def mse_worker(args): i_range, psi, det_mod = args indvdl_mse = [] p = det_mod[0].data[0].shape[0] for i in i_range: psi_sum = CXModal.modal_sum(abs(fft2(psi.getat(i)))) indvdl_mse.append(sp.sum((abs(psi_sum - det_mod[i]) ** 2.).data[0]) / sp.sum(det_mod[i].data[0] ** 2.)) return indvdl_mse
def error(self, psi, det_mod): """.. method:: error(psi, det_mod) Calculates the MSE at a given position given the modes at that position. :param CXModal psi: A list of CXData instances containing all modes at a given position. :param np.ndarray det_mod: Modulus of measured diffraction pattern. """ mode_sum = CXModal.modal_sum(abs(fft2(psi))) return (sp.sum((abs(mode_sum - det_mod) ** 2.).data[0]) / sp.sum(det_mod.data[0] ** 2.))**0.5
def update_probe_nonmodal(self, i, psi_old, psi_new): d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 object_intensity_max = (abs(self.object)**2.0).data[0].max() self.probe.modes[0] += \ CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) * (psi_new-psi_old)[0] / object_intensity_max, d1[i]%1, d2[i]%1) self.probe.normalise()
def update_probe(self, i, psi_old, psi_new): d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 object_intensity_max = (abs(self.object)**2.0).data[0].max() for mode in range(len(self.probe)): self.probe.modes[mode] += \ CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) * (psi_new-psi_old)[mode] / object_intensity_max, d1[i]%1, d2[i]%1) self.probe.normalise() self.probe.orthogonalise()
def M(psi, det_mod): """.. method:: M(mode, psi_modes, det_mod) Applies modulus constraint to psi_modes(mode) for a given position. :param list psi_modes: A list of CXData instances containing all modes at a given position. :param np.ndarray det_mod: Modulus of measured diffraction pattern. """ if isinstance(psi, CXData): return ifft2(det_mod * exp(complex(0., 1.) * angle(fft2(psi)))) elif isinstance(psi, CXModal): mode_sum = CXModal.modal_sum(abs(fft2(psi))**2.0)**0.5 return ifft2((fft2(psi)/(mode_sum))*det_mod)
def update_object(self, i, psi_old, psi_new): """ Update the object from a single ptycho position. """ then=time.time() d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 probe_intensity_max = CXModal.modal_sum(abs(self.probe)**2.0).data[0].max() self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2] += \ CXData.shift(CXModal.modal_sum(conj(self.probe) * (psi_new-psi_old)) / probe_intensity_max, d1[i]%1, d2[i]%1) if self.total_its==0 and sp.mod(i, len(self.positions.data[0]) / 10) == 0: self.update_figure(i)
def init_probe(self, *args, **kwargs): if CXP.io.initial_probe_guess is not '': probe = CXData() probe.load(CXP.io.initial_probe_guess) self.probe.modes = [CXData(data=[probe.data[0]/(i+1)]) for i in range(CXP.reconstruction.probe_modes)] self.probe.normalise() else: dx_s = CXP.dx_s p, p2 = CXP.preprocessing.desired_array_shape, CXP.preprocessing.desired_array_shape/2 probe = sp.zeros((p, p), complex) if CXP.experiment.optic.lower() == 'kb': if len(CXP.experiment.beam_size)==1: bsx=bsy=np.round(CXP.experiment.beam_size[0]/dx_s) elif len(CXP.experiment.beam_size)==2: bsx, bsy = np.round(CXP.experiment.beam_size[0]/dx_s), np.round(CXP.experiment.beam_size[1]/dx_s) probe = np.sinc((np.arange(p)-p2)/bsx)[:,np.newaxis]*np.sinc((np.arange(p)-p2)/bsy)[np.newaxis,:] elif CXP.experiment.optic.lower() == 'zp': probe = np.sinc(sp.hypot(*sp.ogrid[-p2:p2, -p2:p2])/np.round(3.*CXP.experiment.beam_size[0]/(2*CXP.dx_s))) ph_func = gauss_smooth(np.random.random(probe.shape), 10) fwhm = p/2.0 radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2]) gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 ) gaussian /= gaussian.max() probe = abs(gaussian*probe)* exp(complex(0.,np.pi)*ph_func/ph_func.max()) self.probe.modes = [CXData(data=[probe/(i+1)]) for i in range(CXP.reconstruction.probe_modes)] self.probe.normalise()
def ptycho_mesh(self): """ Generate a list of ptycho scan positions. Outputs ------- self.data : list of 2xN arrays containing horizontal and vertical scan positions in pixels self.initial : initial guess at ptycho scan positions (before position correction) self.initial_skew : initial skew self.initial_rot : initial rotation self.initial_scl : initial scaling self.skew : current best guess at skew self.rot : current best guess at rotation self.scl : current best guess at scaling self.total : total number of ptycho positions [optional] self.correct : for simulated data this contains the correct position """ CXP.log.info('Getting ptycho position mesh.') if CXP.measurement.ptycho_scan_mesh == 'generate': if CXP.measurement.ptycho_scan_type == 'cartesian': x2 = 0.5*(CXP.measurement.cartesian_scan_dims[0]-1) y2 = 0.5*(CXP.measurement.cartesian_scan_dims[1]-1) tmp = map(lambda a: CXP.measurement.cartesian_step_size*a, np.mgrid[-x2:x2+1, -y2:y2+1]) self.positions.data = [tmp[0].flatten(), tmp[1].flatten()] if CXP.reconstruction.flip_mesh_lr: self.log.info('Flip ptycho mesh left-right') self.positions.data[0] = self.data[0][::-1] if CXP.reconstruction.flip_mesh_ud: self.log.info('Flip ptycho mesh up-down') self.positions.data[1] = self.data[1][::-1] if CXP.reconstruction.flip_fast_axis: self.log.info('Flip ptycho mesh fast axis') tmp0, tmp1 = self.data[0], self.data[1] self.positions.data[0], self.positions.data[1] = tmp1, tmp0 if CXP.measurement.ptycho_scan_type == 'round_roi': self.positions.data = list(round_roi(CXP.measurement.round_roi_diameter, CXP.measurement.round_roi_step_size)) if CXP.measurement.ptycho_scan_type == 'list': l = np.genfromtxt(CXP.measurement.list_scan_filename) x_pos, y_pos = [], [] for element in l: x_pos.append(element[0]) y_pos.append(element[1]) self.positions.data = [sp.array(x_pos), sp.array(y_pos)] elif CXP.measurement.ptycho_scan_mesh == 'supplied': l = np.genfromtxt(CXP.measurement.list_scan_filename) x_pos, y_pos = [], [] for element in l: x_pos.append(element[0]) y_pos.append(element[1]) self.positions.data = [sp.array(x_pos), sp.array(y_pos)] for element in self.positions.data: element /= CXP.dx_s element += CXP.ob_p/2 self.positions.total = len(self.positions.data[0]) self.positions.correct = [sp.zeros((self.positions.total))]*2 jit_pix = CXP.reconstruction.initial_position_jitter_radius search_pix = CXP.reconstruction.ppc_search_radius self.positions.data[0] += jit_pix * uniform(-1, 1, self.positions.total) self.positions.data[1] += jit_pix * uniform(-1, 1, self.positions.total) if CXP.reconstruction.probe_position_correction: self.positions.correct[0] = self.positions.data[0]+0.25*search_pix * uniform(-1, 1, self.positions.total) self.positions.correct[1] = self.positions.data[1]+0.25*search_pix * uniform(-1, 1, self.positions.total) else: self.positions.correct = [self.positions.data[0].copy(), self.positions.data[1].copy()] data_copy = CXData(data=list(self.positions.data)) if not CXP.reconstruction.ptycho_subpixel_shift: self.positions.data = [np.round(self.positions.data[0]), np.round(self.positions.data[1])] self.positions.correct = [np.round(self.positions.correct[0]), np.round(self.positions.correct[1])] CXP.rms_rounding_error = [None]*2 for i in range(2): CXP.rms_rounding_error[i] = sp.sqrt(sp.sum(abs(abs(data_copy.data[i])**2.-abs(self.positions.data[i])**2.))) CXP.log.info('RMS Rounding Error (Per Position, X, Y):\t {:2.2f}, {:2.2f}'.format(CXP.rms_rounding_error[0]/len(self.positions.data[0]), CXP.rms_rounding_error[1]/len(self.positions.data[1])))
def update_figure(self, i=0): cur_cmap = cm.RdGy_r self.f1.clf() self.init_figure() wh = sp.where(abs(self.object.data[0]) > 0.1 * (abs(self.object.data[0]).max())) try: x1, x2 = min(wh[0]), max(wh[0]) y1, y2 = min(wh[1]), max(wh[1]) except (ValueError, IndexError): x1, x2 = 0, self.ob_p y1, y2 = 0, self.ob_p # Plot magnitude of object s1 = pylab.subplot(231) s1_im = s1.imshow(abs(self.object).data[0][x1:x2, y1:y2], cmap=cm.Greys_r) s1.set_title('|object|') plt.axis('off') pylab.colorbar(s1_im) # Plot phase of object s2 = pylab.subplot(232) s2_im = s2.imshow(sp.angle(self.object.data[0][x1:x2, y1:y2]), cmap=cm.hsv) s2.set_title('phase(object)') plt.axis('off') pylab.colorbar(s2_im) # Complex HSV plot of object s3 = pylab.subplot(233) h = ((angle(self.object).data[0][x1:x2, y1:y2] + np.pi) / (2*np.pi)) % 1.0 s = np.ones_like(h) l = abs(self.object).data[0][x1:x2, y1:y2] l-=l.min() l/=l.max() s3_im = s3.imshow(np.dstack(v_hls_to_rgb(h,l,s))) s3.set_title('Complex plot of Object') plt.axis('off') # Plot probe mode 0 s4 = pylab.subplot(234) s4_im = s4.imshow(abs(self.probe.modes[0].data[0]), cmap=cur_cmap) s4.set_title('|probe0|') plt.axis('off') pylab.colorbar(s4_im) if CXP.reconstruction.probe_modes>1: s5 = pylab.subplot(235) s5_im = s5.imshow(abs(self.probe.modes[1].data[0]), cmap=cur_cmap) s5.set_title('|probe1|') plt.axis('off') pylab.colorbar(s5_im) else: pass if self.ppc: s6 = self.f1.add_subplot(236) s6_im = s6.scatter(self.positions.data[0], self.positions.data[1], s=10, c='b', marker='o', alpha=0.5, edgecolors='none', label='current') patches = [] for m in range(self.positions.total): patches.append(Circle((self.positions.initial[0][m], self.positions.initial[1][m]), radius=CXP.reconstruction.ppc_search_radius)) collection = PatchCollection(patches, color='tomato', alpha=0.2, edgecolors=None) s4.add_collection(collection) if CXP.measurement.simulate_data: s4_im = s4.scatter(self.positions.correct[0], self.positions.correct[1], s=10, c='g', marker='o', alpha=0.5, edgecolors='none', label='correct') CXP.log.info('RMS position deviation from correct: [x:{:3.2f},y:{:3.2f}] pixels'.format( sp.sqrt(sp.mean((self.positions.data[0] - self.positions.correct[0])**2.)), sp.sqrt(sp.mean((self.positions.data[1] - self.positions.correct[1])**2.)))) lines=[] for m in range(self.positions.total): lines.append(((self.positions.correct[0][m], self.positions.correct[1][m]), (self.positions.data[0][m], self.positions.data[1][m]))) for element in lines: x, y = zip(*element) s4.plot(x, y, 'g-') else: lines = [] for m in range(self.positions.total): lines.append(((self.positions.initial[0][m], self.positions.initial[1][m]), (self.positions.data[0][m], self.positions.data[1][m]))) for element in lines: x, y = zip(*element) s6.plot(x, y, 'g-') CXP.log.info('RMS position deviation from initial: [x:{:3.2f},y:{:3.2f}] pixels'.format( sp.sqrt(sp.mean((self.positions.data[0] - self.positions.initial[0])**2.)), sp.sqrt(sp.mean((self.positions.data[1] - self.positions.initial[1])**2.)))) s6.legend(prop={'size': 6}) s6.set_title('Position Correction') s6.set_aspect('equal') extent = s6.get_window_extent().transformed(self.f1.dpi_scale_trans.inverted()) pylab.savefig(self._cur_sequence_dir + '/ppc_{:d}.png'.format(self.total_its), bbox_inches=extent.expanded(1.2, 1.2), dpi=100) s6.set_aspect('auto') else: s6 = pylab.subplot(236) if CXP.measurement.simulate_data: s6_im = s6.imshow(abs(self.input_probe[1].data[0]), cmap = cur_cmap) s6.set_title('|input_probe1|') else: s6_im = s6.imshow(nlog(fftshift(self.det_mod[np.mod(i,self.positions.total)])).data[0], cmap=cur_cmap) s6.set_title('Diff Patt: {:d}'.format(i)) plt.axis('off') pylab.colorbar(s6_im) pylab.draw() pylab.savefig(self._cur_sequence_dir + '/recon_{:d}.png'.format(self.total_its), dpi=60)
def simulate_data(self): CXP.log.info('Simulating diffraction patterns.') self.sample = CXData() self.sample.load(CXP.io.simulation_sample_filename[0]) self.sample.data[0] = self.sample.data[0].astype(float) self.sample.normalise(val=0.8) self.sample.data[0]+=0.2 self.input_probe = CXModal() if len(CXP.io.simulation_sample_filename)>1: ph = CXData() ph.load(CXP.io.simulation_sample_filename[1]) ph.data[0] = ph.data[0].astype(float) ph.normalise(val=np.pi/3) self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0]) p = self.sample.data[0].shape[0] ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:] sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex)) sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window ker = sp.arange(0, p) fwhm = p/3.0 radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2]) gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 ) ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :] mode_generator = lambda : sp.floor(4*sp.random.random(2))+1 used_modes = [] self.input_psi = CXModal() for mode in range(CXP.reconstruction.probe_modes): if mode==0: new_mode = [1,1] else: new_mode = list(mode_generator()) while new_mode in used_modes: new_mode = list(mode_generator()) used_modes.append(new_mode) CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1]))) ph_func = gauss_smooth(np.random.random((p,p)), 10) self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max()))) self.input_probe.normalise() self.input_probe.orthogonalise() for mode in range(CXP.reconstruction.probe_modes): p2 = p/2 x, y = self.positions.correct self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[])) for i in xrange(len(x)): if i%(len(x)/10)==0.: CXP.log.info('Simulating diff patt {:d}'.format(i)) tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2)) [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]* self.input_probe[mode][0]) self.input_psi[mode].data.append(tmp.data[0]) # Add modes incoherently self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi))) self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod'))