def UnitTestArmModel():
    '''
    Tests the next state 
    '''
    rs = ReadSetupFile()

    arm = Arm()
    arm.setDT(rs.dt)

    state, estimState, command, noisycommand, nextEstimState, nextState = {}, {}, {}, {}, {}, {}
    for el in os.listdir(BrentTrajectoriesFolder):
            state[el], estimState[el], command[el], noisycommand[el], nextEstimState[el], nextState[el] = [], [], [], [], [], []
            data = np.loadtxt(BrentTrajectoriesFolder + el)
            for i in range(data.shape[0]):
                estimState[el].append(np.array([data[i][4], data[i][5], data[i][6], data[i][7]]))
                state[el].append(np.array([data[i][8], data[i][9], data[i][10], data[i][11]]))
                noisycommand[el].append(np.array([data[i][12], data[i][13], data[i][14], data[i][15], data[i][16], data[i][17]]))
                command[el].append(np.array([data[i][18], data[i][19], data[i][20], data[i][21], data[i][22], data[i][23]]))
                nextEstimState[el].append(np.array([data[i][24], data[i][25], data[i][26], data[i][27]]))
                nextState[el].append(np.array([data[i][28], data[i][29], data[i][30], data[i][31]]))

    for el in os.listdir(BrentTrajectoriesFolder):
            for i in range(len(state[el])):
                if rd.random()<0.06:
                    outNextStateNoisy = arm.computeNextState(noisycommand[el][i],state[el][i])
                    outNextState = arm.computeNextState(command[el][i],state[el][i])
                    
                    print("U      :", command[el][i]) 
                    print("UNoisy :", noisycommand[el][i])
                    print("---------------------------------------------------------")
                    print("Real :", nextState[el][i]) 
                    print("ArmN :", outNextStateNoisy)
                    print("Arm :", outNextState)
                    print("---------------------------------------------------------")
def UnitTestArmModel():
    '''
    Tests the next state 
    '''
    rs = ReadSetupFile()

    arm = Arm()
    arm.setDT(rs.dt)

    state, estimState, command, noisycommand, nextEstimState, nextState = {}, {}, {}, {}, {}, {}
    for el in os.listdir(BrentTrajectoriesFolder):
            state[el], estimState[el], command[el], noisycommand[el], nextEstimState[el], nextState[el] = [], [], [], [], [], []
            data = np.loadtxt(BrentTrajectoriesFolder + el)
            for i in range(data.shape[0]):
                estimState[el].append(np.array([data[i][4], data[i][5], data[i][6], data[i][7]]))
                state[el].append(np.array([data[i][8], data[i][9], data[i][10], data[i][11]]))
                noisycommand[el].append(np.array([data[i][12], data[i][13], data[i][14], data[i][15], data[i][16], data[i][17]]))
                command[el].append(np.array([data[i][18], data[i][19], data[i][20], data[i][21], data[i][22], data[i][23]]))
                nextEstimState[el].append(np.array([data[i][24], data[i][25], data[i][26], data[i][27]]))
                nextState[el].append(np.array([data[i][28], data[i][29], data[i][30], data[i][31]]))

    for el in os.listdir(BrentTrajectoriesFolder):
            for i in range(len(state[el])):
                if rd.random()<0.06:
                    outNextStateNoisy = arm.computeNextState(noisycommand[el][i],state[el][i])
                    outNextState = arm.computeNextState(command[el][i],state[el][i])
                    
                    print("U      :", command[el][i]) 
                    print("UNoisy :", noisycommand[el][i])
                    print("---------------------------------------------------------")
                    print("Real :", nextState[el][i]) 
                    print("ArmN :", outNextStateNoisy)
                    print("Arm :", outNextState)
                    print("---------------------------------------------------------")
示例#3
0
class TrajMaker:
    
    def __init__(self, rs, sizeOfTarget, saveTraj, thetaFile):
        '''
    	Initializes the parameters used to run the functions below
    
    	Inputs:		
    			-arm, armModel, class object
                        -rs, readSetup, class object
    			-sizeOfTarget, size of the target, float
    			-Ukf, unscented kalman filter, class object
    			-saveTraj, Boolean: true = Data are saved, false = data are not saved
    	'''
        self.arm = Arm()
        self.arm.setDT(rs.dt)

        self.controller = initRBFNController(rs,thetaFile)
        #load the controller, i.e. the vector of parameters theta
        theta = self.controller.loadTheta(thetaFile+".theta")
        #put theta to a one dimension numpy array, ie row vector form
        #theta = matrixToVector(theta)
 
        self.rs = rs
        self.sizeOfTarget = sizeOfTarget
        #6 is the dimension of the state for the filter, 4 is the dimension of the observation for the filter, 25 is the delay used
        self.stateEstimator = StateEstimator(rs.inputDim,rs.outputDim, rs.delayUKF, self.arm)
        self.saveTraj = saveTraj
        #Initializes variables used to save trajectory
 
    def setTheta(self, theta):
        self.controller.setTheta(theta)

    def computeManipulabilityCost(self):
        '''
        Computes the manipulability cost on one step of the trajectory
		
        Input:	-cost: cost at time t, float
				
        Output:		-cost: cost at time t+1, float
        '''
        dotq, q = getDotQAndQFromStateVector(self.arm.getState())
        manip = self.arm.directionalManipulability(q,self.cartTarget)
        return 1-manip

    def computeStateTransitionCost(self, U):
        '''
		Computes the cost on one step of the trajectory
		
		Input:	-cost: cost at time t, float
				-U: muscular activation vector, numpy array (6,1)
				-t: time, float
				
		Output:		-cost: cost at time t+1, float
		'''
        #compute the square of the norm of the muscular activation vector
        norme = np.linalg.norm(U)
        mvtCost = norme*norme
        #compute the cost following the law of the model
        #return np.exp(-t/self.rs.gammaCF)*(-self.rs.upsCF*mvtCost)
        return -self.rs.upsCF*mvtCost
    
    def computePerpendCost(self):  
        dotq, q = getDotQAndQFromStateVector(self.arm.getState())
        J = self.arm.jacobian(q)
        xi = np.dot(J,dotq)
        xi = xi/np.linalg.norm(xi)
        return 500-1000*xi[0]*xi[0]

    def computeFinalReward(self, t, coordHand):
        cost = self.computePerpendCost()
        '''
		Computes the cost on final step if the target is reached
		
		Input:		-cost: cost at the end of the trajectory, float
					-t: time, float
					
		Output:		-cost: final cost if the target is reached
		'''
        #check if the target is reached and give the reward if yes
        if coordHand[1] >= self.rs.YTarget:
            #print "main X:", coordHand[0]
            if coordHand[0] >= -self.sizeOfTarget/2 and coordHand[0] <= self.sizeOfTarget/2:
                cost += np.exp(-t/self.rs.gammaCF)*self.rs.rhoCF
            else:
                cost += -500-500000*(coordHand[0]*coordHand[0])
        else:
            cost += -4000
        return cost

        
    def runTrajectory(self, x, y, foldername):
        '''
    	Generates trajectory from the initial position (x, y)
    
    	Inputs:		-x: abscissa of the initial position, float
    			-y: ordinate of the initial position, float
    
    	Output:		-cost: the cost of the trajectory, float
    	'''
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        coordElbow, coordHand = self.arm.mgdFull(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        i, t, cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        estimState = state
        dataStore = []
        qtarget1, qtarget2 = self.arm.mgi(self.rs.XTarget, self.rs.YTarget)
        vectarget = [0.0, 0.0, qtarget1, qtarget2]

        #loop to generate next position until the target is reached 
        while coordHand[1] < self.rs.YTarget and i < self.rs.numMaxIter:
            stepStore = []
            #computation of the next muscular activation vector using the controller theta
            #print ("state :",self.arm.getState())

            U = self.controller.computeOutput(estimState)

            if det:
                Unoisy = muscleFilter(U)
            else:
                Unoisy = getNoisyCommand(U,self.arm.musclesP.knoiseU)
                Unoisy = muscleFilter(Unoisy)
            #computation of the arm state
            realNextState = self.arm.computeNextState(Unoisy, self.arm.getState())
 
            #computation of the approximated state
            tmpState = self.arm.getState()

            if det:
                estimNextState = realNextState
            else:
                U = muscleFilter(U)
                estimNextState = self.stateEstimator.getEstimState(tmpState,U)
            
            #print estimNextState

            self.arm.setState(realNextState)

            #computation of the cost
            cost += self.computeStateTransitionCost(Unoisy)

            '''
            print "U =", U
            print "Unoisy =", Unoisy
            print "estimstate =", estimState
            #print "theta =", self.controller.theta
            if math.isnan(cost):
                print "NAN : U =", U
                print "NAN : Unoisy =", Unoisy
                print "NAN : estimstate =", estimState
                #print "NAN : theta =", self.controller.theta
                sys.exit()
            '''

            #get dotq and q from the state vector
            dotq, q = getDotQAndQFromStateVector(tmpState)
            coordElbow, coordHand = self.arm.mgdFull(q)
            #print ("dotq :",dotq)
            #computation of the coordinates to check if the target is reach or not
            #code to save data of the trajectory

            #Note : these structures might be much improved
            if self.saveTraj == True: 
                stepStore.append(vectarget)
                stepStore.append(estimState)
                stepStore.append(tmpState)
                stepStore.append(Unoisy)
                stepStore.append(np.array(U))
                stepStore.append(estimNextState)
                stepStore.append(realNextState)
                stepStore.append([coordElbow[0], coordElbow[1]])
                stepStore.append([coordHand[0], coordHand[1]])
                #print ("before",stepStore)
                tmpstore = np.array(stepStore).flatten()
                row = [item for sub in tmpstore for item in sub]
                #print ("store",row)
                dataStore.append(row)

            estimState = estimNextState
            i += 1
            t += self.rs.dt

        cost += self.computeFinalReward(t,coordHand)

        if self.saveTraj == True:
            filename = findFilename(foldername+"Log/","traj",".log")
            np.savetxt(filename,dataStore)
            '''
            if coordHand[0] >= -self.sizeOfTarget/2 and coordHand[0] <= self.sizeOfTarget/2 and coordHand[1] >= self.rs.YTarget and i<230:
                foldername = pathDataFolder + "TrajRepository/"
                name = findFilename(foldername,"Traj",".traj")
                np.savetxt(name,dataStore)
            '''

        lastX = -1000 #used to ignore dispersion when the target line is not crossed
        if coordHand[1] >= self.rs.YTarget:
            lastX = coordHand[0]
        #print "end of trajectory"
        return cost, t, lastX