, self, "normalize", "Normalize data", callback=self._invalidate_pca_projection, ) form.addRow(self.normalize_cbx) box.layout().addLayout(form) gui.separator(box, 10) self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run) def _invalidate_pca_projection(self): self.pca_data = None self._params_changed() def _params_changed(self): self.__state = OWtSNE.Finished self.__set_update_loop(None) def _multiscale_changed(self): self.perplexity_spin.setEnabled(not self.multiscale) self._params_changed() def check_data(self): def error(err): err() self.data = None super().check_data() if self.data is not None: if len(self.data) < 2: error(self.Error.not_enough_rows) elif not self.data.domain.attributes: error(self.Error.no_attributes) elif not self.data.is_sparse(): if np.all(~np.isfinite(self.data.X)): error(self.Error.no_valid_data) else: with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "Degrees of freedom .*", RuntimeWarning) if np.nan_to_num(np.nanstd(self.data.X, axis=0)).sum() \ == 0: error(self.Error.constant_data) def get_embedding(self): if self.data is None: self.valid_data = None return None elif self.projection is None: embedding = np.random.normal(size=(len(self.data), 2)) else: embedding = self.projection.embedding.X self.valid_data = np.ones(len(embedding), dtype=bool) return embedding def _toggle_run(self): if self.__state == OWtSNE.Running: self.stop() self.commit() elif self.__state == OWtSNE.Paused: self.resume() else: self.start() def start(self): if not self.data or self.__state == OWtSNE.Running: self.graph.update_coordinates() elif self.__state in (OWtSNE.Finished, OWtSNE.Waiting): self.__start() def stop(self): self.__state = OWtSNE.Paused self.__set_update_loop(None) def resume(self): self.__set_update_loop(self.tsne_iterator) def set_data(self, data: Table): super().set_data(data) if data is not None: # PCA doesn't support normalization on sparse data, as this would # require centering and normalizing the matrix self.normalize_cbx.setDisabled(data.is_sparse()) if data.is_sparse(): self.normalize = False self.normalize_cbx.setToolTip( "Data normalization is not supported on sparse matrices." ) else: self.normalize_cbx.setToolTip("") def pca_preprocessing(self): """Perform PCA preprocessing before passing off the data to t-SNE.""" if self.pca_data is not None: return projector = PCA(n_components=self.pca_components, random_state=0) # If the normalization box is ticked, we'll add the `Normalize` # preprocessor to PCA if self.normalize: projector.preprocessors += (preprocess.Normalize(),) model = projector(self.data) self.pca_data = model(self.data) def __start(self): self.pca_preprocessing() self.needs_to_draw = True # We call PCA through fastTSNE because it involves scaling. Instead of # worrying about this ourselves, we'll let the library worry for us. initialization = TSNE.default_initialization( self.pca_data.X, n_components=2, random_state=0) # Compute perplexity settings for multiscale n_samples = self.pca_data.X.shape[0] if self.multiscale: perplexity = min((n_samples - 1) / 3, 50), min((n_samples - 1) / 3, 500) else: perplexity = self.perplexity # Determine whether to use settings for large data sets if n_samples > 10_000: neighbor_method, gradient_method = "approx", "fft" else: neighbor_method, gradient_method = "exact", "bh" # Set number of iterations to 0 - these will be run subsequently self.projection = TSNE( n_components=2, perplexity=perplexity, multiscale=self.multiscale, early_exaggeration_iter=0, n_iter=0, initialization=initialization, exaggeration=self.exaggeration, neighbors=neighbor_method, negative_gradient_method=gradient_method, random_state=0, theta=0.8, )(self.pca_data) self.tsne_runner = TSNERunner( self.projection, step_size=20, exaggeration=self.exaggeration ) self.tsne_iterator = self.tsne_runner.run_optimization() self.__set_update_loop(self.tsne_iterator) self.progressBarInit(processEvents=None) def __set_update_loop(self, loop): if self.__update_loop is not None: if self.__state in (OWtSNE.Finished, OWtSNE.Waiting): self.__update_loop.close() self.__update_loop = None self.progressBarFinished(processEvents=None) self.__update_loop = loop if loop is not None: self.setBlocking(True) self.progressBarInit(processEvents=None) self.setStatusMessage("Running") self.runbutton.setText("Stop") self.__state = OWtSNE.Running self.__timer.start() self.__timer_draw.start() else: self.setBlocking(False) self.setStatusMessage("") if self.__state in (OWtSNE.Finished, OWtSNE.Waiting): self.runbutton.setText("Start") if self.__state == OWtSNE.Paused: self.runbutton.setText("Resume") self.__timer.stop() self.__timer_draw.stop() def __next_step(self): if self.__update_loop is None: return assert not self.__in_next_step self.__in_next_step = True loop = self.__update_loop self.Error.out_of_memory.clear() self.Error.optimization_error.clear() try: projection, progress = next(self.__update_loop) assert self.__update_loop is loop except StopIteration: self.__state = OWtSNE.Finished self.__set_update_loop(None) self.unconditional_commit() except MemoryError: self.Error.out_of_memory() self.__state = OWtSNE.Finished self.__set_update_loop(None) except Exception as exc: self.Error.optimization_error(str(exc)) self.__state = OWtSNE.Finished self.__set_update_loop(None) else: self.progressBarSet(100.0 * progress, processEvents=None) self.projection = projection if progress == 1 or self.needs_to_draw: self.graph.update_coordinates() self.graph.update_density() self.needs_to_draw = False # schedule next update self.__timer.start() self.__in_next_step = False def setup_plot(self): super().setup_plot() self.start() def _get_projection_data(self): if self.data is None: return None data = self.data.transform( Domain(self.data.domain.attributes, self.data.domain.class_vars, self.data.domain.metas + self._get_projection_variables())) data.metas[:, -2:] = self.get_embedding() if self.projection is not None: data.domain = Domain( self.data.domain.attributes, self.data.domain.class_vars, self.data.domain.metas + self.projection.domain.attributes) return data def clear(self): super().clear() self.__state = OWtSNE.Waiting self.__set_update_loop(None) self.pca_data = None self.projection = None @classmethod def migrate_settings(cls, settings, version): if version < 3: if "selection_indices" in settings: settings["selection"] = settings["selection_indices"] @classmethod def migrate_context(cls, context, version): if version < 3: values = context.values values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"]
class WidgetManager(QObject): """ WidgetManager class is responsible for creation, tracking and deletion of UI elements constituting an interactive workflow. It does so by reacting to changes in the underlying workflow model, creating and destroying the components when needed. This is an abstract class, subclassed MUST reimplement at least :func:`create_widget_for_node` and :func:`delete_widget_for_node`. The widgets created with :func:`create_widget_for_node` will automatically receive dispatched events: * :data:`WorkflowEvent.InputLinkAdded` - when a new input link is added to the workflow. * :data:`LinkEvent.InputLinkRemoved` - when a input link is removed. * :data:`LinkEvent.OutputLinkAdded` - when a new output link is added to the workflow. * :data:`LinkEvent.InputLinkRemoved` - when a output link is removed. * :data:`LinkEvent.InputLinkStateChanged` - when the input link's runtime state changes. * :data:`LinkEvent.OutputLinkStateChanged` - when the output link's runtime state changes. * :data:`WorkflowEnvEvent.WorkflowEnvironmentChanged` - when the workflow environment changes. .. seealso:: :func:`.Scheme.add_link()`, :func:`Scheme.remove_link`, :func:`.Scheme.runtime_env` """ #: A new QWidget was created and added by the manager. widget_for_node_added = Signal(SchemeNode, QWidget) #: A QWidget was removed, hidden and will be deleted when appropriate. widget_for_node_removed = Signal(SchemeNode, QWidget) class CreationPolicy(enum.Enum): """ Widget Creation Policy. """ #: Widgets are scheduled to be created from the event loop, or when #: first accessed with `widget_for_node` Normal = "Normal" #: Widgets are created immediately when a node is added to the #: workflow model. Immediate = "Immediate" #: Widgets are created only when first accessed with `widget_for_node` #: (e.g. when activated in the view). OnDemand = "OnDemand" Normal = CreationPolicy.Normal Immediate = CreationPolicy.Immediate OnDemand = CreationPolicy.OnDemand def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__workflow = None # type: Optional[Scheme] self.__creation_policy = WidgetManager.Normal self.__float_widgets_on_top = False self.__item_for_node = {} # type: Dict[SchemeNode, Item] self.__item_for_widget = {} # type: Dict[QWidget, Item] self.__init_queue = deque() # type: Deque[SchemeNode] self.__init_timer = QTimer(self, singleShot=True) self.__init_timer.timeout.connect(self.__process_init_queue) self.__activation_monitor = ActivationMonitor(self) self.__activation_counter = itertools.count() self.__activation_monitor.activated.connect(self.__mark_activated) def set_workflow(self, workflow): # type: (Scheme) -> None """ Set the workflow. """ if workflow is self.__workflow: return if self.__workflow is not None: # cleanup for node in self.__workflow.nodes: self.__remove_node(node) self.__workflow.node_added.disconnect(self.__on_node_added) self.__workflow.node_removed.disconnect(self.__on_node_removed) self.__workflow.link_added.disconnect(self.__on_link_added) self.__workflow.link_removed.disconnect(self.__on_link_removed) self.__workflow.runtime_env_changed.disconnect( self.__on_env_changed) self.__workflow.removeEventFilter(self) self.__workflow = workflow workflow.node_added.connect(self.__on_node_added, Qt.UniqueConnection) workflow.node_removed.connect(self.__on_node_removed, Qt.UniqueConnection) workflow.link_added.connect(self.__on_link_added, Qt.UniqueConnection) workflow.link_removed.connect(self.__on_link_removed, Qt.UniqueConnection) workflow.runtime_env_changed.connect(self.__on_env_changed, Qt.UniqueConnection) workflow.installEventFilter(self) for node in workflow.nodes: self.__add_node(node) def workflow(self): # type: () -> Optional[Workflow] return self.__workflow scheme = workflow set_scheme = set_workflow def set_creation_policy(self, policy): # type: (CreationPolicy) -> None """ Set the widget creation policy. """ if self.__creation_policy != policy: self.__creation_policy = policy if self.__creation_policy == WidgetManager.Immediate: self.__init_timer.stop() # create all if self.__workflow is not None: for node in self.__workflow.nodes: self.ensure_created(node) elif self.__creation_policy == WidgetManager.Normal: if not self.__init_timer.isActive() and self.__init_queue: self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_timer.stop() else: assert False def creation_policy(self): """ Return the current widget creation policy. """ return self.__creation_policy def create_widget_for_node(self, node): # type: (SchemeNode) -> QWidget """ Create and initialize a widget for node. This is an abstract method. Subclasses must reimplemented it. """ raise NotImplementedError() def delete_widget_for_node(self, node, widget): # type: (SchemeNode, QWidget) -> None """ Remove and delete widget for node. This is an abstract method. Subclasses must reimplemented it. """ raise NotImplementedError() def node_for_widget(self, widget): # type: (QWidget) -> Optional[SchemeNode] """ Return the node for widget. """ item = self.__item_for_widget.get(widget) if item is not None: return item.node else: return None def widget_for_node(self, node): # type: (SchemeNode) -> Optional[QWidget] """ Return the widget for node. """ self.ensure_created(node) item = self.__item_for_node.get(node) return item.widget if item is not None else None def __add_widget_for_node(self, node): # type: (SchemeNode) -> None item = self.__item_for_node.get(node) if item is not None: return if self.__workflow is None: return if node not in self.__workflow.nodes: return if node in self.__init_queue: self.__init_queue.remove(node) item = Item(node, None, -1) # Insert on the node -> item mapping. self.__item_for_node[node] = item log.debug("Creating widget for node %s", node) try: w = self.create_widget_for_node(node) except Exception: # pylint: disable=broad-except log.critical("", exc_info=True) lines = traceback.format_exception(*sys.exc_info()) text = "".join(lines) errorwidget = QLabel(textInteractionFlags=Qt.TextSelectableByMouse, wordWrap=True, objectName="widgetmanager-error-placeholder", text="<pre>" + escape(text) + "</pre>") item.errorwidget = errorwidget node.set_state_message(UserMessage(text, UserMessage.Error, "")) raise else: item.widget = w self.__item_for_widget[w] = item self.__set_float_on_top_flag(w) if w.windowIcon().isNull(): desc = node.description w.setWindowIcon(icon_loader.from_description(desc).get(desc.icon)) if not w.windowTitle(): w.setWindowTitle(node.title) w.installEventFilter(self.__activation_monitor) raise_canvas = QAction( self.tr("Raise Canvas to Front"), w, objectName="action-canvas-raise-canvas", toolTip=self.tr("Raise containing canvas workflow window"), shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_Up)) raise_canvas.triggered.connect(self.__on_activate_parent) raise_descendants = QAction( self.tr("Raise Descendants"), w, objectName="action-canvas-raise-descendants", toolTip=self.tr("Raise all immediate descendants of this node"), shortcut=QKeySequence(Qt.ControlModifier | Qt.ShiftModifier | Qt.Key_Right)) raise_descendants.triggered.connect( partial(self.__on_raise_descendants, node)) raise_ancestors = QAction( self.tr("Raise Ancestors"), w, objectName="action-canvas-raise-ancestors", toolTip=self.tr("Raise all immediate ancestors of this node"), shortcut=QKeySequence(Qt.ControlModifier | Qt.ShiftModifier | Qt.Key_Left)) raise_ancestors.triggered.connect( partial(self.__on_raise_ancestors, node)) w.addActions([raise_canvas, raise_descendants, raise_ancestors]) # send all the post creation notification events workflow = self.__workflow assert workflow is not None inputs = workflow.find_links(sink_node=node) for link in inputs: ev = LinkEvent(LinkEvent.InputLinkAdded, link) QCoreApplication.sendEvent(w, ev) outputs = workflow.find_links(source_node=node) for link in outputs: ev = LinkEvent(LinkEvent.OutputLinkAdded, link) QCoreApplication.sendEvent(w, ev) self.widget_for_node_added.emit(node, w) def ensure_created(self, node): # type: (SchemeNode) -> None """ Ensure that the widget for node is created. """ if self.__workflow is None: return if node not in self.__workflow.nodes: return item = self.__item_for_node.get(node) if item is None: self.__add_widget_for_node(node) def __on_node_added(self, node): # type: (SchemeNode) -> None assert self.__workflow is not None assert node in self.__workflow.nodes assert node not in self.__item_for_node self.__add_node(node) def __add_node(self, node): # type: (SchemeNode) -> None # add node for tracking node.installEventFilter(self) if self.__creation_policy == WidgetManager.Immediate: self.ensure_created(node) else: self.__init_queue.append(node) if self.__creation_policy == WidgetManager.Normal: self.__init_timer.start() def __on_node_removed(self, node): # type: (SchemeNode) -> None assert self.__workflow is not None assert node not in self.__workflow.nodes self.__remove_node(node) def __remove_node(self, node): # type: (SchemeNode) -> None # remove the node and its widget from tracking. node.removeEventFilter(self) if node in self.__init_queue: self.__init_queue.remove(node) item = self.__item_for_node.get(node) if item is not None and item.widget is not None: widget = item.widget assert widget in self.__item_for_widget del self.__item_for_widget[widget] widget.removeEventFilter(self.__activation_monitor) item.widget = None self.widget_for_node_removed.emit(node, widget) self.delete_widget_for_node(node, widget) if item is not None: del self.__item_for_node[node] @Slot() def __process_init_queue(self): if self.__init_queue: node = self.__init_queue.popleft() assert self.__workflow is not None assert node in self.__workflow.nodes log.debug("__process_init_queue: '%s'", node.title) try: self.ensure_created(node) finally: if self.__init_queue: self.__init_timer.start() def __on_link_added(self, link): # type: (SchemeLink) -> None assert self.__workflow is not None assert link.source_node in self.__workflow.nodes assert link.sink_node in self.__workflow.nodes source = self.__item_for_node.get(link.source_node) sink = self.__item_for_node.get(link.sink_node) # notify the node gui of an added link if source is not None and source.widget is not None: ev = LinkEvent(LinkEvent.OutputLinkAdded, link) QCoreApplication.sendEvent(source.widget, ev) if sink is not None and sink.widget is not None: ev = LinkEvent(LinkEvent.InputLinkAdded, link) QCoreApplication.sendEvent(sink.widget, ev) def __on_link_removed(self, link): # type: (SchemeLink) -> None assert self.__workflow is not None assert link.source_node in self.__workflow.nodes assert link.sink_node in self.__workflow.nodes source = self.__item_for_node.get(link.source_node) sink = self.__item_for_node.get(link.sink_node) # notify the node gui of an removed link if source is not None and source.widget is not None: ev = LinkEvent(LinkEvent.OutputLinkRemoved, link) QCoreApplication.sendEvent(source.widget, ev) if sink is not None and sink.widget is not None: ev = LinkEvent(LinkEvent.InputLinkRemoved, link) QCoreApplication.sendEvent(sink.widget, ev) def __mark_activated(self, widget): # type: (QWidget) -> None # Update the tracked stacking order for `widget` item = self.__item_for_widget.get(widget) if item is not None: item.activation_order = next(self.__activation_counter) def activate_widget_for_node(self, node, widget): # type: (SchemeNode, QWidget) -> None """ Activate the widget for node (show and raise above other) """ if widget.windowState() == Qt.WindowMinimized: widget.showNormal() widget.setVisible(True) widget.raise_() widget.activateWindow() def activate_window_group(self, group): # type: (Scheme.WindowGroup) -> None self.restore_window_state(group.state) def raise_widgets_to_front(self): """ Raise all current visible widgets to the front. The widgets will be stacked by activation order. """ workflow = self.__workflow if workflow is None: return items = filter( lambda item: (item.widget.isVisible() if item is not None and item.widget is not None else False), map(self.__item_for_node.get, workflow.nodes)) self.__raise_and_activate(items) def set_float_widgets_on_top(self, float_on_top): """ Set `Float Widgets on Top` flag on all widgets. """ self.__float_widgets_on_top = float_on_top for item in self.__item_for_node.values(): if item.widget is not None: self.__set_float_on_top_flag(item.widget) def save_window_state(self): # type: () -> List[Tuple[SchemeNode, bytes]] """ Save current open window arrangement. """ if self.__workflow is None: return [] workflow = self.__workflow # type: Scheme state = [] for node in workflow.nodes: # type: SchemeNode item = self.__item_for_node.get(node, None) if item is None: continue stackorder = item.activation_order if item.widget is not None and not item.widget.isHidden(): data = self.save_widget_geometry(node, item.widget) state.append((stackorder, node, data)) return [(node, data) for _, node, data in sorted(state, key=lambda t: t[0])] def restore_window_state(self, state): # type: (List[Tuple[Node, bytes]]) -> None """ Restore the window state. """ assert self.__workflow is not None workflow = self.__workflow # type: Scheme visible = {node for node, _ in state} # first hide all other widgets for node in workflow.nodes: if node not in visible: # avoid creating widgets if not needed item = self.__item_for_node.get(node, None) if item is not None and item.widget is not None: item.widget.hide() allnodes = set(workflow.nodes) # restore state for visible group; windows are stacked as they appear # in the state list. w = None for node, node_state in filter(lambda t: t[0] in allnodes, state): w = self.widget_for_node(node) # also create it if needed if w is not None: w.show() self.restore_widget_geometry(node, w, node_state) w.raise_() self.__mark_activated(w) # activate (give focus to) the last window if w is not None: w.activateWindow() def save_widget_geometry(self, node, widget): # type: (SchemeNode, QWidget) -> bytes """ Save and return the current geometry and state for node. """ return b'' def restore_widget_geometry(self, node, widget, state): # type: (SchemeNode, QWidget, bytes) -> bool """ Restore the widget geometry and state for node. Return True if the geometry was restored successfully. The default implementation does nothing. """ return False @Slot(SchemeNode) def __on_raise_ancestors(self, node): # type: (SchemeNode) -> None """ Raise all the ancestor widgets of `widget`. """ item = self.__item_for_node.get(node) if item is not None: scheme = self.scheme() assert scheme is not None ancestors = [ self.__item_for_node.get(p) for p in scheme.parents(item.node) ] self.__raise_and_activate(filter(None, reversed(ancestors))) @Slot(SchemeNode) def __on_raise_descendants(self, node): # type: (SchemeNode) -> None """ Raise all the descendants widgets of `widget`. """ item = self.__item_for_node.get(node) if item is not None: scheme = self.scheme() assert scheme is not None descendants = [ self.__item_for_node.get(p) for p in scheme.children(item.node) ] self.__raise_and_activate(filter(None, reversed(descendants))) def __raise_and_activate(self, items): # type: (Iterable[Item]) -> None """Show and raise a set of widgets.""" # preserve the tracked stacking order items = sorted(items, key=lambda item: item.activation_order) w = None for item in items: if item.widget is not None: w = item.widget elif item.errorwidget is not None: w = item.errorwidget else: continue w.show() w.raise_() if w is not None: # give focus to the last activated top window w.activateWindow() def __activate_widget_for_node(self, node): # type: (SchemeNode) -> None # activate the widget for the node. self.ensure_created(node) item = self.__item_for_node.get(node) if item is None: return if item.widget is not None: self.activate_widget_for_node(node, item.widget) elif item.errorwidget is not None: item.errorwidget.show() item.errorwidget.raise_() item.errorwidget.activateWindow() def __on_activate_parent(self): event = WorkflowEvent(WorkflowEvent.ActivateParentRequest) QCoreApplication.sendEvent(self.scheme(), event) def eventFilter(self, recv, event): # type: (QObject, QEvent) -> bool if isinstance(recv, SchemeNode): if event.type() == NodeEvent.NodeActivateRequest: self.__activate_widget_for_node(recv) self.__dispatch_events(recv, event) return False def __dispatch_events(self, node: Node, event: QEvent) -> None: """ Dispatch relevant workflow events to the GUI widget """ if event.type() in ( WorkflowEvent.InputLinkAdded, WorkflowEvent.InputLinkRemoved, WorkflowEvent.InputLinkStateChange, WorkflowEvent.OutputLinkAdded, WorkflowEvent.OutputLinkRemoved, WorkflowEvent.OutputLinkStateChange, WorkflowEvent.NodeStateChange, WorkflowEvent.WorkflowEnvironmentChange, ): item = self.__item_for_node.get(node) if item is not None and item.widget is not None: QCoreApplication.sendEvent(item.widget, event) def __set_float_on_top_flag(self, widget): # type: (QWidget) -> None """Set or unset widget's float on top flag""" should_float_on_top = self.__float_widgets_on_top float_on_top = bool(widget.windowFlags() & Qt.WindowStaysOnTopHint) if float_on_top == should_float_on_top: return widget_was_visible = widget.isVisible() if should_float_on_top: widget.setWindowFlags(widget.windowFlags() | Qt.WindowStaysOnTopHint) else: widget.setWindowFlags(widget.windowFlags() & ~Qt.WindowStaysOnTopHint) # Changing window flags hid the widget if widget_was_visible: widget.show() def __on_env_changed(self, key, newvalue, oldvalue): # Notify widgets of a runtime environment change for item in self.__item_for_node.values(): if item.widget is not None: ev = WorkflowEnvChanged(key, newvalue, oldvalue) QCoreApplication.sendEvent(item.widget, ev) def actions_for_context_menu(self, node): # type: (SchemeNode) -> List[QAction] """ Return a list of extra actions that can be inserted into context menu in the workflow editor. Subclasses can reimplement this method to extend the default context menu. Parameters ---------- node: SchemeNode The node for which the context menu is requested. Return ------ actions: List[QAction] Actions that are appended to the default menu. """ return []
class CanvasView(QGraphicsView): """Canvas View handles the zooming. """ def __init__(self, *args): QGraphicsView.__init__(self, *args) self.setAlignment(Qt.AlignTop | Qt.AlignLeft) self.__backgroundIcon = QIcon() self.__autoScroll = False self.__autoScrollMargin = 16 self.__autoScrollTimer = QTimer(self) self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance) def setScene(self, scene): QGraphicsView.setScene(self, scene) self._ensureSceneRect(scene) def _ensureSceneRect(self, scene): r = scene.addRect(QRectF(0, 0, 400, 400)) scene.sceneRect() scene.removeItem(r) def setAutoScrollMargin(self, margin): self.__autoScrollMargin = margin def autoScrollMargin(self): return self.__autoScrollMargin def setAutoScroll(self, enable): self.__autoScroll = enable def autoScroll(self): return self.__autoScroll def mousePressEvent(self, event): QGraphicsView.mousePressEvent(self, event) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: if not self.__autoScrollTimer.isActive() and \ self.__shouldAutoScroll(event.pos()): self.__startAutoScroll() QGraphicsView.mouseMoveEvent(self, event) def mouseReleaseEvent(self, event): if event.button() & Qt.LeftButton: self.__stopAutoScroll() return QGraphicsView.mouseReleaseEvent(self, event) def __shouldAutoScroll(self, pos): if self.__autoScroll: margin = self.__autoScrollMargin viewrect = self.contentsRect() rect = viewrect.adjusted(margin, margin, -margin, -margin) # only do auto scroll when on the viewport's margins return not rect.contains(pos) and viewrect.contains(pos) else: return False def __startAutoScroll(self): self.__autoScrollTimer.start(10) log.debug("Auto scroll timer started") def __stopAutoScroll(self): if self.__autoScrollTimer.isActive(): self.__autoScrollTimer.stop() log.debug("Auto scroll timer stopped") def __autoScrollAdvance(self): """Advance the auto scroll """ pos = QCursor.pos() pos = self.mapFromGlobal(pos) margin = self.__autoScrollMargin vvalue = self.verticalScrollBar().value() hvalue = self.horizontalScrollBar().value() vrect = QRect(0, 0, self.width(), self.height()) # What should be the speed advance = 10 # We only do auto scroll if the mouse is inside the view. if vrect.contains(pos): if pos.x() < vrect.left() + margin: self.horizontalScrollBar().setValue(hvalue - advance) if pos.y() < vrect.top() + margin: self.verticalScrollBar().setValue(vvalue - advance) if pos.x() > vrect.right() - margin: self.horizontalScrollBar().setValue(hvalue + advance) if pos.y() > vrect.bottom() - margin: self.verticalScrollBar().setValue(vvalue + advance) if self.verticalScrollBar().value() == vvalue and \ self.horizontalScrollBar().value() == hvalue: self.__stopAutoScroll() else: self.__stopAutoScroll() log.debug("Auto scroll advance") def setBackgroundIcon(self, icon): if not isinstance(icon, QIcon): raise TypeError("A QIcon expected.") if self.__backgroundIcon != icon: self.__backgroundIcon = icon self.viewport().update() def backgroundIcon(self): return QIcon(self.__backgroundIcon) def drawBackground(self, painter, rect): QGraphicsView.drawBackground(self, painter, rect) if not self.__backgroundIcon.isNull(): painter.setClipRect(rect) vrect = QRect(QPoint(0, 0), self.viewport().size()) vrect = self.mapToScene(vrect).boundingRect() pm = self.__backgroundIcon.pixmap( vrect.size().toSize().boundedTo(QSize(200, 200)) ) pmrect = QRect(QPoint(0, 0), pm.size()) pmrect.moveCenter(vrect.center().toPoint()) if rect.toRect().intersects(pmrect): painter.drawPixmap(pmrect, pm)
class OWLouvainClustering(widget.OWWidget): name = 'Louvain Clustering' description = 'Detects communities in a network of nearest neighbors.' icon = 'icons/LouvainClustering.svg' priority = 2110 want_main_area = False settingsHandler = DomainContextHandler() class Inputs: data = Input('Data', Table, default=True) if Graph is not None: class Outputs: annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table, default=True) graph = Output('Network', Graph) else: class Outputs: annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table, default=True) apply_pca = ContextSetting(True) pca_components = ContextSetting(_DEFAULT_PCA_COMPONENTS) metric_idx = ContextSetting(0) k_neighbors = ContextSetting(_DEFAULT_K_NEIGHBORS) resolution = ContextSetting(1.) auto_commit = Setting(False) class Information(widget.OWWidget.Information): modified = Msg("Press commit to recompute clusters and send new data") class Error(widget.OWWidget.Error): empty_dataset = Msg('No features in data') general_error = Msg('Error occured during clustering\n{}') def __init__(self): super().__init__() self.data = None # type: Optional[Table] self.preprocessed_data = None # type: Optional[Table] self.pca_projection = None # type: Optional[Table] self.graph = None # type: Optional[nx.Graph] self.partition = None # type: Optional[np.array] # Use a executor with a single worker, to limit CPU overcommitment for # cancelled tasks. The method does not have a fine cancellation # granularity so we assure that there are not N - 1 jobs executing # for no reason only to be thrown away. It would be better to use the # global pool but implement a limit on jobs from this source. self.__executor = futures.ThreadPoolExecutor(max_workers=1) self.__task = None # type: Optional[TaskState] self.__invalidated = False # coalescing commit timer self.__commit_timer = QTimer(self, singleShot=True) self.__commit_timer.timeout.connect(self.commit) pca_box = gui.vBox(self.controlArea, 'PCA Preprocessing') self.apply_pca_cbx = gui.checkBox( pca_box, self, 'apply_pca', label='Apply PCA preprocessing', callback=self._invalidate_graph, ) # type: QCheckBox self.pca_components_slider = gui.hSlider( pca_box, self, 'pca_components', label='Components: ', minValue=2, maxValue=_MAX_PCA_COMPONENTS, callback=self._invalidate_pca_projection, tracking=False) # type: QSlider graph_box = gui.vBox(self.controlArea, 'Graph parameters') self.metric_combo = gui.comboBox( graph_box, self, 'metric_idx', label='Distance metric', items=[m[0] for m in METRICS], callback=self._invalidate_graph, orientation=Qt.Horizontal, ) # type: gui.OrangeComboBox self.k_neighbors_spin = gui.spin( graph_box, self, 'k_neighbors', minv=1, maxv=_MAX_K_NEIGBOURS, label='k neighbors', controlWidth=80, alignment=Qt.AlignRight, callback=self._invalidate_graph, ) # type: gui.SpinBoxWFocusOut self.resolution_spin = gui.hSlider( graph_box, self, 'resolution', minValue=0, maxValue=5., step=1e-1, label='Resolution', intOnly=False, labelFormat='%.1f', callback=self._invalidate_partition, tracking=False, ) # type: QSlider self.resolution_spin.parent().setToolTip( 'The resolution parameter affects the number of clusters to find. ' 'Smaller values tend to produce more clusters and larger values ' 'retrieve less clusters.') self.apply_button = gui.auto_commit( self.controlArea, self, 'auto_commit', 'Apply', box=None, commit=lambda: self.commit(), callback=lambda: self._on_auto_commit_changed(), ) # type: QWidget def _invalidate_pca_projection(self): self.pca_projection = None if not self.apply_pca: return self._invalidate_graph() self._set_modified(True) def _invalidate_graph(self): self.graph = None self._invalidate_partition() self._set_modified(True) def _invalidate_partition(self): self.partition = None self._invalidate_output() self.Information.modified() self._set_modified(True) def _invalidate_output(self): self.__invalidated = True if self.__task is not None: self.__cancel_task(wait=False) if self.auto_commit: self.__commit_timer.start() else: self.__set_state_ready() def _set_modified(self, state): """ Mark the widget (GUI) as containing modified state. """ if self.data is None: # does not apply when we have no data state = False elif self.auto_commit: # does not apply when auto commit is on state = False self.Information.modified(shown=state) def _on_auto_commit_changed(self): if self.auto_commit and self.__invalidated: self.commit() def cancel(self): """Cancel any running jobs.""" self.__cancel_task(wait=False) self.__set_state_ready() def commit(self): self.__commit_timer.stop() self.__invalidated = False self._set_modified(False) self.Error.clear() # Cancel current running task self.__cancel_task(wait=False) if self.data is None: self.__set_state_ready() return # Make sure the dataset is ok if len(self.data.domain.attributes) < 1: self.Error.empty_dataset() self.__set_state_ready() return if self.partition is not None: self.__set_state_ready() self._send_data() return # Preprocess the dataset if self.preprocessed_data is None: louvain = Louvain(random_state=0) self.preprocessed_data = louvain.preprocess(self.data) state = TaskState(self) # Prepare/assemble the task(s) to run; reuse partial results if self.apply_pca: if self.pca_projection is not None: data = self.pca_projection pca_components = None else: data = self.preprocessed_data pca_components = self.pca_components else: data = self.preprocessed_data pca_components = None if self.graph is not None: # run on graph only; no need to do PCA and k-nn search ... graph = self.graph k_neighbors = metric = None else: k_neighbors, metric = self.k_neighbors, METRICS[self.metric_idx][1] graph = None if graph is None: task = partial(run_on_data, data, pca_components=pca_components, k_neighbors=k_neighbors, metric=metric, resolution=self.resolution, state=state) else: task = partial(run_on_graph, graph, resolution=self.resolution, state=state) self.__set_state_busy() self.__start_task(task, state) @Slot(object) def __set_partial_results(self, result): # type: (Tuple[str, Any]) -> None which, res = result if which == "pca_projection": assert isinstance(res, Table) and len(res) == len(self.data) self.pca_projection = res elif which == "graph": assert isinstance(res, nx.Graph) self.graph = res elif which == "partition": assert isinstance(res, np.ndarray) self.partition = res else: assert False, which @Slot(object) def __on_done(self, future): # type: (Future['Results']) -> None assert future.done() assert self.__task is not None assert self.__task.future is future assert self.__task.watcher.future() is future self.__task, task = None, self.__task task.deleteLater() self.__set_state_ready() try: result = future.result() except Exception as err: # pylint: disable=broad-except self.Error.general_error(str(err), exc_info=True) else: self.__set_results(result) @Slot(str) def setStatusMessage(self, text): super().setStatusMessage(text) @Slot(float) def progressBarSet(self, value, *a, **kw): super().progressBarSet(value, *a, **kw) def __set_state_ready(self): self.progressBarFinished() self.setBlocking(False) self.setStatusMessage("") def __set_state_busy(self): self.progressBarInit() self.setBlocking(True) def __start_task(self, task, state): # type: (Callable[[], Any], TaskState) -> None assert self.__task is None state.status_changed.connect(self.setStatusMessage) state.progress_changed.connect(self.progressBarSet) state.partial_result_ready.connect(self.__set_partial_results) state.watcher.done.connect(self.__on_done) state.start(self.__executor, task) state.setParent(self) self.__task = state def __cancel_task(self, wait=True): # Cancel and dispose of the current task if self.__task is not None: state, self.__task = self.__task, None state.cancel() state.partial_result_ready.disconnect(self.__set_partial_results) state.status_changed.disconnect(self.setStatusMessage) state.progress_changed.disconnect(self.progressBarSet) state.watcher.done.disconnect(self.__on_done) if wait: futures.wait([state.future]) state.deleteLater() else: w = FutureWatcher(state.future, parent=state) w.done.connect(state.deleteLater) def __set_results(self, results): # type: ('Results') -> None # NOTE: All of these have already been set by __set_partial_results, # we double check that they are aliases if results.pca_projection is not None: assert self.pca_components == results.pca_components assert self.pca_projection is results.pca_projection self.pca_projection = results.pca_projection if results.graph is not None: assert results.metric == METRICS[self.metric_idx][1] assert results.k_neighbors == self.k_neighbors assert self.graph is results.graph self.graph = results.graph if results.partition is not None: assert results.resolution == self.resolution assert self.partition is results.partition self.partition = results.partition self._send_data() def _send_data(self): if self.partition is None or self.data is None: return domain = self.data.domain # Compute the frequency of each cluster index counts = np.bincount(self.partition) indices = np.argsort(counts)[::-1] index_map = {n: o for n, o in zip(indices, range(len(indices)))} new_partition = list(map(index_map.get, self.partition)) cluster_var = DiscreteVariable( get_unique_names(domain, 'Cluster'), values=[ 'C%d' % (i + 1) for i, _ in enumerate(np.unique(new_partition)) ]) new_domain = add_columns(domain, metas=[cluster_var]) new_table = self.data.transform(new_domain) new_table.get_column_view(cluster_var)[0][:] = new_partition self.Outputs.annotated_data.send(new_table) if Graph is not None: graph = Graph(self.graph) graph.set_items(new_table) self.Outputs.graph.send(graph) @Inputs.data def set_data(self, data): self.closeContext() self.Error.clear() prev_data, self.data = self.data, data self.openContext(self.data) # If X hasn't changed, there's no reason to recompute clusters if prev_data and self.data and np.array_equal(self.data.X, prev_data.X): if self.auto_commit: self._send_data() return # Clear the outputs self.Outputs.annotated_data.send(None) if Graph is not None: self.Outputs.graph.send(None) # Clear internal state self.clear() self._invalidate_pca_projection() if self.data is None: return # Can't have more PCA components than the number of attributes n_attrs = len(data.domain.attributes) self.pca_components_slider.setMaximum(min(_MAX_PCA_COMPONENTS, n_attrs)) self.pca_components_slider.setValue( min(_DEFAULT_PCA_COMPONENTS, n_attrs)) # Can't have more k neighbors than there are data points self.k_neighbors_spin.setMaximum(min(_MAX_K_NEIGBOURS, len(data) - 1)) self.k_neighbors_spin.setValue(min(_DEFAULT_K_NEIGHBORS, len(data) - 1)) self.commit() def clear(self): self.__cancel_task(wait=False) self.preprocessed_data = None self.pca_projection = None self.graph = None self.partition = None self.Error.clear() self.Information.modified.clear() def onDeleteWidget(self): self.__cancel_task(wait=True) self.__executor.shutdown(True) self.clear() self.data = None super().onDeleteWidget() def send_report(self): pca = report.bool_str(self.apply_pca) if self.apply_pca: pca += report.plural(', {number} component{s}', self.pca_components) self.report_items(( ('PCA preprocessing', pca), ('Metric', METRICS[self.metric_idx][0]), ('k neighbors', self.k_neighbors), ('Resolution', self.resolution), ))
class OWPCA(widget.OWWidget): name = "PCA" description = "Principal component analysis with a scree-diagram." icon = "icons/PCA.svg" priority = 3050 inputs = [("Data", Table, "set_data")] outputs = [("Transformed data", Table), ("Components", Table), ("PCA", PCA)] ncomponents = settings.Setting(2) variance_covered = settings.Setting(100) batch_size = settings.Setting(100) address = settings.Setting('') auto_update = settings.Setting(True) auto_commit = settings.Setting(True) normalize = settings.Setting(True) maxp = settings.Setting(20) axis_labels = settings.Setting(10) graph_name = "plot.plotItem" def __init__(self): super().__init__() self.data = None self._pca = None self._transformed = None self._variance_ratio = None self._cumulative = None self._line = False self._pca_projector = PCA() self._pca_projector.component = self.ncomponents self._pca_preprocessors = PCA.preprocessors # Components Selection box = gui.vBox(self.controlArea, "Components Selection") form = QFormLayout() box.layout().addLayout(form) self.components_spin = gui.spin( box, self, "ncomponents", 0, 1000, callback=self._update_selection_component_spin, keyboardTracking=False ) self.components_spin.setSpecialValueText("All") self.variance_spin = gui.spin( box, self, "variance_covered", 1, 100, callback=self._update_selection_variance_spin, keyboardTracking=False ) self.variance_spin.setSuffix("%") form.addRow("Components:", self.components_spin) form.addRow("Variance covered:", self.variance_spin) # Incremental learning self.sampling_box = gui.vBox(self.controlArea, "Incremental learning") self.addresstext = QLineEdit(box) self.addresstext.setPlaceholderText('Remote server') if self.address: self.addresstext.setText(self.address) self.sampling_box.layout().addWidget(self.addresstext) form = QFormLayout() self.sampling_box.layout().addLayout(form) self.batch_spin = gui.spin( self.sampling_box, self, "batch_size", 50, 100000, step=50, keyboardTracking=False) form.addRow("Batch size ~ ", self.batch_spin) self.start_button = gui.button( self.sampling_box, self, "Start remote computation", callback=self.start, autoDefault=False, tooltip="Start/abort computation on the server") self.start_button.setEnabled(False) gui.checkBox(self.sampling_box, self, "auto_update", "Periodically fetch model", callback=self.update_model) self.__timer = QTimer(self, interval=2000) self.__timer.timeout.connect(self.get_model) self.sampling_box.setVisible(remotely) # Options self.options_box = gui.vBox(self.controlArea, "Options") gui.checkBox(self.options_box, self, "normalize", "Normalize data", callback=self._update_normalize) self.maxp_spin = gui.spin( self.options_box, self, "maxp", 1, 100, label="Show only first", callback=self._setup_plot, keyboardTracking=False ) self.controlArea.layout().addStretch() gui.auto_commit(self.controlArea, self, "auto_commit", "Apply", checkbox_label="Apply automatically") self.plot = pg.PlotWidget(background="w") axis = self.plot.getAxis("bottom") axis.setLabel("Principal Components") axis = self.plot.getAxis("left") axis.setLabel("Proportion of variance") self.plot_horlabels = [] self.plot_horlines = [] self.plot.getViewBox().setMenuEnabled(False) self.plot.getViewBox().setMouseEnabled(False, False) self.plot.showGrid(True, True, alpha=0.5) self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0)) self.mainArea.layout().addWidget(self.plot) self._update_normalize() def update_model(self): self.get_model() if self.auto_update and self.rpca and not self.rpca.ready(): self.__timer.start(2000) else: self.__timer.stop() def start(self): if 'Abort' in self.start_button.text(): self.rpca.abort() self.__timer.stop() self.start_button.setText("Start remote computation") else: self.address = self.addresstext.text() with remote.server(self.address): from Orange.projection.pca import RemotePCA maxiter = (1e5 + self.data.approx_len()) / self.batch_size * 3 self.rpca = RemotePCA(self.data, self.batch_size, int(maxiter)) self.update_model() self.start_button.setText("Abort remote computation") def set_data(self, data): self.information() if isinstance(data, SqlTable): if data.approx_len() < AUTO_DL_LIMIT: data = Table(data) elif not remotely: self.information("Data has been sampled") data_sample = data.sample_time(1, no_cache=True) data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = data self.fit() def fit(self): self.clear() self.start_button.setEnabled(False) if self.data is None: return data = self.data self._transformed = None if isinstance(data, SqlTable): # data was big and remote available self.sampling_box.setVisible(True) self.start_button.setText("Start remote computation") self.start_button.setEnabled(True) else: self.sampling_box.setVisible(False) pca = self._pca_projector(data) variance_ratio = pca.explained_variance_ratio_ cumulative = numpy.cumsum(variance_ratio) self.components_spin.setRange(0, len(cumulative)) self._pca = pca self._variance_ratio = variance_ratio self._cumulative = cumulative self._setup_plot() self.unconditional_commit() def clear(self): self._pca = None self._transformed = None self._variance_ratio = None self._cumulative = None self._line = None self.plot_horlabels = [] self.plot_horlines = [] self.plot.clear() def get_model(self): if self.rpca is None: return if self.rpca.ready(): self.__timer.stop() self.start_button.setText("Restart (finished)") self._pca = self.rpca.get_state() if self._pca is None: return self._variance_ratio = self._pca.explained_variance_ratio_ self._cumulative = numpy.cumsum(self._variance_ratio) self._setup_plot() self._transformed = None self.commit() def _setup_plot(self): self.plot.clear() explained_ratio = self._variance_ratio explained = self._cumulative p = min(len(self._variance_ratio), self.maxp) self.plot.plot(numpy.arange(p), explained_ratio[:p], pen=pg.mkPen(QColor(Qt.red), width=2), antialias=True, name="Variance") self.plot.plot(numpy.arange(p), explained[:p], pen=pg.mkPen(QColor(Qt.darkYellow), width=2), antialias=True, name="Cumulative Variance") cutpos = self._nselected_components() - 1 self._line = pg.InfiniteLine( angle=90, pos=cutpos, movable=True, bounds=(0, p - 1)) self._line.setCursor(Qt.SizeHorCursor) self._line.setPen(pg.mkPen(QColor(Qt.black), width=2)) self._line.sigPositionChanged.connect(self._on_cut_changed) self.plot.addItem(self._line) self.plot_horlines = ( pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine)), pg.PlotCurveItem(pen=pg.mkPen(QColor(Qt.blue), style=Qt.DashLine))) self.plot_horlabels = ( pg.TextItem(color=QColor(Qt.black), anchor=(1, 0)), pg.TextItem(color=QColor(Qt.black), anchor=(1, 1))) for item in self.plot_horlabels + self.plot_horlines: self.plot.addItem(item) self._set_horline_pos() self.plot.setRange(xRange=(0.0, p - 1), yRange=(0.0, 1.0)) self._update_axis() def _set_horline_pos(self): cutidx = self.ncomponents - 1 for line, label, curve in zip(self.plot_horlines, self.plot_horlabels, (self._variance_ratio, self._cumulative)): y = curve[cutidx] line.setData([-1, cutidx], 2 * [y]) label.setPos(cutidx, y) label.setPlainText("{:.3f}".format(y)) def _on_cut_changed(self, line): # cut changed by means of a cut line over the scree plot. value = int(round(line.value())) self._line.setValue(value) current = self._nselected_components() components = value + 1 if not (self.ncomponents == 0 and components == len(self._variance_ratio)): self.ncomponents = components self._set_horline_pos() if self._pca is not None: self.variance_covered = self._cumulative[components - 1] * 100 if current != self._nselected_components(): self._invalidate_selection() def _update_selection_component_spin(self): # cut changed by "ncomponents" spin. if self._pca is None: self._invalidate_selection() return if self.ncomponents == 0: # Special "All" value cut = len(self._variance_ratio) else: cut = self.ncomponents self.variance_covered = self._cumulative[cut - 1] * 100 if numpy.floor(self._line.value()) + 1 != cut: self._line.setValue(cut - 1) self._invalidate_selection() def _update_selection_variance_spin(self): # cut changed by "max variance" spin. if self._pca is None: return cut = numpy.searchsorted(self._cumulative, self.variance_covered / 100.0) + 1 cut = min(cut, len(self._cumulative)) self.ncomponents = cut if numpy.floor(self._line.value()) + 1 != cut: self._line.setValue(cut - 1) self._invalidate_selection() def _update_normalize(self): if self.normalize: pp = self._pca_preprocessors + [Normalize()] else: pp = self._pca_preprocessors self._pca_projector.preprocessors = pp self.fit() if self.data is None: self._invalidate_selection() def _nselected_components(self): """Return the number of selected components.""" if self._pca is None: return 0 if self.ncomponents == 0: # Special "All" value max_comp = len(self._variance_ratio) else: max_comp = self.ncomponents var_max = self._cumulative[max_comp - 1] if var_max != numpy.floor(self.variance_covered / 100.0): cut = max_comp self.variance_covered = var_max * 100 else: self.ncomponents = cut = numpy.searchsorted( self._cumulative, self.variance_covered / 100.0) + 1 return cut def _invalidate_selection(self): self.commit() def _update_axis(self): p = min(len(self._variance_ratio), self.maxp) axis = self.plot.getAxis("bottom") d = max((p-1)//(self.axis_labels-1), 1) axis.setTicks([[(i, str(i+1)) for i in range(0, p, d)]]) def commit(self): transformed = components = None if self._pca is not None: if self._transformed is None: # Compute the full transform (all components) only once. self._transformed = self._pca(self.data) transformed = self._transformed domain = Domain( transformed.domain.attributes[:self.ncomponents], self.data.domain.class_vars, self.data.domain.metas ) transformed = transformed.from_table(domain, transformed) dom = Domain(self._pca.orig_domain.attributes, metas=[StringVariable(name='component')]) metas = numpy.array([['PC{}'.format(i + 1) for i in range(self.ncomponents)]], dtype=object).T components = Table(dom, self._pca.components_[:self.ncomponents], metas=metas) components.name = 'components' self._pca_projector.component = self.ncomponents self.send("Transformed data", transformed) self.send("Components", components) self.send("PCA", self._pca_projector) def send_report(self): if self.data is None: return self.report_items(( ("Selected components", self.ncomponents), ("Explained variance", "{:.3f} %".format(self.variance_covered)) )) self.report_plot()