class MultiEdgeExampleBuilder(ExampleBuilder): """ This example builder makes edge examples, i.e. examples describing the event arguments. """ def __init__(self, style=None, length=None, types=[], featureSet=None, classSet=None): if featureSet == None: featureSet = IdSet() if classSet == None: classSet = IdSet(1) else: classSet = classSet assert( classSet.getId("neg") == 1 or (len(classSet.Ids)== 2 and classSet.getId("neg") == -1) ) ExampleBuilder.__init__(self, classSet=classSet, featureSet=featureSet) self.styles = self.getParameters(style, [ "typed", "directed", "headsOnly", "graph_kernel", "noAnnType", "noMasking", "maxFeatures", "genia_limits", "epi_limits", "id_limits", "rel_limits", "bb_limits", "bi_limits", "co_limits", "genia_task1", "ontology", "nodalida", "bacteria_renaming", "trigger_features", "rel_features", "ddi_features", "evex", "giuliano", "random", "themeOnly", "causeOnly", "no_path", "entities", "skip_extra_triggers", "headsOnly", "graph_kernel", "trigger_features", "no_task", "no_dependency", "disable_entity_features", "disable_terminus_features", "disable_single_element_features", "disable_ngram_features", "disable_path_edge_features", "no_linear", "subset", "binary", "pos_only", "entity_type" ]) if style == None: # no parameters given style["typed"] = style["directed"] = style["headsOnly"] = True # self.styles = style # if "selftrain_group" in self.styles: # self.selfTrainGroups = set() # if "selftrain_group-1" in self.styles: # self.selfTrainGroups.add("-1") # if "selftrain_group0" in self.styles: # self.selfTrainGroups.add("0") # if "selftrain_group1" in self.styles: # self.selfTrainGroups.add("1") # if "selftrain_group2" in self.styles: # self.selfTrainGroups.add("2") # if "selftrain_group3" in self.styles: # self.selfTrainGroups.add("3") # print >> sys.stderr, "Self-train-groups:", self.selfTrainGroups self.multiEdgeFeatureBuilder = MultiEdgeFeatureBuilder(self.featureSet) # NOTE Temporarily re-enabling predicted range #self.multiEdgeFeatureBuilder.definePredictedValueRange([], None) if self.styles["graph_kernel"]: from FeatureBuilders.GraphKernelFeatureBuilder import GraphKernelFeatureBuilder self.graphKernelFeatureBuilder = GraphKernelFeatureBuilder(self.featureSet) if self.styles["noAnnType"]: self.multiEdgeFeatureBuilder.noAnnType = True if self.styles["noMasking"]: self.multiEdgeFeatureBuilder.maskNamedEntities = False if self.styles["maxFeatures"]: self.multiEdgeFeatureBuilder.maximum = True if self.styles["genia_task1"]: self.multiEdgeFeatureBuilder.filterAnnTypes.add("Entity") self.tokenFeatureBuilder = TokenFeatureBuilder(self.featureSet) if self.styles["ontology"]: self.multiEdgeFeatureBuilder.ontologyFeatureBuilder = BioInferOntologyFeatureBuilder(self.featureSet) if self.styles["nodalida"]: self.nodalidaFeatureBuilder = NodalidaFeatureBuilder(self.featureSet) if self.styles["bacteria_renaming"]: self.bacteriaRenamingFeatureBuilder = BacteriaRenamingFeatureBuilder(self.featureSet) if self.styles["trigger_features"]: self.triggerFeatureBuilder = TriggerFeatureBuilder(self.featureSet) self.triggerFeatureBuilder.useNonNameEntities = True if self.styles["genia_task1"]: self.triggerFeatureBuilder.filterAnnTypes.add("Entity") #self.bioinferOntologies = OntologyUtils.loadOntologies(OntologyUtils.g_bioInferFileName) if self.styles["rel_features"]: self.relFeatureBuilder = RELFeatureBuilder(featureSet) if self.styles["ddi_features"]: self.drugFeatureBuilder = DrugFeatureBuilder(featureSet) if self.styles["evex"]: self.evexFeatureBuilder = EVEXFeatureBuilder(featureSet) if self.styles["giuliano"]: self.giulianoFeatureBuilder = GiulianoFeatureBuilder(featureSet) self.pathLengths = length assert(self.pathLengths == None) self.types = types if self.styles["random"]: from FeatureBuilders.RandomFeatureBuilder import RandomFeatureBuilder self.randomFeatureBuilder = RandomFeatureBuilder(self.featureSet) def definePredictedValueRange(self, sentences, elementName): self.multiEdgeFeatureBuilder.definePredictedValueRange(sentences, elementName) def getPredictedValueRange(self): return self.multiEdgeFeatureBuilder.predictedRange def filterEdgesByType(self, edges, typesToInclude): if len(typesToInclude) == 0: return edges edgesToKeep = [] for edge in edges: if edge.get("type") in typesToInclude: edgesToKeep.append(edge) return edgesToKeep def getCategoryNameFromTokens(self, sentenceGraph, t1, t2, directed=True): """ Example class. Multiple overlapping edges create a merged type. """ types = set() # if sentenceGraph.interactionGraph.has_edge(t1, t2): # intEdges = sentenceGraph.interactionGraph.get_edge_data(t1, t2, default={}) # # NOTE: Only works if keys are ordered integers # for i in range(len(intEdges)): # types.add(intEdges[i]["element"].get("type")) # if (not directed) and sentenceGraph.interactionGraph.has_edge(t2, t1): # intEdges = sentenceGraph.interactionGraph.get_edge(t2, t1, default={}) # # NOTE: Only works if keys are ordered integers # for i in range(len(intEdges)): # types.add(intEdges[i]["element"].get("type")) intEdges = sentenceGraph.interactionGraph.getEdges(t1, t2) if (not directed): intEdges = intEdges + sentenceGraph.interactionGraph.getEdges(t2, t1) for intEdge in intEdges: types.add(intEdge[2].get("type")) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def getCategoryName(self, sentenceGraph, e1, e2, directed=True, duplicateEntities=None): """ Example class. Multiple overlapping edges create a merged type. """ # interactions = [] # e1s = [e1] # if duplicateEntities != None and e1 in duplicateEntities: # e1s += duplicateEntities[e1] # e2s = [e2] # if duplicateEntities != None and e2 in duplicateEntities: # e2s += duplicateEntities[e2] # for entity1 in e1s: # for entity2 in e2s: # interactions = interactions + sentenceGraph.getInteractions(entity1, entity2) # if not directed: # interactions = interactions + sentenceGraph.getInteractions(entity2, entity1) interactions = sentenceGraph.getInteractions(e1, e2, True) #print interactions types = set() for interaction in interactions: types.add(interaction[2].get("type")) types = list(types) types.sort() categoryName = "" for name in types: if self.styles["causeOnly"] and name != "Cause": continue if self.styles["themeOnly"] and name != "Theme": continue if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def isPotentialRELInteraction(self, e1, e2): if e1.get("type") == "Protein" and e2.get("type") == "Entity": return True else: return False def isPotentialBBInteraction(self, e1, e2, sentenceGraph): #if e1.get("type") == "Bacterium" and e2.get("type") in ["Host", "HostPart", "Geographical", "Environmental", "Food", "Medical", "Soil", "Water"]: # Note: "Environment" type is misspelled as "Environmental" in the BB-task documentation if e1.get("type") == "Bacterium" and e2.get("type") in ["Host", "HostPart", "Geographical", "Environment", "Food", "Medical", "Soil", "Water"]: return True elif e1.get("type") == "Host" and e2.get("type") == "HostPart": return True else: return False def getBISuperType(self, eType): if eType in ["GeneProduct", "Protein", "ProteinFamily", "PolymeraseComplex"]: return "ProteinEntity" elif eType in ["Gene", "GeneFamily", "GeneComplex", "Regulon", "Site", "Promoter"]: return "GeneEntity" else: return None def isPotentialBIInteraction(self, e1, e2, sentenceGraph, stats): e1Type = e1.get("type") e1SuperType = self.getBISuperType(e1Type) e2Type = e2.get("type") e2SuperType = self.getBISuperType(e2Type) tag = "(" + e1Type + "/" + e2Type + ")" if e1Type == "Regulon": if e2SuperType in ["GeneEntity", "ProteinEntity"]: return True if e1SuperType == "ProteinEntity": if e2Type in ["Site", "Promoter", "Gene", "GeneComplex"]: return True if e1Type in ["Action", "Transcription", "Expression"]: return True if e1Type == "Site": if e2SuperType == "GeneEntity": return True if e1Type == "Promoter": if e2SuperType in ["GeneEntity", "ProteinEntity"]: return True if e1SuperType in ["GeneEntity", "ProteinEntity"]: if e2SuperType in ["GeneEntity", "ProteinEntity"]: return True stats.filter("bi_limits") #+tag) return False def isPotentialEPIInteraction(self, e1, e2, sentenceGraph): if e1.get("type") != "Catalysis": if e1.get("type") in ["Protein", "Entity"]: return False elif e2.get("type") in ["Protein", "Entity"]: return True else: return False else: # Catalysis if e2.get("type") != "Entity": return True else: return False assert False, (e1.get("type"), e2.get("type")) def isPotentialIDInteraction(self, e1, e2, sentenceGraph): e1Type = e1.get("type") e2Type = e2.get("type") e1IsCore = e1Type in ["Protein", "Regulon-operon", "Two-component-system", "Chemical", "Organism"] e2IsCore = e2Type in ["Protein", "Regulon-operon", "Two-component-system", "Chemical", "Organism"] if e1IsCore: return False elif e1Type in ["Gene_expression", "Transcription"]: if e2Type in ["Protein", "Regulon-operon"]: return True else: return False elif e1Type in ["Protein_catabolism", "Phosphorylation"]: if e2Type == "Protein": return True else: return False elif e1Type == "Localization": if e2IsCore or e2Type == "Entity": return True else: return False elif e1Type in ["Binding", "Process"]: if e2IsCore: return True else: return False elif "egulation" in e1Type: if e2Type != "Entity": return True else: return False elif e1Type == "Entity": if e2IsCore: return True else: return False assert False, (e1Type, e2Type) def isPotentialCOInteraction(self, e1, e2, sentenceGraph): if e1.get("type") == "Exp" and e2.get("type") == "Exp": anaphoraTok = sentenceGraph.entityHeadTokenByEntity[e1] antecedentTok = sentenceGraph.entityHeadTokenByEntity[e2] antecedentTokenFound = False for token in sentenceGraph.tokens: if token == antecedentTok: antecedentTokenFound = True if token == anaphoraTok: # if, not elif, to take into accoutn cases where e1Tok == e2Tok if antecedentTokenFound: return True else: return False assert False elif e1.get("type") == "Exp" and e2.get("type") == "Protein": return True else: return False def isPotentialGeniaInteraction(self, e1, e2): e1Type = e1.get("type") e2Type = e2.get("type") if e1Type == "Protein": return False elif e1Type in ["Entity", "Gene_expression", "Transcription", "Protein_catabolism", "Phosphorylation", "Binding"]: if e2Type == "Protein": return True else: return False elif e1Type == "Localization": if e2Type in ["Protein", "Entity"]: return True else: return False elif "egulation" in e1Type: if e2Type != "Entity": return True else: return False assert False, (e1Type, e2Type) def getGoldCategoryName(self, goldGraph, entityToGold, e1, e2, directed=True): if len(entityToGold[e1]) > 0 and len(entityToGold[e2]) > 0: return self.getCategoryName(goldGraph, entityToGold[e1][0], entityToGold[e2][0], directed=directed) else: return "neg" def buildExamplesFromGraph(self, sentenceGraph, outfile, goldGraph = None): """ Build examples for a single sentence. Returns a list of examples. See Core/ExampleUtils for example format. """ #examples = [] exampleIndex = 0 if self.styles["trigger_features"]: self.triggerFeatureBuilder.initSentence(sentenceGraph) if self.styles["evex"]: self.evexFeatureBuilder.initSentence(sentenceGraph) # Filter entities, if needed #mergedIds = None #duplicateEntities = None #entities = sentenceGraph.entities #entities, mergedIds, duplicateEntities = self.mergeEntities(sentenceGraph, False) # "no_duplicates" in self.styles) sentenceGraph.mergeInteractionGraph(True) entities = sentenceGraph.mergedEntities entityToDuplicates = sentenceGraph.mergedEntityToDuplicates self.exampleStats.addValue("Duplicate entities skipped", len(sentenceGraph.entities) - len(entities)) # Connect to optional gold graph if goldGraph != None: entityToGold = EvaluateInteractionXML.mapEntities(entities, goldGraph.entities) paths = None if not self.styles["no_path"]: ##undirected = sentenceGraph.getUndirectedDependencyGraph() #undirected = self.nxMultiDiGraphToUndirected(sentenceGraph.dependencyGraph) ###undirected = sentenceGraph.dependencyGraph.to_undirected() ####undirected = NX10.MultiGraph(sentenceGraph.dependencyGraph) This didn't work undirected = sentenceGraph.dependencyGraph.toUndirected() #paths = NX10.all_pairs_shortest_path(undirected, cutoff=999) paths = undirected #for edge in sentenceGraph.dependencyGraph.edges: # assert edge[2] != None #for edge in undirected.edges: # assert edge[2] != None #if sentenceGraph.sentenceElement.get("id") == "GENIA.d70.s5": # print [(x[0].get("id"), x[1].get("id"), x[2].get("id")) for x in sentenceGraph.dependencyGraph.edges] # Generate examples based on interactions between entities or interactions between tokens if self.styles["entities"]: loopRange = len(entities) else: loopRange = len(sentenceGraph.tokens) for i in range(loopRange-1): for j in range(i+1,loopRange): eI = None eJ = None if self.styles["entities"]: eI = entities[i] eJ = entities[j] tI = sentenceGraph.entityHeadTokenByEntity[eI] tJ = sentenceGraph.entityHeadTokenByEntity[eJ] #if "no_ne_interactions" in self.styles and eI.get("isName") == "True" and eJ.get("isName") == "True": # continue if eI.get("type") == "neg" or eJ.get("type") == "neg": continue if self.styles["skip_extra_triggers"]: if eI.get("source") != None or eJ.get("source") != None: continue else: tI = sentenceGraph.tokens[i] tJ = sentenceGraph.tokens[j] # only consider paths between entities (NOTE! entities, not only named entities) if self.styles["headsOnly"]: if (len(sentenceGraph.tokenIsEntityHead[tI]) == 0) or (len(sentenceGraph.tokenIsEntityHead[tJ]) == 0): continue if self.styles["directed"]: # define forward if self.styles["entities"]: categoryName = self.getCategoryName(sentenceGraph, eI, eJ, True) if goldGraph != None: categoryName = self.getGoldCategoryName(goldGraph, entityToGold, eI, eJ, True) else: categoryName = self.getCategoryNameFromTokens(sentenceGraph, tI, tJ, True) # make forward self.exampleStats.beginExample(categoryName) makeExample = True if self.styles["genia_limits"] and not self.isPotentialGeniaInteraction(eI, eJ): makeExample = False self.exampleStats.filter("genia_limits") if self.styles["genia_task1"] and (eI.get("type") == "Entity" or eJ.get("type") == "Entity"): makeExample = False self.exampleStats.filter("genia_task1") if self.styles["rel_limits"] and not self.isPotentialRELInteraction(eI, eJ): makeExample = False self.exampleStats.filter("rel_limits") if self.styles["co_limits"] and not self.isPotentialCOInteraction(eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("co_limits") if self.styles["bb_limits"] and not self.isPotentialBBInteraction(eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("bb_limits") if categoryName != "neg": self.exampleStats.filter("bb_limits(" + categoryName + ":" + eI.get("type") + "/" + eJ.get("type") + ")") if self.styles["bi_limits"] and not self.isPotentialBIInteraction(eI, eJ, sentenceGraph, self.exampleStats): makeExample = False #self.exampleStats.filter("bi_limits") if self.styles["epi_limits"] and not self.isPotentialEPIInteraction(eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("epi_limits") if self.styles["id_limits"] and not self.isPotentialIDInteraction(eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("id_limits") # if self.styles["selftrain_limits"] and (eI.get("selftrain") == "False" or eJ.get("selftrain") == "False"): # makeExample = False # self.exampleStats.filter("selftrain_limits") # if self.styles["selftrain_group"] and (eI.get("selftraingroup") not in self.selfTrainGroups or eJ.get("selftraingroup") not in self.selfTrainGroups): # makeExample = False # self.exampleStats.filter("selftrain_group") if self.styles["pos_only"] and categoryName == "neg": makeExample = False self.exampleStats.filter("pos_only") if makeExample: #examples.append( self.buildExample(tI, tJ, paths, sentenceGraph, categoryName, exampleIndex, eI, eJ) ) ExampleUtils.appendExamples([self.buildExample(tI, tJ, paths, sentenceGraph, categoryName, exampleIndex, eI, eJ)], outfile) exampleIndex += 1 self.exampleStats.endExample() # define reverse if self.styles["entities"]: categoryName = self.getCategoryName(sentenceGraph, eJ, eI, True) if goldGraph != None: categoryName = self.getGoldCategoryName(goldGraph, entityToGold, eJ, eI, True) else: categoryName = self.getCategoryNameFromTokens(sentenceGraph, tJ, tI, True) # make reverse self.exampleStats.beginExample(categoryName) makeExample = True if self.styles["genia_limits"] and not self.isPotentialGeniaInteraction(eJ, eI): makeExample = False self.exampleStats.filter("genia_limits") if self.styles["genia_task1"] and (eI.get("type") == "Entity" or eJ.get("type") == "Entity"): makeExample = False self.exampleStats.filter("genia_task1") if self.styles["rel_limits"] and not self.isPotentialRELInteraction(eJ, eI): makeExample = False self.exampleStats.filter("rel_limits") if self.styles["co_limits"] and not self.isPotentialCOInteraction(eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("co_limits") if self.styles["bb_limits"] and not self.isPotentialBBInteraction(eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("bb_limits") if categoryName != "neg": self.exampleStats.filter("bb_limits(" + categoryName + ":" + eJ.get("type") + "/" + eI.get("type") + ")") if self.styles["bi_limits"] and not self.isPotentialBIInteraction(eJ, eI, sentenceGraph, self.exampleStats): makeExample = False #self.exampleStats.filter("bi_limits") if self.styles["epi_limits"] and not self.isPotentialEPIInteraction(eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("epi_limits") if self.styles["id_limits"] and not self.isPotentialIDInteraction(eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("id_limits") # if self.styles["selftrain_limits"] and (eI.get("selftrain") == "False" or eJ.get("selftrain") == "False"): # makeExample = False # self.exampleStats.filter("selftrain_limits") # if self.styles["selftrain_group"] and (eI.get("selftraingroup") not in self.selfTrainGroups or eJ.get("selftraingroup") not in self.selfTrainGroups): # makeExample = False # self.exampleStats.filter("selftrain_group") if self.styles["pos_only"] and categoryName == "neg": makeExample = False self.exampleStats.filter("pos_only") if makeExample: #examples.append( self.buildExample(tJ, tI, paths, sentenceGraph, categoryName, exampleIndex, eJ, eI) ) ExampleUtils.appendExamples([self.buildExample(tJ, tI, paths, sentenceGraph, categoryName, exampleIndex, eJ, eI)], outfile) exampleIndex += 1 self.exampleStats.endExample() else: if self.styles["entities"]: categoryName = self.getCategoryName(sentenceGraph, eI, eJ, False) else: categoryName = self.getCategoryNameFromTokens(sentenceGraph, tI, tJ, False) self.exampleStats.beginExample(categoryName) forwardExample = self.buildExample(tI, tJ, paths, sentenceGraph, categoryName, exampleIndex, eI, eJ) if not self.styles["graph_kernel"]: reverseExample = self.buildExample(tJ, tI, paths, sentenceGraph, categoryName, exampleIndex, eJ, eI) forwardExample[2].update(reverseExample[2]) #examples.append(forwardExample) ExampleUtils.appendExamples([forwardExample], outfile) exampleIndex += 1 self.exampleStats.endExample() #return examples return exampleIndex def buildExample(self, token1, token2, paths, sentenceGraph, categoryName, exampleIndex, entity1=None, entity2=None): """ Build a single directed example for the potential edge between token1 and token2 """ # dummy return for speed testing #return (sentenceGraph.getSentenceId()+".x"+str(exampleIndex),1,{},{}) # define features features = {} if True: #token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): #if token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): # path = paths[token1][token2] #else: # path = [token1, token2] if not self.styles["no_path"]: # directedPath reduces performance by 0.01 pp #directedPath = sentenceGraph.dependencyGraph.getPaths(token1, token2) #if len(directedPath) == 0: # directedPath = sentenceGraph.dependencyGraph.getPaths(token2, token1) # for dp in directedPath: # dp.reverse() #if len(directedPath) == 0: # path = paths.getPaths(token1, token2) #else: # path = directedPath path = paths.getPaths(token1, token2) if len(path) > 0: #if len(path) > 1: # print len(path) path = path[0] pathExists = True else: path = [token1, token2] pathExists = False else: path = [token1, token2] pathExists = False #print token1.get("id"), token2.get("id") assert(self.pathLengths == None) if self.pathLengths == None or len(path)-1 in self.pathLengths: # if not "no_ontology" in self.styles: # self.ontologyFeatureBuilder.setFeatureVector(features) # self.ontologyFeatureBuilder.buildOntologyFeaturesForPath(sentenceGraph, path) # self.ontologyFeatureBuilder.setFeatureVector(None) if self.styles["trigger_features"]: # F 85.52 -> 85.55 self.triggerFeatureBuilder.setFeatureVector(features) self.triggerFeatureBuilder.tag = "trg1_" self.triggerFeatureBuilder.buildFeatures(token1) self.triggerFeatureBuilder.tag = "trg2_" self.triggerFeatureBuilder.buildFeatures(token2) self.triggerFeatureBuilder.setFeatureVector(None) # REL features if self.styles["rel_features"] and not self.styles["no_task"]: self.relFeatureBuilder.setFeatureVector(features) self.relFeatureBuilder.tag = "rel1_" self.relFeatureBuilder.buildAllFeatures(sentenceGraph.tokens, sentenceGraph.tokens.index(token1)) self.relFeatureBuilder.tag = "rel2_" self.relFeatureBuilder.buildAllFeatures(sentenceGraph.tokens, sentenceGraph.tokens.index(token2)) self.relFeatureBuilder.setFeatureVector(None) if self.styles["bacteria_renaming"] and not self.styles["no_task"]: self.bacteriaRenamingFeatureBuilder.setFeatureVector(features) self.bacteriaRenamingFeatureBuilder.buildPairFeatures(entity1, entity2) #self.bacteriaRenamingFeatureBuilder.buildSubstringFeatures(entity1, entity2) # decreases perf. 74.76 -> 72.41 self.bacteriaRenamingFeatureBuilder.setFeatureVector(None) if self.styles["co_limits"] and not self.styles["no_task"]: e1Offset = Range.charOffsetToSingleTuple(entity1.get("charOffset")) e2Offset = Range.charOffsetToSingleTuple(entity2.get("charOffset")) if Range.contains(e1Offset, e2Offset): features[self.featureSet.getId("e1_contains_e2")] = 1 if entity2.get("isName") == "True": features[self.featureSet.getId("e1_contains_e2name")] = 1 if Range.contains(e2Offset, e1Offset): features[self.featureSet.getId("e2_contains_e1")] = 1 if entity1.get("isName") == "True": features[self.featureSet.getId("e2_contains_e1name")] = 1 if self.styles["ddi_features"]: self.drugFeatureBuilder.setFeatureVector(features) self.drugFeatureBuilder.tag = "ddi_" self.drugFeatureBuilder.buildPairFeatures(entity1, entity2) if self.styles["ddi_mtmx"]: self.drugFeatureBuilder.buildMTMXFeatures(entity1, entity2) self.drugFeatureBuilder.setFeatureVector(None) #if "graph_kernel" in self.styles or not "no_dependency" in self.styles: # #print "Getting edges" # if token1 != token2 and pathExists: # #print "g1" # edges = self.multiEdgeFeatureBuilder.getEdges(sentenceGraph.dependencyGraph, path) # #print "g2" # else: # edges = None if self.styles["graph_kernel"]: self.graphKernelFeatureBuilder.setFeatureVector(features, entity1, entity2) self.graphKernelFeatureBuilder.buildGraphKernelFeatures(sentenceGraph, path) self.graphKernelFeatureBuilder.setFeatureVector(None) if self.styles["entity_type"]: features[self.featureSet.getId("e1_"+entity1.get("type"))] = 1 features[self.featureSet.getId("e2_"+entity2.get("type"))] = 1 features[self.featureSet.getId("distance_"+str(len(path)))] = 1 if not self.styles["no_dependency"]: #print "Dep features" self.multiEdgeFeatureBuilder.setFeatureVector(features, entity1, entity2) #self.multiEdgeFeatureBuilder.buildStructureFeatures(sentenceGraph, paths) # remove for fast if not self.styles["disable_entity_features"]: self.multiEdgeFeatureBuilder.buildEntityFeatures(sentenceGraph) self.multiEdgeFeatureBuilder.buildPathLengthFeatures(path) if not self.styles["disable_terminus_features"]: self.multiEdgeFeatureBuilder.buildTerminusTokenFeatures(path, sentenceGraph) # remove for fast if not self.styles["disable_single_element_features"]: self.multiEdgeFeatureBuilder.buildSingleElementFeatures(path, sentenceGraph) if not self.styles["disable_ngram_features"]: #print "NGrams" self.multiEdgeFeatureBuilder.buildPathGrams(2, path, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams(3, path, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams(4, path, sentenceGraph) # remove for fast #self.buildEdgeCombinations(path, edges, sentenceGraph, features) # remove for fast #if edges != None: # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[0], edges[0][1]+edges[1][0], "t1", sentenceGraph) # remove for fast # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[-1], edges[len(path)-1][len(path)-2]+edges[len(path)-2][len(path)-1], "t2", sentenceGraph) # remove for fast if not self.styles["disable_path_edge_features"]: self.multiEdgeFeatureBuilder.buildPathEdgeFeatures(path, sentenceGraph) self.multiEdgeFeatureBuilder.buildSentenceFeatures(sentenceGraph) self.multiEdgeFeatureBuilder.setFeatureVector(None) if self.styles["nodalida"]: self.nodalidaFeatureBuilder.setFeatureVector(features, entity1, entity2) shortestPaths = self.nodalidaFeatureBuilder.buildShortestPaths(sentenceGraph.dependencyGraph, path) print shortestPaths if len(shortestPaths) > 0: self.nodalidaFeatureBuilder.buildNGrams(shortestPaths, sentenceGraph) self.nodalidaFeatureBuilder.setFeatureVector(None) if not self.styles["no_linear"]: self.tokenFeatureBuilder.setFeatureVector(features) for i in range(len(sentenceGraph.tokens)): if sentenceGraph.tokens[i] == token1: token1Index = i if sentenceGraph.tokens[i] == token2: token2Index = i linearPreTag = "linfw_" if token1Index > token2Index: token1Index, token2Index = token2Index, token1Index linearPreTag = "linrv_" self.tokenFeatureBuilder.buildLinearOrderFeatures(token1Index, sentenceGraph, 2, 2, preTag="linTok1") self.tokenFeatureBuilder.buildLinearOrderFeatures(token2Index, sentenceGraph, 2, 2, preTag="linTok2") # Before, middle, after # self.tokenFeatureBuilder.buildTokenGrams(0, token1Index-1, sentenceGraph, "bf") # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, "bw") # self.tokenFeatureBuilder.buildTokenGrams(token2Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, "af") # before-middle, middle, middle-after # self.tokenFeatureBuilder.buildTokenGrams(0, token2Index-1, sentenceGraph, linearPreTag+"bf", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, linearPreTag+"bw", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, linearPreTag+"af", max=2) self.tokenFeatureBuilder.setFeatureVector(None) if self.styles["random"]: self.randomFeatureBuilder.setFeatureVector(features) self.randomFeatureBuilder.buildRandomFeatures(100, 0.01) self.randomFeatureBuilder.setFeatureVector(None) if self.styles["genia_limits"] and not self.styles["no_task"]: e1Type = entity1.get("type") e2Type = entity2.get("type") assert(entity1.get("isName") == "False") if entity2.get("isName") == "True": features[self.featureSet.getId("GENIA_target_protein")] = 1 else: features[self.featureSet.getId("GENIA_nested_event")] = 1 if e1Type.find("egulation") != -1: # leave r out to avoid problems with capitalization if entity2.get("isName") == "True": features[self.featureSet.getId("GENIA_regulation_of_protein")] = 1 else: features[self.featureSet.getId("GENIA_regulation_of_event")] = 1 if self.styles["bi_limits"]: # Make features based on entity types e1Type = entity1.get("type") e2Type = entity2.get("type") e1SuperType = str(self.getBISuperType(e1Type)) e2SuperType = str(self.getBISuperType(e2Type)) features[self.featureSet.getId("BI_e1_"+e1Type)] = 1 features[self.featureSet.getId("BI_e2_"+e2Type)] = 1 features[self.featureSet.getId("BI_e1sup_"+e1SuperType)] = 1 features[self.featureSet.getId("BI_e2sup_"+e2SuperType)] = 1 features[self.featureSet.getId("BI_e1e2_"+e1Type+"_"+e2Type)] = 1 features[self.featureSet.getId("BI_e1e2sup_"+e1SuperType+"_"+e2SuperType)] = 1 if self.styles["evex"]: self.evexFeatureBuilder.setFeatureVector(features, entity1, entity2) self.evexFeatureBuilder.buildEdgeFeatures(entity1, entity2, token1, token2, path, sentenceGraph) self.evexFeatureBuilder.setFeatureVector(None) if self.styles["giuliano"]: self.giulianoFeatureBuilder.setFeatureVector(features, entity1, entity2) self.giulianoFeatureBuilder.buildEdgeFeatures(entity1, entity2, token1, token2, path, sentenceGraph) self.giulianoFeatureBuilder.setFeatureVector(None) else: features[self.featureSet.getId("always_negative")] = 1 if self.styles["subset"]: features[self.featureSet.getId("out_of_scope")] = 1 else: features[self.featureSet.getId("always_negative")] = 1 if self.styles["subset"]: features[self.featureSet.getId("out_of_scope")] = 1 path = [token1, token2] # define extra attributes #if int(path[0].get("id").split("_")[-1]) < int(path[-1].get("id").split("_")[-1]): if int(path[0].get("charOffset").split("-")[0]) < int(path[-1].get("charOffset").split("-")[0]): #extra = {"xtype":"edge","type":"i","t1":path[0],"t2":path[-1]} extra = {"xtype":"edge","type":"i","t1":path[0].get("id"),"t2":path[-1].get("id")} extra["deprev"] = False else: #extra = {"xtype":"edge","type":"i","t1":path[-1],"t2":path[0]} extra = {"xtype":"edge","type":"i","t1":path[-1].get("id"),"t2":path[0].get("id")} extra["deprev"] = True if entity1 != None: #extra["e1"] = entity1 extra["e1"] = entity1.get("id") if sentenceGraph.mergedEntityToDuplicates != None: #extra["e1GoldIds"] = mergedEntityIds[entity1] extra["e1DuplicateIds"] = ",".join([x.get("id") for x in sentenceGraph.mergedEntityToDuplicates[entity1]]) if entity2 != None: #extra["e2"] = entity2 extra["e2"] = entity2.get("id") if sentenceGraph.mergedEntityToDuplicates != None: extra["e2DuplicateIds"] = ",".join([x.get("id") for x in sentenceGraph.mergedEntityToDuplicates[entity2]]) #extra["e2GoldIds"] = mergedEntityIds[entity2] extra["categoryName"] = categoryName if self.styles["bacteria_renaming"]: if entity1.get("text") != None and entity1.get("text") != "": extra["e1t"] = entity1.get("text").replace(" ", "---").replace(":","-COL-") if entity2.get("text") != None and entity2.get("text") != "": extra["e2t"] = entity2.get("text").replace(" ", "---").replace(":","-COL-") sentenceOrigId = sentenceGraph.sentenceElement.get("origId") if sentenceOrigId != None: extra["SOID"] = sentenceOrigId # make example if self.styles["binary"]: if categoryName != "neg": category = 1 else: category = -1 categoryName = "i" else: category = self.classSet.getId(categoryName) # NOTE: temporarily disable for replicating 110310 experiment #features[self.featureSet.getId("extra_constant")] = 1 return (sentenceGraph.getSentenceId()+".x"+str(exampleIndex),category,features,extra)
class EdgeExampleBuilder(ExampleBuilder): """ This example builder makes edge examples, i.e. examples describing the event arguments. """ def __init__(self, style=None, types=[], featureSet=None, classSet=None): if featureSet == None: featureSet = IdSet() if classSet == None: classSet = IdSet(1) else: classSet = classSet ExampleBuilder.__init__(self, classSet=classSet, featureSet=featureSet) assert( classSet.getId("neg") == 1 or (len(classSet.Ids)== 2 and classSet.getId("neg") == -1) ) # Basic style = trigger_features:typed:directed:no_linear:entities:auto_limits:noMasking:maxFeatures self._setDefaultParameters([ "directed", "undirected", "headsOnly", "graph_kernel", "noAnnType", "mask_nodes", "limit_features", "no_auto_limits", "co_features", "genia_features", "bi_features", #"genia_limits", "epi_limits", "id_limits", "rel_limits", "bb_limits", "bi_limits", "co_limits", "genia_task1", "ontology", "nodalida", "bacteria_renaming", "no_trigger_features", "rel_features", "drugbank_features", "ddi_mtmx", "evex", "giuliano", "random", "themeOnly", "causeOnly", "no_path", "token_nodes", "skip_extra_triggers", "headsOnly", "graph_kernel", "no_task", "no_dependency", "disable_entity_features", "disable_terminus_features", "disable_single_element_features", "disable_ngram_features", "disable_path_edge_features", "linear_features", "subset", "binary", "pos_only", "entity_type", "filter_shortest_path", "maskTypeAsProtein", "keep_neg", "metamap", "sdb_merge", "sdb_features", "ontobiotope_features", "no_self_loops", "full_entities", "no_features", "wordnet", "wordvector", "se10t8_undirected", "filter_types", "doc_extra", "entity_extra"]) self.styles = self.getParameters(style) #if style == None: # no parameters given # style["typed"] = style["directed"] = style["headsOnly"] = True self.multiEdgeFeatureBuilder = MultiEdgeFeatureBuilder(self.featureSet, self.styles) # NOTE Temporarily re-enabling predicted range #self.multiEdgeFeatureBuilder.definePredictedValueRange([], None) if self.styles["graph_kernel"]: from FeatureBuilders.GraphKernelFeatureBuilder import GraphKernelFeatureBuilder self.graphKernelFeatureBuilder = GraphKernelFeatureBuilder(self.featureSet) if self.styles["noAnnType"]: self.multiEdgeFeatureBuilder.noAnnType = True if self.styles["mask_nodes"]: self.multiEdgeFeatureBuilder.maskNamedEntities = True else: self.multiEdgeFeatureBuilder.maskNamedEntities = False if not self.styles["limit_features"]: self.multiEdgeFeatureBuilder.maximum = True if self.styles["genia_task1"]: self.multiEdgeFeatureBuilder.filterAnnTypes.add("Entity") self.tokenFeatureBuilder = TokenFeatureBuilder(self.featureSet) if self.styles["ontology"]: self.multiEdgeFeatureBuilder.ontologyFeatureBuilder = BioInferOntologyFeatureBuilder(self.featureSet) if self.styles["ontobiotope_features"]: self.ontobiotopeFeatureBuilder = OntoBiotopeFeatureBuilder(self.featureSet) if self.styles["nodalida"]: self.nodalidaFeatureBuilder = NodalidaFeatureBuilder(self.featureSet) if self.styles["bacteria_renaming"]: self.bacteriaRenamingFeatureBuilder = BacteriaRenamingFeatureBuilder(self.featureSet) if not self.styles["no_trigger_features"]: self.triggerFeatureBuilder = TriggerFeatureBuilder(self.featureSet, self.styles) self.triggerFeatureBuilder.useNonNameEntities = True if self.styles["noAnnType"]: self.triggerFeatureBuilder.noAnnType = True if self.styles["genia_task1"]: self.triggerFeatureBuilder.filterAnnTypes.add("Entity") #self.bioinferOntologies = OntologyUtils.loadOntologies(OntologyUtils.g_bioInferFileName) if self.styles["rel_features"]: self.relFeatureBuilder = RELFeatureBuilder(featureSet) if self.styles["drugbank_features"]: self.drugFeatureBuilder = DrugFeatureBuilder(featureSet) if self.styles["evex"]: self.evexFeatureBuilder = EVEXFeatureBuilder(featureSet) if self.styles["wordnet"]: self.wordNetFeatureBuilder = WordNetFeatureBuilder(featureSet) if self.styles["wordvector"]: self.wordVectorFeatureBuilder = WordVectorFeatureBuilder(featureSet, self.styles) if self.styles["giuliano"]: self.giulianoFeatureBuilder = GiulianoFeatureBuilder(featureSet) self.types = types if self.styles["random"]: from FeatureBuilders.RandomFeatureBuilder import RandomFeatureBuilder self.randomFeatureBuilder = RandomFeatureBuilder(self.featureSet) def definePredictedValueRange(self, sentences, elementName): self.multiEdgeFeatureBuilder.definePredictedValueRange(sentences, elementName) def getPredictedValueRange(self): return self.multiEdgeFeatureBuilder.predictedRange def filterEdgesByType(self, edges, typesToInclude): if len(typesToInclude) == 0: return edges edgesToKeep = [] for edge in edges: if edge.get("type") in typesToInclude: edgesToKeep.append(edge) return edgesToKeep def getCategoryNameFromTokens(self, sentenceGraph, t1, t2, directed=True): """ Example class. Multiple overlapping edges create a merged type. """ types = set() intEdges = sentenceGraph.interactionGraph.getEdges(t1, t2) if not directed: intEdges = intEdges + sentenceGraph.interactionGraph.getEdges(t2, t1) for intEdge in intEdges: types.add(intEdge[2].get("type")) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def getCategoryName(self, sentenceGraph, e1, e2, directed=True): """ Example class. Multiple overlapping edges create a merged type. """ interactions = sentenceGraph.getInteractions(e1, e2, True) if not directed and not self.styles["se10t8_undirected"]: interactions = interactions + sentenceGraph.getInteractions(e2, e1, True) types = set() for interaction in interactions: types.add(interaction[2].get("type")) types = list(types) types.sort() categoryName = "" for name in types: if self.styles["causeOnly"] and name != "Cause": continue if self.styles["themeOnly"] and name != "Theme": continue if categoryName != "": categoryName += "---" if self.styles["sdb_merge"]: name = self.mergeForSeeDev(name, self.structureAnalyzer) categoryName += name if categoryName != "": return categoryName else: return "neg" def getBISuperType(self, eType): if eType in ["GeneProduct", "Protein", "ProteinFamily", "PolymeraseComplex"]: return "ProteinEntity" elif eType in ["Gene", "GeneFamily", "GeneComplex", "Regulon", "Site", "Promoter"]: return "GeneEntity" else: return None def getSeeDevSuperTypes(self, eType): if eType in ("Gene", "Gene_Family", "Box", "Promoter"): return ("DNA", "Molecule") elif eType == "RNA": return ("RNA", "DNA_Product", "Molecule") elif eType in ("Protein", "Protein_Family", "Protein_Complex", "Protein_Domain"): return ("Amino_acid_sequence", "DNA_Product", "Molecule") elif eType == "Hormone": return ("Molecule",) elif eType in ("Regulatory_Network", "Pathway"): return ("Dynamic_process",) elif eType in ("Genotype", "Tissue", "Development_Phase"): return ("Biological_context", "Context") elif eType == "Environmental_Factor": return ("Context",) else: raise Exception("Unknown SeeDev type '" + str(eType) + "'") def mergeForSeeDev(self, categoryName, structureAnalyzer): if categoryName in structureAnalyzer.typeMap["forward"]: return structureAnalyzer.typeMap["forward"][categoryName] return categoryName # for tag in ("Regulates", "Exists", "Interacts", "Is", "Occurs"): # if categoryName.startswith(tag): # categoryName = tag # break # return categoryName def processCorpus(self, input, output, gold=None, append=False, allowNewIds=True, structureAnalyzer=None): if self.styles["sdb_merge"]: structureAnalyzer.determineNonOverlappingTypes() self.structureAnalyzer = structureAnalyzer ExampleBuilder.processCorpus(self, input, output, gold, append, allowNewIds, structureAnalyzer) def isValidInteraction(self, e1, e2, structureAnalyzer,forceUndirected=False): return len(structureAnalyzer.getValidEdgeTypes(e1.get("type"), e2.get("type"), forceUndirected=forceUndirected)) > 0 def getGoldCategoryName(self, goldGraph, entityToGold, e1, e2, directed=True): if len(entityToGold[e1]) > 0 and len(entityToGold[e2]) > 0: return self.getCategoryName(goldGraph, entityToGold[e1][0], entityToGold[e2][0], directed=directed) else: return "neg" def filterEdge(self, edge, edgeTypes): import types assert edgeTypes != None if type(edgeTypes) not in [types.ListType, types.TupleType]: edgeTypes = [edgeTypes] if edge[2].get("type") in edgeTypes: return True else: return False def keepExample(self, e1, e2, categoryName, isDirected, structureAnalyzer): makeExample = True if (not self.styles["no_auto_limits"]) and not self.isValidInteraction(e1, e2, structureAnalyzer, forceUndirected=not isDirected): makeExample = False self.exampleStats.filter("auto_limits") if self.styles["genia_task1"] and (e1.get("type") == "Entity" or e2.get("type") == "Entity"): makeExample = False self.exampleStats.filter("genia_task1") if self.styles["pos_only"] and categoryName == "neg": makeExample = False self.exampleStats.filter("pos_only") if self.styles["no_self_loops"] and ((e1 == e2) or (e1.get("headOffset") == e2.get("headOffset"))): makeExample = False self.exampleStats.filter("no_self_loops") return makeExample def getExampleCategoryName(self, e1=None, e2=None, t1=None, t2=None, sentenceGraph=None, goldGraph=None, entityToGold=None, isDirected=True, structureAnalyzer=None): if self.styles["token_nodes"]: categoryName = self.getCategoryNameFromTokens(sentenceGraph, t1, t2, isDirected) else: categoryName = self.getCategoryName(sentenceGraph, e1, e2, isDirected) if goldGraph != None: categoryName = self.getGoldCategoryName(goldGraph, entityToGold, e1, e2, isDirected) if self.styles["filter_types"] != None and categoryName in self.styles["filter_types"]: categoryName = "neg" if self.styles["se10t8_undirected"]: assert e1.get("id").endswith(".e1") assert e2.get("id").endswith(".e2") #if self.styles["sdb_merge"]: # categoryName = self.mergeForSeeDev(categoryName, structureAnalyzer) return categoryName def buildExamplesFromGraph(self, sentenceGraph, outfile, goldGraph = None, structureAnalyzer=None): """ Build examples for a single sentence. Returns a list of examples. See Core/ExampleUtils for example format. """ #examples = [] exampleIndex = 0 # example directionality if self.styles["directed"] == None and self.styles["undirected"] == None: # determine directedness from corpus examplesAreDirected = structureAnalyzer.hasDirectedTargets() if structureAnalyzer != None else True elif self.styles["directed"]: assert self.styles["undirected"] in [None, False] examplesAreDirected = True elif self.styles["undirected"]: assert self.styles["directed"] in [None, False] examplesAreDirected = False if not self.styles["no_trigger_features"]: self.triggerFeatureBuilder.initSentence(sentenceGraph) if self.styles["evex"]: self.evexFeatureBuilder.initSentence(sentenceGraph) # if self.styles["sdb_merge"]: # self.determineNonOverlappingTypes(structureAnalyzer) # Filter entities, if needed sentenceGraph.mergeInteractionGraph(True) entities = sentenceGraph.mergedEntities entityToDuplicates = sentenceGraph.mergedEntityToDuplicates self.exampleStats.addValue("Duplicate entities skipped", len(sentenceGraph.entities) - len(entities)) # Connect to optional gold graph entityToGold = None if goldGraph != None: entityToGold = EvaluateInteractionXML.mapEntities(entities, goldGraph.entities) paths = None if not self.styles["no_path"]: undirected = sentenceGraph.dependencyGraph.toUndirected() paths = undirected if self.styles["filter_shortest_path"] != None: # For DDI use filter_shortest_path=conj_and paths.resetAnalyses() # just in case paths.FloydWarshall(self.filterEdge, {"edgeTypes":self.styles["filter_shortest_path"]}) # Generate examples based on interactions between entities or interactions between tokens if self.styles["token_nodes"]: loopRange = len(sentenceGraph.tokens) else: loopRange = len(entities) for i in range(loopRange-1): for j in range(i+1,loopRange): eI = None eJ = None if self.styles["token_nodes"]: tI = sentenceGraph.tokens[i] tJ = sentenceGraph.tokens[j] else: eI = entities[i] eJ = entities[j] tI = sentenceGraph.entityHeadTokenByEntity[eI] tJ = sentenceGraph.entityHeadTokenByEntity[eJ] if eI.get("type") == "neg" or eJ.get("type") == "neg": continue if self.styles["skip_extra_triggers"]: if eI.get("source") != None or eJ.get("source") != None: continue # only consider paths between entities (NOTE! entities, not only named entities) if self.styles["headsOnly"]: if (len(sentenceGraph.tokenIsEntityHead[tI]) == 0) or (len(sentenceGraph.tokenIsEntityHead[tJ]) == 0): continue examples = self.buildExamplesForPair(tI, tJ, paths, sentenceGraph, goldGraph, entityToGold, eI, eJ, structureAnalyzer, examplesAreDirected) for categoryName, features, extra in examples: # make example if self.styles["binary"]: if categoryName != "neg": category = 1 else: category = -1 extra["categoryName"] = "i" else: category = self.classSet.getId(categoryName) example = [sentenceGraph.getSentenceId()+".x"+str(exampleIndex), category, features, extra] ExampleUtils.appendExamples([example], outfile) exampleIndex += 1 return exampleIndex def buildExamplesForPair(self, token1, token2, paths, sentenceGraph, goldGraph, entityToGold, entity1=None, entity2=None, structureAnalyzer=None, isDirected=True): # define forward categoryName = self.getExampleCategoryName(entity1, entity2, token1, token2, sentenceGraph, goldGraph, entityToGold, isDirected, structureAnalyzer=structureAnalyzer) # make forward forwardExample = None self.exampleStats.beginExample(categoryName) if self.keepExample(entity1, entity2, categoryName, isDirected, structureAnalyzer): forwardExample = self.buildExample(token1, token2, paths, sentenceGraph, categoryName, entity1, entity2, structureAnalyzer, isDirected) if isDirected: # build a separate reverse example (if that is valid) self.exampleStats.endExample() # end forward example # define reverse categoryName = self.getExampleCategoryName(entity2, entity1, token2, token1, sentenceGraph, goldGraph, entityToGold, True, structureAnalyzer=structureAnalyzer) # make reverse self.exampleStats.beginExample(categoryName) reverseExample = None if self.keepExample(entity2, entity1, categoryName, True, structureAnalyzer): reverseExample = self.buildExample(token2, token1, paths, sentenceGraph, categoryName, entity2, entity1, structureAnalyzer, isDirected) self.exampleStats.endExample() return filter(None, [forwardExample, reverseExample]) elif self.styles["se10t8_undirected"]: # undirected example with a directed type self.exampleStats.endExample() return [forwardExample] elif forwardExample != None: # merge features from the reverse example to the forward one reverseExample = self.buildExample(token2, token1, paths, sentenceGraph, categoryName, entity2, entity1, structureAnalyzer, isDirected) forwardExample[1].update(reverseExample[1]) self.exampleStats.endExample() # end merged example return [forwardExample] else: # undirected example that was filtered self.exampleStats.endExample() # end merged example return [] def buildExample(self, token1, token2, paths, sentenceGraph, categoryName, entity1=None, entity2=None, structureAnalyzer=None, isDirected=True): """ Build a single directed example for the potential edge between token1 and token2 """ # define features if not self.styles["no_path"]: path = paths.getPaths(token1, token2) if len(path) > 0: path = path[0] #pathExists = True else: path = [token1, token2] #pathExists = False else: path = [token1, token2] #pathExists = False features = {} if not self.styles["no_features"]: features = self.buildFeatures(sentenceGraph, entity1, entity2, token1, token2, path) # define extra attributes if int(path[0].get("charOffset").split("-")[0]) < int(path[-1].get("charOffset").split("-")[0]): extra = {"xtype":"edge","type":"i","t1":path[0].get("id"),"t2":path[-1].get("id")} extra["deprev"] = False else: extra = {"xtype":"edge","type":"i","t1":path[-1].get("id"),"t2":path[0].get("id")} extra["deprev"] = True if entity1 != None: extra["e1"] = entity1.get("id") if sentenceGraph.mergedEntityToDuplicates != None: extra["e1DuplicateIds"] = ",".join([x.get("id") for x in sentenceGraph.mergedEntityToDuplicates[entity1]]) if entity2 != None: extra["e2"] = entity2.get("id") if sentenceGraph.mergedEntityToDuplicates != None: extra["e2DuplicateIds"] = ",".join([x.get("id") for x in sentenceGraph.mergedEntityToDuplicates[entity2]]) extra["categoryName"] = categoryName if self.styles["bacteria_renaming"]: if entity1.get("text") != None and entity1.get("text") != "": extra["e1t"] = entity1.get("text").replace(" ", "---").replace(":","-COL-") if entity2.get("text") != None and entity2.get("text") != "": extra["e2t"] = entity2.get("text").replace(" ", "---").replace(":","-COL-") if self.styles["doc_extra"]: if hasattr(sentenceGraph, "documentElement") and sentenceGraph.documentElement.get("origId") != None: extra["DOID"] = sentenceGraph.documentElement.get("origId") if self.styles["entity_extra"]: if entity1.get("origId") != None: extra["e1OID"] = entity1.get("origId") if entity2.get("origId") != None: extra["e2OID"] = entity2.get("origId") sentenceOrigId = sentenceGraph.sentenceElement.get("origId") if sentenceOrigId != None: extra["SOID"] = sentenceOrigId extra["directed"] = str(isDirected) if self.styles["sdb_merge"]: extra["sdb_merge"] = "True" #print extra return (categoryName, features, extra) def buildFeatures(self, sentenceGraph, entity1, entity2, token1, token2, path): features = {} if not self.styles["no_trigger_features"]: # F 85.52 -> 85.55 self.triggerFeatureBuilder.setFeatureVector(features) self.triggerFeatureBuilder.tag = "trg1_" self.triggerFeatureBuilder.buildFeatures(token1) self.triggerFeatureBuilder.tag = "trg2_" self.triggerFeatureBuilder.buildFeatures(token2) self.triggerFeatureBuilder.setFeatureVector(None) # REL features if self.styles["rel_features"] and not self.styles["no_task"]: self.relFeatureBuilder.setFeatureVector(features) self.relFeatureBuilder.tag = "rel1_" self.relFeatureBuilder.buildAllFeatures(sentenceGraph.tokens, sentenceGraph.tokens.index(token1)) self.relFeatureBuilder.tag = "rel2_" self.relFeatureBuilder.buildAllFeatures(sentenceGraph.tokens, sentenceGraph.tokens.index(token2)) self.relFeatureBuilder.setFeatureVector(None) if self.styles["bacteria_renaming"] and not self.styles["no_task"]: self.bacteriaRenamingFeatureBuilder.setFeatureVector(features) self.bacteriaRenamingFeatureBuilder.buildPairFeatures(entity1, entity2) #self.bacteriaRenamingFeatureBuilder.buildSubstringFeatures(entity1, entity2) # decreases perf. 74.76 -> 72.41 self.bacteriaRenamingFeatureBuilder.setFeatureVector(None) if self.styles["co_features"] and not self.styles["no_task"]: e1Offset = Range.charOffsetToSingleTuple(entity1.get("charOffset")) e2Offset = Range.charOffsetToSingleTuple(entity2.get("charOffset")) if Range.contains(e1Offset, e2Offset): features[self.featureSet.getId("e1_contains_e2")] = 1 if entity2.get("given") == "True": features[self.featureSet.getId("e1_contains_e2name")] = 1 if Range.contains(e2Offset, e1Offset): features[self.featureSet.getId("e2_contains_e1")] = 1 if entity1.get("given") == "True": features[self.featureSet.getId("e2_contains_e1name")] = 1 if self.styles["drugbank_features"]: self.drugFeatureBuilder.setFeatureVector(features) self.drugFeatureBuilder.tag = "ddi_" self.drugFeatureBuilder.buildPairFeatures(entity1, entity2) if self.styles["ddi_mtmx"]: self.drugFeatureBuilder.buildMTMXFeatures(entity1, entity2) self.drugFeatureBuilder.setFeatureVector(None) if self.styles["graph_kernel"]: self.graphKernelFeatureBuilder.setFeatureVector(features, entity1, entity2) self.graphKernelFeatureBuilder.buildGraphKernelFeatures(sentenceGraph, path) self.graphKernelFeatureBuilder.setFeatureVector(None) if self.styles["entity_type"]: e1Type = self.multiEdgeFeatureBuilder.getEntityType(entity1) e2Type = self.multiEdgeFeatureBuilder.getEntityType(entity2) features[self.featureSet.getId("e1_"+e1Type)] = 1 features[self.featureSet.getId("e2_"+e2Type)] = 1 features[self.featureSet.getId("distance_"+str(len(path)))] = 1 if not self.styles["no_dependency"]: #print "Dep features" self.multiEdgeFeatureBuilder.setFeatureVector(features, entity1, entity2) #self.multiEdgeFeatureBuilder.buildStructureFeatures(sentenceGraph, paths) # remove for fast if not self.styles["disable_entity_features"]: self.multiEdgeFeatureBuilder.buildEntityFeatures(sentenceGraph) self.multiEdgeFeatureBuilder.buildPathLengthFeatures(path) if not self.styles["disable_terminus_features"]: self.multiEdgeFeatureBuilder.buildTerminusTokenFeatures(path, sentenceGraph) # remove for fast if not self.styles["disable_single_element_features"]: self.multiEdgeFeatureBuilder.buildSingleElementFeatures(path, sentenceGraph) if not self.styles["disable_ngram_features"]: #print "NGrams" self.multiEdgeFeatureBuilder.buildPathGrams(2, path, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams(3, path, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams(4, path, sentenceGraph) # remove for fast #self.buildEdgeCombinations(path, edges, sentenceGraph, features) # remove for fast #if edges != None: # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[0], edges[0][1]+edges[1][0], "t1", sentenceGraph) # remove for fast # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[-1], edges[len(path)-1][len(path)-2]+edges[len(path)-2][len(path)-1], "t2", sentenceGraph) # remove for fast if not self.styles["disable_path_edge_features"]: self.multiEdgeFeatureBuilder.buildPathEdgeFeatures(path, sentenceGraph) self.multiEdgeFeatureBuilder.buildSentenceFeatures(sentenceGraph) self.multiEdgeFeatureBuilder.setFeatureVector(None) if self.styles["nodalida"]: self.nodalidaFeatureBuilder.setFeatureVector(features, entity1, entity2) shortestPaths = self.nodalidaFeatureBuilder.buildShortestPaths(sentenceGraph.dependencyGraph, path) print shortestPaths if len(shortestPaths) > 0: self.nodalidaFeatureBuilder.buildNGrams(shortestPaths, sentenceGraph) self.nodalidaFeatureBuilder.setFeatureVector(None) if self.styles["linear_features"]: self.tokenFeatureBuilder.setFeatureVector(features) for i in range(len(sentenceGraph.tokens)): if sentenceGraph.tokens[i] == token1: token1Index = i if sentenceGraph.tokens[i] == token2: token2Index = i linearPreTag = "linfw_" if token1Index > token2Index: token1Index, token2Index = token2Index, token1Index linearPreTag = "linrv_" self.tokenFeatureBuilder.buildLinearOrderFeatures(token1Index, sentenceGraph, 2, 2, preTag="linTok1") self.tokenFeatureBuilder.buildLinearOrderFeatures(token2Index, sentenceGraph, 2, 2, preTag="linTok2") # Before, middle, after # self.tokenFeatureBuilder.buildTokenGrams(0, token1Index-1, sentenceGraph, "bf") # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, "bw") # self.tokenFeatureBuilder.buildTokenGrams(token2Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, "af") # before-middle, middle, middle-after # self.tokenFeatureBuilder.buildTokenGrams(0, token2Index-1, sentenceGraph, linearPreTag+"bf", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, linearPreTag+"bw", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, linearPreTag+"af", max=2) self.tokenFeatureBuilder.setFeatureVector(None) if self.styles["random"]: self.randomFeatureBuilder.setFeatureVector(features) self.randomFeatureBuilder.buildRandomFeatures(100, 0.01) self.randomFeatureBuilder.setFeatureVector(None) if self.styles["genia_features"] and not self.styles["no_task"]: e1Type = entity1.get("type") e2Type = entity2.get("type") assert(entity1.get("given") in (None, "False")) if entity2.get("given") == "True": features[self.featureSet.getId("GENIA_target_protein")] = 1 else: features[self.featureSet.getId("GENIA_nested_event")] = 1 if e1Type.find("egulation") != -1: # leave r out to avoid problems with capitalization if entity2.get("given") == "True": features[self.featureSet.getId("GENIA_regulation_of_protein")] = 1 else: features[self.featureSet.getId("GENIA_regulation_of_event")] = 1 if self.styles["bi_features"]: # Make features based on entity types e1Type = entity1.get("type") e2Type = entity2.get("type") e1SuperType = str(self.getBISuperType(e1Type)) e2SuperType = str(self.getBISuperType(e2Type)) features[self.featureSet.getId("BI_e1_"+e1Type)] = 1 features[self.featureSet.getId("BI_e2_"+e2Type)] = 1 features[self.featureSet.getId("BI_e1sup_"+e1SuperType)] = 1 features[self.featureSet.getId("BI_e2sup_"+e2SuperType)] = 1 features[self.featureSet.getId("BI_e1e2_"+e1Type+"_"+e2Type)] = 1 features[self.featureSet.getId("BI_e1e2sup_"+e1SuperType+"_"+e2SuperType)] = 1 if self.styles["sdb_features"]: e1Type = entity1.get("type") e2Type = entity2.get("type") features[self.featureSet.getId("SDB_e1_"+e1Type)] = 1 features[self.featureSet.getId("SDB_e2_"+e2Type)] = 1 features[self.featureSet.getId("SDB_e1e2_"+e1Type+"_"+e2Type)] = 1 if e1Type == e2Type: features[self.featureSet.getId("SDB_e1e2_equal")] = 1 features[self.featureSet.getId("SDB_e1e2_equal_" + e1Type)] = 1 e1SuperTypes = str(self.getSeeDevSuperTypes(e1Type)) e2SuperTypes = str(self.getSeeDevSuperTypes(e2Type)) for e1SuperType in e1SuperTypes: for e2SuperType in e2SuperTypes: features[self.featureSet.getId("SDB_e1sup_"+e1SuperType)] = 1 features[self.featureSet.getId("SDB_e2sup_"+e2SuperType)] = 1 features[self.featureSet.getId("SDB_e1e2sup_"+e1SuperType+"_"+e2SuperType)] = 1 if e1SuperType == e2SuperType: features[self.featureSet.getId("SDB_e1e2sup_equal")] = 1 features[self.featureSet.getId("SDB_e1e2sup_equal_" + e1SuperType)] = 1 if self.styles["ontobiotope_features"]: self.ontobiotopeFeatureBuilder.setFeatureVector(features) self.ontobiotopeFeatureBuilder.buildOBOFeaturesForEntityPair(entity1, entity2) self.ontobiotopeFeatureBuilder.setFeatureVector(None) if self.styles["full_entities"]: e1Text = entity1.get("text").lower() e2Text = entity2.get("text").lower() features[self.featureSet.getId("FULL_e1_"+e1Text)] = 1 features[self.featureSet.getId("FULL_e2_"+e2Text)] = 1 for ep1 in e1Text.split(): for ep2 in e2Text.split(): features[self.featureSet.getId("FULL_e1_"+ep1)] = 1 features[self.featureSet.getId("FULL_e2_"+ep2)] = 1 features[self.featureSet.getId("FULL_e1e2_"+ep1+"_"+ep2)] = 1 if self.styles["evex"]: self.evexFeatureBuilder.setFeatureVector(features, entity1, entity2) self.evexFeatureBuilder.buildEdgeFeatures(entity1, entity2, token1, token2, path, sentenceGraph) self.evexFeatureBuilder.setFeatureVector(None) if self.styles["wordnet"]: self.wordNetFeatureBuilder.setFeatureVector(features, entity1, entity2) self.wordNetFeatureBuilder.buildFeaturesForEntityPair(token1, token2) self.wordNetFeatureBuilder.buildLinearFeatures(token1, sentenceGraph.tokens, tag="t1_") self.wordNetFeatureBuilder.buildLinearFeatures(token2, sentenceGraph.tokens, tag="t2_") self.wordNetFeatureBuilder.buildPathFeatures(path) self.wordNetFeatureBuilder.setFeatureVector(None) if self.styles["wordvector"]: self.wordVectorFeatureBuilder.setFeatureVector(features, entity1, entity2) self.wordVectorFeatureBuilder.buildFeatures(token1, "t1_") self.wordVectorFeatureBuilder.buildFeatures(token2, "t2_") self.wordVectorFeatureBuilder.buildLinearFeatures(token1, sentenceGraph.tokens, tag="t1_") self.wordVectorFeatureBuilder.buildLinearFeatures(token2, sentenceGraph.tokens, tag="t2_") self.wordVectorFeatureBuilder.buildPathFeatures(path) self.wordVectorFeatureBuilder.buildFBAFeatures(sentenceGraph.tokens, sentenceGraph.tokens.index(token1), sentenceGraph.tokens.index(token2)) self.wordVectorFeatureBuilder.setFeatureVector(None) if self.styles["giuliano"]: self.giulianoFeatureBuilder.setFeatureVector(features, entity1, entity2) self.giulianoFeatureBuilder.buildEdgeFeatures(entity1, entity2, token1, token2, path, sentenceGraph) self.giulianoFeatureBuilder.setFeatureVector(None) return features
class MultiEdgeExampleBuilder(ExampleBuilder): """ This example builder makes edge examples, i.e. examples describing the event arguments. """ def __init__(self, style=None, length=None, types=[], featureSet=None, classSet=None): if featureSet == None: featureSet = IdSet() if classSet == None: classSet = IdSet(1) else: classSet = classSet assert (classSet.getId("neg") == 1 or (len(classSet.Ids) == 2 and classSet.getId("neg") == -1)) ExampleBuilder.__init__(self, classSet=classSet, featureSet=featureSet) self.styles = self.getParameters(style, [ "typed", "directed", "headsOnly", "graph_kernel", "noAnnType", "noMasking", "maxFeatures", "genia_limits", "epi_limits", "id_limits", "rel_limits", "bb_limits", "bi_limits", "co_limits", "genia_task1", "ontology", "nodalida", "bacteria_renaming", "trigger_features", "rel_features", "ddi_features", "evex", "giuliano", "random", "themeOnly", "causeOnly", "no_path", "entities", "skip_extra_triggers", "headsOnly", "graph_kernel", "trigger_features", "no_task", "no_dependency", "disable_entity_features", "disable_terminus_features", "disable_single_element_features", "disable_ngram_features", "disable_path_edge_features", "no_linear", "subset", "binary", "pos_only", "entity_type" ]) if style == None: # no parameters given style["typed"] = style["directed"] = style["headsOnly"] = True # self.styles = style # if "selftrain_group" in self.styles: # self.selfTrainGroups = set() # if "selftrain_group-1" in self.styles: # self.selfTrainGroups.add("-1") # if "selftrain_group0" in self.styles: # self.selfTrainGroups.add("0") # if "selftrain_group1" in self.styles: # self.selfTrainGroups.add("1") # if "selftrain_group2" in self.styles: # self.selfTrainGroups.add("2") # if "selftrain_group3" in self.styles: # self.selfTrainGroups.add("3") # print >> sys.stderr, "Self-train-groups:", self.selfTrainGroups self.multiEdgeFeatureBuilder = MultiEdgeFeatureBuilder(self.featureSet) # NOTE Temporarily re-enabling predicted range #self.multiEdgeFeatureBuilder.definePredictedValueRange([], None) if self.styles["graph_kernel"]: from FeatureBuilders.GraphKernelFeatureBuilder import GraphKernelFeatureBuilder self.graphKernelFeatureBuilder = GraphKernelFeatureBuilder( self.featureSet) if self.styles["noAnnType"]: self.multiEdgeFeatureBuilder.noAnnType = True if self.styles["noMasking"]: self.multiEdgeFeatureBuilder.maskNamedEntities = False if self.styles["maxFeatures"]: self.multiEdgeFeatureBuilder.maximum = True if self.styles["genia_task1"]: self.multiEdgeFeatureBuilder.filterAnnTypes.add("Entity") self.tokenFeatureBuilder = TokenFeatureBuilder(self.featureSet) if self.styles["ontology"]: self.multiEdgeFeatureBuilder.ontologyFeatureBuilder = BioInferOntologyFeatureBuilder( self.featureSet) if self.styles["nodalida"]: self.nodalidaFeatureBuilder = NodalidaFeatureBuilder( self.featureSet) if self.styles["bacteria_renaming"]: self.bacteriaRenamingFeatureBuilder = BacteriaRenamingFeatureBuilder( self.featureSet) if self.styles["trigger_features"]: self.triggerFeatureBuilder = TriggerFeatureBuilder(self.featureSet) self.triggerFeatureBuilder.useNonNameEntities = True if self.styles["genia_task1"]: self.triggerFeatureBuilder.filterAnnTypes.add("Entity") #self.bioinferOntologies = OntologyUtils.loadOntologies(OntologyUtils.g_bioInferFileName) if self.styles["rel_features"]: self.relFeatureBuilder = RELFeatureBuilder(featureSet) if self.styles["ddi_features"]: self.drugFeatureBuilder = DrugFeatureBuilder(featureSet) if self.styles["evex"]: self.evexFeatureBuilder = EVEXFeatureBuilder(featureSet) if self.styles["giuliano"]: self.giulianoFeatureBuilder = GiulianoFeatureBuilder(featureSet) self.pathLengths = length assert (self.pathLengths == None) self.types = types if self.styles["random"]: from FeatureBuilders.RandomFeatureBuilder import RandomFeatureBuilder self.randomFeatureBuilder = RandomFeatureBuilder(self.featureSet) def definePredictedValueRange(self, sentences, elementName): self.multiEdgeFeatureBuilder.definePredictedValueRange( sentences, elementName) def getPredictedValueRange(self): return self.multiEdgeFeatureBuilder.predictedRange def filterEdgesByType(self, edges, typesToInclude): if len(typesToInclude) == 0: return edges edgesToKeep = [] for edge in edges: if edge.get("type") in typesToInclude: edgesToKeep.append(edge) return edgesToKeep def getCategoryNameFromTokens(self, sentenceGraph, t1, t2, directed=True): """ Example class. Multiple overlapping edges create a merged type. """ types = set() # if sentenceGraph.interactionGraph.has_edge(t1, t2): # intEdges = sentenceGraph.interactionGraph.get_edge_data(t1, t2, default={}) # # NOTE: Only works if keys are ordered integers # for i in range(len(intEdges)): # types.add(intEdges[i]["element"].get("type")) # if (not directed) and sentenceGraph.interactionGraph.has_edge(t2, t1): # intEdges = sentenceGraph.interactionGraph.get_edge(t2, t1, default={}) # # NOTE: Only works if keys are ordered integers # for i in range(len(intEdges)): # types.add(intEdges[i]["element"].get("type")) intEdges = sentenceGraph.interactionGraph.getEdges(t1, t2) if (not directed): intEdges = intEdges + sentenceGraph.interactionGraph.getEdges( t2, t1) for intEdge in intEdges: types.add(intEdge[2].get("type")) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def getCategoryName(self, sentenceGraph, e1, e2, directed=True, duplicateEntities=None): """ Example class. Multiple overlapping edges create a merged type. """ # interactions = [] # e1s = [e1] # if duplicateEntities != None and e1 in duplicateEntities: # e1s += duplicateEntities[e1] # e2s = [e2] # if duplicateEntities != None and e2 in duplicateEntities: # e2s += duplicateEntities[e2] # for entity1 in e1s: # for entity2 in e2s: # interactions = interactions + sentenceGraph.getInteractions(entity1, entity2) # if not directed: # interactions = interactions + sentenceGraph.getInteractions(entity2, entity1) interactions = sentenceGraph.getInteractions(e1, e2, True) #print interactions types = set() for interaction in interactions: types.add(interaction[2].get("type")) types = list(types) types.sort() categoryName = "" for name in types: if self.styles["causeOnly"] and name != "Cause": continue if self.styles["themeOnly"] and name != "Theme": continue if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def isPotentialRELInteraction(self, e1, e2): if e1.get("type") == "Protein" and e2.get("type") == "Entity": return True else: return False def isPotentialBBInteraction(self, e1, e2, sentenceGraph): #if e1.get("type") == "Bacterium" and e2.get("type") in ["Host", "HostPart", "Geographical", "Environmental", "Food", "Medical", "Soil", "Water"]: # Note: "Environment" type is misspelled as "Environmental" in the BB-task documentation if e1.get("type") == "Bacterium" and e2.get("type") in [ "Host", "HostPart", "Geographical", "Environment", "Food", "Medical", "Soil", "Water" ]: return True elif e1.get("type") == "Host" and e2.get("type") == "HostPart": return True else: return False def getBISuperType(self, eType): if eType in [ "GeneProduct", "Protein", "ProteinFamily", "PolymeraseComplex" ]: return "ProteinEntity" elif eType in [ "Gene", "GeneFamily", "GeneComplex", "Regulon", "Site", "Promoter" ]: return "GeneEntity" else: return None def isPotentialBIInteraction(self, e1, e2, sentenceGraph, stats): e1Type = e1.get("type") e1SuperType = self.getBISuperType(e1Type) e2Type = e2.get("type") e2SuperType = self.getBISuperType(e2Type) tag = "(" + e1Type + "/" + e2Type + ")" if e1Type == "Regulon": if e2SuperType in ["GeneEntity", "ProteinEntity"]: return True if e1SuperType == "ProteinEntity": if e2Type in ["Site", "Promoter", "Gene", "GeneComplex"]: return True if e1Type in ["Action", "Transcription", "Expression"]: return True if e1Type == "Site": if e2SuperType == "GeneEntity": return True if e1Type == "Promoter": if e2SuperType in ["GeneEntity", "ProteinEntity"]: return True if e1SuperType in ["GeneEntity", "ProteinEntity"]: if e2SuperType in ["GeneEntity", "ProteinEntity"]: return True stats.filter("bi_limits") #+tag) return False def isPotentialEPIInteraction(self, e1, e2, sentenceGraph): if e1.get("type") != "Catalysis": if e1.get("type") in ["Protein", "Entity"]: return False elif e2.get("type") in ["Protein", "Entity"]: return True else: return False else: # Catalysis if e2.get("type") != "Entity": return True else: return False assert False, (e1.get("type"), e2.get("type")) def isPotentialIDInteraction(self, e1, e2, sentenceGraph): e1Type = e1.get("type") e2Type = e2.get("type") e1IsCore = e1Type in [ "Protein", "Regulon-operon", "Two-component-system", "Chemical", "Organism" ] e2IsCore = e2Type in [ "Protein", "Regulon-operon", "Two-component-system", "Chemical", "Organism" ] if e1IsCore: return False elif e1Type in ["Gene_expression", "Transcription"]: if e2Type in ["Protein", "Regulon-operon"]: return True else: return False elif e1Type in ["Protein_catabolism", "Phosphorylation"]: if e2Type == "Protein": return True else: return False elif e1Type == "Localization": if e2IsCore or e2Type == "Entity": return True else: return False elif e1Type in ["Binding", "Process"]: if e2IsCore: return True else: return False elif "egulation" in e1Type: if e2Type != "Entity": return True else: return False elif e1Type == "Entity": if e2IsCore: return True else: return False assert False, (e1Type, e2Type) def isPotentialCOInteraction(self, e1, e2, sentenceGraph): if e1.get("type") == "Exp" and e2.get("type") == "Exp": anaphoraTok = sentenceGraph.entityHeadTokenByEntity[e1] antecedentTok = sentenceGraph.entityHeadTokenByEntity[e2] antecedentTokenFound = False for token in sentenceGraph.tokens: if token == antecedentTok: antecedentTokenFound = True if token == anaphoraTok: # if, not elif, to take into accoutn cases where e1Tok == e2Tok if antecedentTokenFound: return True else: return False assert False elif e1.get("type") == "Exp" and e2.get("type") == "Protein": return True else: return False def isPotentialGeniaInteraction(self, e1, e2): e1Type = e1.get("type") e2Type = e2.get("type") if e1Type == "Protein": return False elif e1Type in [ "Entity", "Gene_expression", "Transcription", "Protein_catabolism", "Phosphorylation", "Binding" ]: if e2Type == "Protein": return True else: return False elif e1Type == "Localization": if e2Type in ["Protein", "Entity"]: return True else: return False elif "egulation" in e1Type: if e2Type != "Entity": return True else: return False assert False, (e1Type, e2Type) def getGoldCategoryName(self, goldGraph, entityToGold, e1, e2, directed=True): if len(entityToGold[e1]) > 0 and len(entityToGold[e2]) > 0: return self.getCategoryName(goldGraph, entityToGold[e1][0], entityToGold[e2][0], directed=directed) else: return "neg" def buildExamplesFromGraph(self, sentenceGraph, outfile, goldGraph=None): """ Build examples for a single sentence. Returns a list of examples. See Core/ExampleUtils for example format. """ #examples = [] exampleIndex = 0 if self.styles["trigger_features"]: self.triggerFeatureBuilder.initSentence(sentenceGraph) if self.styles["evex"]: self.evexFeatureBuilder.initSentence(sentenceGraph) # Filter entities, if needed #mergedIds = None #duplicateEntities = None #entities = sentenceGraph.entities #entities, mergedIds, duplicateEntities = self.mergeEntities(sentenceGraph, False) # "no_duplicates" in self.styles) sentenceGraph.mergeInteractionGraph(True) entities = sentenceGraph.mergedEntities entityToDuplicates = sentenceGraph.mergedEntityToDuplicates self.exampleStats.addValue("Duplicate entities skipped", len(sentenceGraph.entities) - len(entities)) # Connect to optional gold graph if goldGraph != None: entityToGold = EvaluateInteractionXML.mapEntities( entities, goldGraph.entities) paths = None if not self.styles["no_path"]: ##undirected = sentenceGraph.getUndirectedDependencyGraph() #undirected = self.nxMultiDiGraphToUndirected(sentenceGraph.dependencyGraph) ###undirected = sentenceGraph.dependencyGraph.to_undirected() ####undirected = NX10.MultiGraph(sentenceGraph.dependencyGraph) This didn't work undirected = sentenceGraph.dependencyGraph.toUndirected() #paths = NX10.all_pairs_shortest_path(undirected, cutoff=999) paths = undirected #for edge in sentenceGraph.dependencyGraph.edges: # assert edge[2] != None #for edge in undirected.edges: # assert edge[2] != None #if sentenceGraph.sentenceElement.get("id") == "GENIA.d70.s5": # print [(x[0].get("id"), x[1].get("id"), x[2].get("id")) for x in sentenceGraph.dependencyGraph.edges] # Generate examples based on interactions between entities or interactions between tokens if self.styles["entities"]: loopRange = len(entities) else: loopRange = len(sentenceGraph.tokens) for i in range(loopRange - 1): for j in range(i + 1, loopRange): eI = None eJ = None if self.styles["entities"]: eI = entities[i] eJ = entities[j] tI = sentenceGraph.entityHeadTokenByEntity[eI] tJ = sentenceGraph.entityHeadTokenByEntity[eJ] #if "no_ne_interactions" in self.styles and eI.get("isName") == "True" and eJ.get("isName") == "True": # continue if eI.get("type") == "neg" or eJ.get("type") == "neg": continue if self.styles["skip_extra_triggers"]: if eI.get("source") != None or eJ.get( "source") != None: continue else: tI = sentenceGraph.tokens[i] tJ = sentenceGraph.tokens[j] # only consider paths between entities (NOTE! entities, not only named entities) if self.styles["headsOnly"]: if (len(sentenceGraph.tokenIsEntityHead[tI]) == 0) or (len( sentenceGraph.tokenIsEntityHead[tJ]) == 0): continue if self.styles["directed"]: # define forward if self.styles["entities"]: categoryName = self.getCategoryName( sentenceGraph, eI, eJ, True) if goldGraph != None: categoryName = self.getGoldCategoryName( goldGraph, entityToGold, eI, eJ, True) else: categoryName = self.getCategoryNameFromTokens( sentenceGraph, tI, tJ, True) # make forward self.exampleStats.beginExample(categoryName) makeExample = True if self.styles[ "genia_limits"] and not self.isPotentialGeniaInteraction( eI, eJ): makeExample = False self.exampleStats.filter("genia_limits") if self.styles["genia_task1"] and ( eI.get("type") == "Entity" or eJ.get("type") == "Entity"): makeExample = False self.exampleStats.filter("genia_task1") if self.styles[ "rel_limits"] and not self.isPotentialRELInteraction( eI, eJ): makeExample = False self.exampleStats.filter("rel_limits") if self.styles[ "co_limits"] and not self.isPotentialCOInteraction( eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("co_limits") if self.styles[ "bb_limits"] and not self.isPotentialBBInteraction( eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("bb_limits") if categoryName != "neg": self.exampleStats.filter("bb_limits(" + categoryName + ":" + eI.get("type") + "/" + eJ.get("type") + ")") if self.styles[ "bi_limits"] and not self.isPotentialBIInteraction( eI, eJ, sentenceGraph, self.exampleStats): makeExample = False #self.exampleStats.filter("bi_limits") if self.styles[ "epi_limits"] and not self.isPotentialEPIInteraction( eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("epi_limits") if self.styles[ "id_limits"] and not self.isPotentialIDInteraction( eI, eJ, sentenceGraph): makeExample = False self.exampleStats.filter("id_limits") # if self.styles["selftrain_limits"] and (eI.get("selftrain") == "False" or eJ.get("selftrain") == "False"): # makeExample = False # self.exampleStats.filter("selftrain_limits") # if self.styles["selftrain_group"] and (eI.get("selftraingroup") not in self.selfTrainGroups or eJ.get("selftraingroup") not in self.selfTrainGroups): # makeExample = False # self.exampleStats.filter("selftrain_group") if self.styles["pos_only"] and categoryName == "neg": makeExample = False self.exampleStats.filter("pos_only") if makeExample: #examples.append( self.buildExample(tI, tJ, paths, sentenceGraph, categoryName, exampleIndex, eI, eJ) ) ExampleUtils.appendExamples([ self.buildExample(tI, tJ, paths, sentenceGraph, categoryName, exampleIndex, eI, eJ) ], outfile) exampleIndex += 1 self.exampleStats.endExample() # define reverse if self.styles["entities"]: categoryName = self.getCategoryName( sentenceGraph, eJ, eI, True) if goldGraph != None: categoryName = self.getGoldCategoryName( goldGraph, entityToGold, eJ, eI, True) else: categoryName = self.getCategoryNameFromTokens( sentenceGraph, tJ, tI, True) # make reverse self.exampleStats.beginExample(categoryName) makeExample = True if self.styles[ "genia_limits"] and not self.isPotentialGeniaInteraction( eJ, eI): makeExample = False self.exampleStats.filter("genia_limits") if self.styles["genia_task1"] and ( eI.get("type") == "Entity" or eJ.get("type") == "Entity"): makeExample = False self.exampleStats.filter("genia_task1") if self.styles[ "rel_limits"] and not self.isPotentialRELInteraction( eJ, eI): makeExample = False self.exampleStats.filter("rel_limits") if self.styles[ "co_limits"] and not self.isPotentialCOInteraction( eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("co_limits") if self.styles[ "bb_limits"] and not self.isPotentialBBInteraction( eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("bb_limits") if categoryName != "neg": self.exampleStats.filter("bb_limits(" + categoryName + ":" + eJ.get("type") + "/" + eI.get("type") + ")") if self.styles[ "bi_limits"] and not self.isPotentialBIInteraction( eJ, eI, sentenceGraph, self.exampleStats): makeExample = False #self.exampleStats.filter("bi_limits") if self.styles[ "epi_limits"] and not self.isPotentialEPIInteraction( eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("epi_limits") if self.styles[ "id_limits"] and not self.isPotentialIDInteraction( eJ, eI, sentenceGraph): makeExample = False self.exampleStats.filter("id_limits") # if self.styles["selftrain_limits"] and (eI.get("selftrain") == "False" or eJ.get("selftrain") == "False"): # makeExample = False # self.exampleStats.filter("selftrain_limits") # if self.styles["selftrain_group"] and (eI.get("selftraingroup") not in self.selfTrainGroups or eJ.get("selftraingroup") not in self.selfTrainGroups): # makeExample = False # self.exampleStats.filter("selftrain_group") if self.styles["pos_only"] and categoryName == "neg": makeExample = False self.exampleStats.filter("pos_only") if makeExample: #examples.append( self.buildExample(tJ, tI, paths, sentenceGraph, categoryName, exampleIndex, eJ, eI) ) ExampleUtils.appendExamples([ self.buildExample(tJ, tI, paths, sentenceGraph, categoryName, exampleIndex, eJ, eI) ], outfile) exampleIndex += 1 self.exampleStats.endExample() else: if self.styles["entities"]: categoryName = self.getCategoryName( sentenceGraph, eI, eJ, False) else: categoryName = self.getCategoryNameFromTokens( sentenceGraph, tI, tJ, False) self.exampleStats.beginExample(categoryName) forwardExample = self.buildExample(tI, tJ, paths, sentenceGraph, categoryName, exampleIndex, eI, eJ) if not self.styles["graph_kernel"]: reverseExample = self.buildExample( tJ, tI, paths, sentenceGraph, categoryName, exampleIndex, eJ, eI) forwardExample[2].update(reverseExample[2]) #examples.append(forwardExample) ExampleUtils.appendExamples([forwardExample], outfile) exampleIndex += 1 self.exampleStats.endExample() #return examples return exampleIndex def buildExample(self, token1, token2, paths, sentenceGraph, categoryName, exampleIndex, entity1=None, entity2=None): """ Build a single directed example for the potential edge between token1 and token2 """ # dummy return for speed testing #return (sentenceGraph.getSentenceId()+".x"+str(exampleIndex),1,{},{}) # define features features = {} if True: #token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): #if token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): # path = paths[token1][token2] #else: # path = [token1, token2] if not self.styles["no_path"]: # directedPath reduces performance by 0.01 pp #directedPath = sentenceGraph.dependencyGraph.getPaths(token1, token2) #if len(directedPath) == 0: # directedPath = sentenceGraph.dependencyGraph.getPaths(token2, token1) # for dp in directedPath: # dp.reverse() #if len(directedPath) == 0: # path = paths.getPaths(token1, token2) #else: # path = directedPath path = paths.getPaths(token1, token2) if len(path) > 0: #if len(path) > 1: # print len(path) path = path[0] pathExists = True else: path = [token1, token2] pathExists = False else: path = [token1, token2] pathExists = False #print token1.get("id"), token2.get("id") assert (self.pathLengths == None) if self.pathLengths == None or len(path) - 1 in self.pathLengths: # if not "no_ontology" in self.styles: # self.ontologyFeatureBuilder.setFeatureVector(features) # self.ontologyFeatureBuilder.buildOntologyFeaturesForPath(sentenceGraph, path) # self.ontologyFeatureBuilder.setFeatureVector(None) if self.styles["trigger_features"]: # F 85.52 -> 85.55 self.triggerFeatureBuilder.setFeatureVector(features) self.triggerFeatureBuilder.tag = "trg1_" self.triggerFeatureBuilder.buildFeatures(token1) self.triggerFeatureBuilder.tag = "trg2_" self.triggerFeatureBuilder.buildFeatures(token2) self.triggerFeatureBuilder.setFeatureVector(None) # REL features if self.styles["rel_features"] and not self.styles["no_task"]: self.relFeatureBuilder.setFeatureVector(features) self.relFeatureBuilder.tag = "rel1_" self.relFeatureBuilder.buildAllFeatures( sentenceGraph.tokens, sentenceGraph.tokens.index(token1)) self.relFeatureBuilder.tag = "rel2_" self.relFeatureBuilder.buildAllFeatures( sentenceGraph.tokens, sentenceGraph.tokens.index(token2)) self.relFeatureBuilder.setFeatureVector(None) if self.styles[ "bacteria_renaming"] and not self.styles["no_task"]: self.bacteriaRenamingFeatureBuilder.setFeatureVector( features) self.bacteriaRenamingFeatureBuilder.buildPairFeatures( entity1, entity2) #self.bacteriaRenamingFeatureBuilder.buildSubstringFeatures(entity1, entity2) # decreases perf. 74.76 -> 72.41 self.bacteriaRenamingFeatureBuilder.setFeatureVector(None) if self.styles["co_limits"] and not self.styles["no_task"]: e1Offset = Range.charOffsetToSingleTuple( entity1.get("charOffset")) e2Offset = Range.charOffsetToSingleTuple( entity2.get("charOffset")) if Range.contains(e1Offset, e2Offset): features[self.featureSet.getId("e1_contains_e2")] = 1 if entity2.get("isName") == "True": features[self.featureSet.getId( "e1_contains_e2name")] = 1 if Range.contains(e2Offset, e1Offset): features[self.featureSet.getId("e2_contains_e1")] = 1 if entity1.get("isName") == "True": features[self.featureSet.getId( "e2_contains_e1name")] = 1 if self.styles["ddi_features"]: self.drugFeatureBuilder.setFeatureVector(features) self.drugFeatureBuilder.tag = "ddi_" self.drugFeatureBuilder.buildPairFeatures(entity1, entity2) if self.styles["ddi_mtmx"]: self.drugFeatureBuilder.buildMTMXFeatures( entity1, entity2) self.drugFeatureBuilder.setFeatureVector(None) #if "graph_kernel" in self.styles or not "no_dependency" in self.styles: # #print "Getting edges" # if token1 != token2 and pathExists: # #print "g1" # edges = self.multiEdgeFeatureBuilder.getEdges(sentenceGraph.dependencyGraph, path) # #print "g2" # else: # edges = None if self.styles["graph_kernel"]: self.graphKernelFeatureBuilder.setFeatureVector( features, entity1, entity2) self.graphKernelFeatureBuilder.buildGraphKernelFeatures( sentenceGraph, path) self.graphKernelFeatureBuilder.setFeatureVector(None) if self.styles["entity_type"]: features[self.featureSet.getId("e1_" + entity1.get("type"))] = 1 features[self.featureSet.getId("e2_" + entity2.get("type"))] = 1 features[self.featureSet.getId("distance_" + str(len(path)))] = 1 if not self.styles["no_dependency"]: #print "Dep features" self.multiEdgeFeatureBuilder.setFeatureVector( features, entity1, entity2) #self.multiEdgeFeatureBuilder.buildStructureFeatures(sentenceGraph, paths) # remove for fast if not self.styles["disable_entity_features"]: self.multiEdgeFeatureBuilder.buildEntityFeatures( sentenceGraph) self.multiEdgeFeatureBuilder.buildPathLengthFeatures(path) if not self.styles["disable_terminus_features"]: self.multiEdgeFeatureBuilder.buildTerminusTokenFeatures( path, sentenceGraph) # remove for fast if not self.styles["disable_single_element_features"]: self.multiEdgeFeatureBuilder.buildSingleElementFeatures( path, sentenceGraph) if not self.styles["disable_ngram_features"]: #print "NGrams" self.multiEdgeFeatureBuilder.buildPathGrams( 2, path, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams( 3, path, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams( 4, path, sentenceGraph) # remove for fast #self.buildEdgeCombinations(path, edges, sentenceGraph, features) # remove for fast #if edges != None: # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[0], edges[0][1]+edges[1][0], "t1", sentenceGraph) # remove for fast # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[-1], edges[len(path)-1][len(path)-2]+edges[len(path)-2][len(path)-1], "t2", sentenceGraph) # remove for fast if not self.styles["disable_path_edge_features"]: self.multiEdgeFeatureBuilder.buildPathEdgeFeatures( path, sentenceGraph) self.multiEdgeFeatureBuilder.buildSentenceFeatures( sentenceGraph) self.multiEdgeFeatureBuilder.setFeatureVector(None) if self.styles["nodalida"]: self.nodalidaFeatureBuilder.setFeatureVector( features, entity1, entity2) shortestPaths = self.nodalidaFeatureBuilder.buildShortestPaths( sentenceGraph.dependencyGraph, path) print shortestPaths if len(shortestPaths) > 0: self.nodalidaFeatureBuilder.buildNGrams( shortestPaths, sentenceGraph) self.nodalidaFeatureBuilder.setFeatureVector(None) if not self.styles["no_linear"]: self.tokenFeatureBuilder.setFeatureVector(features) for i in range(len(sentenceGraph.tokens)): if sentenceGraph.tokens[i] == token1: token1Index = i if sentenceGraph.tokens[i] == token2: token2Index = i linearPreTag = "linfw_" if token1Index > token2Index: token1Index, token2Index = token2Index, token1Index linearPreTag = "linrv_" self.tokenFeatureBuilder.buildLinearOrderFeatures( token1Index, sentenceGraph, 2, 2, preTag="linTok1") self.tokenFeatureBuilder.buildLinearOrderFeatures( token2Index, sentenceGraph, 2, 2, preTag="linTok2") # Before, middle, after # self.tokenFeatureBuilder.buildTokenGrams(0, token1Index-1, sentenceGraph, "bf") # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, "bw") # self.tokenFeatureBuilder.buildTokenGrams(token2Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, "af") # before-middle, middle, middle-after # self.tokenFeatureBuilder.buildTokenGrams(0, token2Index-1, sentenceGraph, linearPreTag+"bf", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, linearPreTag+"bw", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, linearPreTag+"af", max=2) self.tokenFeatureBuilder.setFeatureVector(None) if self.styles["random"]: self.randomFeatureBuilder.setFeatureVector(features) self.randomFeatureBuilder.buildRandomFeatures(100, 0.01) self.randomFeatureBuilder.setFeatureVector(None) if self.styles["genia_limits"] and not self.styles["no_task"]: e1Type = entity1.get("type") e2Type = entity2.get("type") assert (entity1.get("isName") == "False") if entity2.get("isName") == "True": features[self.featureSet.getId( "GENIA_target_protein")] = 1 else: features[self.featureSet.getId( "GENIA_nested_event")] = 1 if e1Type.find( "egulation" ) != -1: # leave r out to avoid problems with capitalization if entity2.get("isName") == "True": features[self.featureSet.getId( "GENIA_regulation_of_protein")] = 1 else: features[self.featureSet.getId( "GENIA_regulation_of_event")] = 1 if self.styles["bi_limits"]: # Make features based on entity types e1Type = entity1.get("type") e2Type = entity2.get("type") e1SuperType = str(self.getBISuperType(e1Type)) e2SuperType = str(self.getBISuperType(e2Type)) features[self.featureSet.getId("BI_e1_" + e1Type)] = 1 features[self.featureSet.getId("BI_e2_" + e2Type)] = 1 features[self.featureSet.getId("BI_e1sup_" + e1SuperType)] = 1 features[self.featureSet.getId("BI_e2sup_" + e2SuperType)] = 1 features[self.featureSet.getId("BI_e1e2_" + e1Type + "_" + e2Type)] = 1 features[self.featureSet.getId("BI_e1e2sup_" + e1SuperType + "_" + e2SuperType)] = 1 if self.styles["evex"]: self.evexFeatureBuilder.setFeatureVector( features, entity1, entity2) self.evexFeatureBuilder.buildEdgeFeatures( entity1, entity2, token1, token2, path, sentenceGraph) self.evexFeatureBuilder.setFeatureVector(None) if self.styles["giuliano"]: self.giulianoFeatureBuilder.setFeatureVector( features, entity1, entity2) self.giulianoFeatureBuilder.buildEdgeFeatures( entity1, entity2, token1, token2, path, sentenceGraph) self.giulianoFeatureBuilder.setFeatureVector(None) else: features[self.featureSet.getId("always_negative")] = 1 if self.styles["subset"]: features[self.featureSet.getId("out_of_scope")] = 1 else: features[self.featureSet.getId("always_negative")] = 1 if self.styles["subset"]: features[self.featureSet.getId("out_of_scope")] = 1 path = [token1, token2] # define extra attributes #if int(path[0].get("id").split("_")[-1]) < int(path[-1].get("id").split("_")[-1]): if int(path[0].get("charOffset").split("-")[0]) < int( path[-1].get("charOffset").split("-")[0]): #extra = {"xtype":"edge","type":"i","t1":path[0],"t2":path[-1]} extra = { "xtype": "edge", "type": "i", "t1": path[0].get("id"), "t2": path[-1].get("id") } extra["deprev"] = False else: #extra = {"xtype":"edge","type":"i","t1":path[-1],"t2":path[0]} extra = { "xtype": "edge", "type": "i", "t1": path[-1].get("id"), "t2": path[0].get("id") } extra["deprev"] = True if entity1 != None: #extra["e1"] = entity1 extra["e1"] = entity1.get("id") if sentenceGraph.mergedEntityToDuplicates != None: #extra["e1GoldIds"] = mergedEntityIds[entity1] extra["e1DuplicateIds"] = ",".join([ x.get("id") for x in sentenceGraph.mergedEntityToDuplicates[entity1] ]) if entity2 != None: #extra["e2"] = entity2 extra["e2"] = entity2.get("id") if sentenceGraph.mergedEntityToDuplicates != None: extra["e2DuplicateIds"] = ",".join([ x.get("id") for x in sentenceGraph.mergedEntityToDuplicates[entity2] ]) #extra["e2GoldIds"] = mergedEntityIds[entity2] extra["categoryName"] = categoryName if self.styles["bacteria_renaming"]: if entity1.get("text") != None and entity1.get("text") != "": extra["e1t"] = entity1.get("text").replace(" ", "---").replace( ":", "-COL-") if entity2.get("text") != None and entity2.get("text") != "": extra["e2t"] = entity2.get("text").replace(" ", "---").replace( ":", "-COL-") sentenceOrigId = sentenceGraph.sentenceElement.get("origId") if sentenceOrigId != None: extra["SOID"] = sentenceOrigId # make example if self.styles["binary"]: if categoryName != "neg": category = 1 else: category = -1 categoryName = "i" else: category = self.classSet.getId(categoryName) # NOTE: temporarily disable for replicating 110310 experiment #features[self.featureSet.getId("extra_constant")] = 1 return (sentenceGraph.getSentenceId() + ".x" + str(exampleIndex), category, features, extra)
class AsymmetricEventExampleBuilder(ExampleBuilder): def __init__(self, style=["typed", "directed"], length=None, types=[], featureSet=None, classSet=None): if featureSet == None: featureSet = IdSet() if classSet == None: classSet = IdSet(1) else: classSet = classSet assert (classSet.getId("neg") == 1) ExampleBuilder.__init__(self, classSet=classSet, featureSet=featureSet) if style.find(",") != -1: style = style.split(",") self.styles = style self.negFrac = None self.posPairGaz = POSPairGazetteer() for s in style: if s.find("negFrac") != -1: self.negFrac = float(s.split("_")[-1]) print >> sys.stderr, "Downsampling negatives to", self.negFrac self.negRand = random.Random(15) elif s.find("posPairGaz") != -1: self.posPairGaz = POSPairGazetteer( loadFrom=s.split("_", 1)[-1]) self.multiEdgeFeatureBuilder = MultiEdgeFeatureBuilder(self.featureSet) self.triggerFeatureBuilder = TriggerFeatureBuilder(self.featureSet) if "graph_kernel" in self.styles: from FeatureBuilders.GraphKernelFeatureBuilder import GraphKernelFeatureBuilder self.graphKernelFeatureBuilder = GraphKernelFeatureBuilder( self.featureSet) if "noAnnType" in self.styles: self.multiEdgeFeatureBuilder.noAnnType = True if "noMasking" in self.styles: self.multiEdgeFeatureBuilder.maskNamedEntities = False if "maxFeatures" in self.styles: self.multiEdgeFeatureBuilder.maximum = True self.tokenFeatureBuilder = TokenFeatureBuilder(self.featureSet) if "ontology" in self.styles: self.multiEdgeFeatureBuilder.ontologyFeatureBuilder = BioInferOntologyFeatureBuilder( self.featureSet) if "nodalida" in self.styles: self.nodalidaFeatureBuilder = NodalidaFeatureBuilder( self.featureSet) #IF LOCAL if "bioinfer_limits" in self.styles: self.bioinferOntologies = OntologyUtils.getBioInferTempOntology() #self.bioinferOntologies = OntologyUtils.loadOntologies(OntologyUtils.g_bioInferFileName) #ENDIF self.pathLengths = length assert (self.pathLengths == None) self.types = types if "random" in self.styles: from FeatureBuilders.RandomFeatureBuilder import RandomFeatureBuilder self.randomFeatureBuilder = RandomFeatureBuilder(self.featureSet) #self.outFile = open("exampleTempFile.txt","wt") @classmethod def run(cls, input, output, parse, tokenization, style, idFileTag=None): classSet, featureSet = cls.getIdSets(idFileTag) if style != None: e = cls(style=style, classSet=classSet, featureSet=featureSet) else: e = cls(classSet=classSet, featureSet=featureSet) sentences = cls.getSentences(input, parse, tokenization) e.buildExamplesForSentences(sentences, output, idFileTag) if "printClassIds" in e.styles: print >> sys.stderr, e.classSet.Ids def definePredictedValueRange(self, sentences, elementName): self.multiEdgeFeatureBuilder.definePredictedValueRange( sentences, elementName) def getPredictedValueRange(self): return self.multiEdgeFeatureBuilder.predictedRange def filterEdgesByType(self, edges, typesToInclude): if len(typesToInclude) == 0: return edges edgesToKeep = [] for edge in edges: if edge.get("type") in typesToInclude: edgesToKeep.append(edge) return edgesToKeep def getCategoryNameFromTokens(self, sentenceGraph, t1, t2, directed=True): types = set() themeE1Types = set() intEdges = [] if sentenceGraph.interactionGraph.has_edge(t1, t2): intEdges = sentenceGraph.interactionGraph.get_edge_data(t1, t2, default={}) # NOTE: Only works if keys are ordered integers for i in range(len(intEdges)): types.add(intEdges[i]["element"].get("type")) # if (not directed) and sentenceGraph.interactionGraph.has_edge(t2, t1): # intEdgesReverse = sentenceGraph.interactionGraph.get_edge(t2, t1, default={}) # # NOTE: Only works if keys are ordered integers # for i in range(len(intEdgesReverse)): # intElement = intEdgesReverse[i]["element"] # intType = intElement.get("type") # types.add(intType) # intEdges.extend(intEdgesReverse) for i in range(len(intEdges)): intElement = intEdges[i]["element"] intType = intElement.get("type") if intType == "Theme": e1Entity = sentenceGraph.entitiesById[intElement.get("e1")] themeE1Types.add(e1Entity.get("type")) #types.add(intType) if len(themeE1Types) != 0: themeE1Types = list(themeE1Types) themeE1Types.sort() categoryName = "" for name in themeE1Types: if categoryName != "": categoryName += "---" categoryName += name return categoryName else: types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def getCategoryName(self, sentenceGraph, e1, e2, directed=True): interactions = sentenceGraph.getInteractions(e1, e2) if not directed: interactions.extend(sentenceGraph.getInteractions(e2, e1)) types = set() for interaction in interactions: types.add(interaction.attrib["type"]) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def preProcessExamples(self, allExamples): # Duplicates cannot be removed here, as they should only be removed from the training set. This is done # in the classifier. # if "no_duplicates" in self.styles: # count = len(allExamples) # print >> sys.stderr, " Removing duplicates,", # allExamples = ExampleUtils.removeDuplicates(allExamples) # print >> sys.stderr, "removed", count - len(allExamples) if "normalize" in self.styles: print >> sys.stderr, " Normalizing feature vectors" ExampleUtils.normalizeFeatureVectors(allExamples) return allExamples def isPotentialGeniaInteraction(self, e1, e2): if e1.get("isName") == "True": return False else: return True #IF LOCAL def getBioInferParentType(self, eType): if eType == "Physical_entity" or OntologyUtils.hasParent( eType, "Physical_entity", self.bioinferOntologies): return "Physical" elif eType == "Property_entity" or OntologyUtils.hasParent( eType, "Property_entity", self.bioinferOntologies): return "Property" elif OntologyUtils.hasParent(eType, "Relationship", self.bioinferOntologies): return "Process" else: assert False, eType # if self.bioinferOntologies["Entity"].has_key(eType): # if OntologyUtils.hasParent(eType, "Physical_entity", self.bioinferOntologies): # assert not OntologyUtils.hasParent(eType, "Property_entity", self.bioinferOntologies), eType # return "Physical" # else: # assert OntologyUtils.hasParent(eType, "Property_entity", self.bioinferOntologies), eType # return "Property" # # else: # assert self.bioinferOntologies.has_key(eType), eType # #assert OntologyUtils.hasParent(eType, "Process_entity", self.bioinferOntologies["Relationship"]), eType # return "Process" def isPotentialBioInferInteraction(self, e1, e2, categoryName): e1Type = self.getBioInferParentType(e1.get("type")) e2Type = self.getBioInferParentType(e2.get("type")) if e1Type == "Process" or e1Type == "Property": return True elif e1Type == "Physical" and e2Type == "Physical": return True elif e1Type == "Physical" and e2Type == "Process": # hack return True else: assert ( categoryName == "neg" ), categoryName + " category for " + e1Type + " and " + e2Type return False #ENDIF def nxMultiDiGraphToUndirected(self, graph): undirected = NX10.MultiGraph(name=graph.name) undirected.add_nodes_from(graph) undirected.add_edges_from(graph.edges_iter()) return undirected def buildExamples(self, sentenceGraph): examples = [] exampleIndex = 0 clearGraph = sentenceGraph.getCleared() #undirected = sentenceGraph.getUndirectedDependencyGraph() undirected = self.nxMultiDiGraphToUndirected( sentenceGraph.dependencyGraph) ##undirected = sentenceGraph.dependencyGraph.to_undirected() ###undirected = NX10.MultiGraph(sentenceGraph.dependencyGraph) This didn't work paths = NX10.all_pairs_shortest_path(undirected, cutoff=999) self.triggerFeatureBuilder.initSentence(clearGraph) # Generate examples based on interactions between entities or interactions between tokens if "entities" in self.styles: loopRange = len(sentenceGraph.entities) else: loopRange = len(sentenceGraph.tokens) #for i in range(loopRange-1): for i in range(loopRange): # allow self-interactions #for j in range(i+1,loopRange): for j in range(i, loopRange): # allow self-interactions eI = None eJ = None if "entities" in self.styles: eI = sentenceGraph.entities[i] eJ = sentenceGraph.entities[j] tI = sentenceGraph.entityHeadTokenByEntity[eI] tJ = sentenceGraph.entityHeadTokenByEntity[eJ] #if "no_ne_interactions" in self.styles and eI.get("isName") == "True" and eJ.get("isName") == "True": # continue if eI.get("type") == "neg" or eJ.get("type") == "neg": continue else: tI = sentenceGraph.tokens[i] tJ = sentenceGraph.tokens[j] # # only consider paths between entities (NOTE! entities, not only named entities) # if "headsOnly" in self.styles: # if (len(sentenceGraph.tokenIsEntityHead[tI]) == 0) or (len(sentenceGraph.tokenIsEntityHead[tJ]) == 0): # continue if "directed" in self.styles: # define forward if "entities" in self.styles: categoryName = self.getCategoryName( sentenceGraph, eI, eJ, True) else: categoryName = self.getCategoryNameFromTokens( sentenceGraph, tI, tJ, True) self.exampleStats.beginExample(categoryName) if self.negFrac == None or categoryName != "neg" or ( categoryName == "neg" and self.negRand.random() < self.negFrac): makeExample = True if ("genia_limits" in self.styles ) and not self.isPotentialGeniaInteraction(eI, eJ): makeExample = False self.exampleStats.filter("genia_limits") if self.posPairGaz.getNegFrac( (tI.get("POS"), tJ.get("POS"))) == 1.0: makeExample = False self.exampleStats.filter("pos_pair") if makeExample: if not sentenceGraph.tokenIsName[tI]: examples.append( self.buildExample(tI, tJ, paths, clearGraph, categoryName, exampleIndex, eI, eJ)) exampleIndex += 1 else: self.exampleStats.filter("genia_token_limits") else: self.exampleStats.filter("neg_frac") self.exampleStats.endExample() # define reverse if "entities" in self.styles: categoryName = self.getCategoryName( sentenceGraph, eJ, eI, True) else: categoryName = self.getCategoryNameFromTokens( sentenceGraph, tJ, tI, True) self.exampleStats.beginExample(categoryName) if self.negFrac == None or categoryName != "neg" or ( categoryName == "neg" and self.negRand.random() < self.negFrac): makeExample = True if ("genia_limits" in self.styles ) and not self.isPotentialGeniaInteraction(eJ, eI): makeExample = False self.exampleStats.filter("genia_limits") if ("bioinfer_limits" in self.styles ) and not self.isPotentialBioInferInteraction( eJ, eI, categoryName): makeExample = False self.exampleStats.filter("bioinfer_limits") if self.posPairGaz.getNegFrac( (tJ.get("POS"), tI.get("POS"))) == 1.0: makeExample = False self.exampleStats.filter("pos_pair") if makeExample: if not sentenceGraph.tokenIsName[tJ]: examples.append( self.buildExample(tJ, tI, paths, clearGraph, categoryName, exampleIndex, eJ, eI)) exampleIndex += 1 else: self.exampleStats.filter("genia_token_limits") else: self.exampleStats.filter("neg_frac") self.exampleStats.endExample() # else: # if "entities" in self.styles: # categoryName = self.getCategoryName(sentenceGraph, eI, eJ, False) # else: # categoryName = self.getCategoryNameFromTokens(sentenceGraph, tI, tJ, False) # forwardExample = self.buildExample(tI, tJ, paths, clearGraph, categoryName, exampleIndex, eI, eJ) # if not "graph_kernel" in self.styles: # reverseExample = self.buildExample(tJ, tI, paths, clearGraph, categoryName, exampleIndex, eJ, eI) # forwardExample[2].update(reverseExample[2]) # examples.append(forwardExample) # exampleIndex += 1 return examples def buildExample(self, token1, token2, paths, sentenceGraph, categoryName, exampleIndex, entity1=None, entity2=None): # define features features = {} if True: #token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): if token1 != token2 and paths.has_key( token1) and paths[token1].has_key(token2): path = paths[token1][token2] else: path = [token1, token2] assert (self.pathLengths == None) if self.pathLengths == None or len(path) - 1 in self.pathLengths: if not "no_trigger": self.triggerFeatureBuilder.setFeatureVector(self.features) self.triggerFeatureBuilder.tag = "trg_t1_" self.triggerFeatureBuilder.buildFeatures(eventToken) self.triggerFeatureBuilder.tag = "trg_t2_" self.triggerFeatureBuilder.buildFeatures(eventToken) # if not "no_ontology" in self.styles: # self.ontologyFeatureBuilder.setFeatureVector(features) # self.ontologyFeatureBuilder.buildOntologyFeaturesForPath(sentenceGraph, path) # self.ontologyFeatureBuilder.setFeatureVector(None) if "graph_kernel" in self.styles or not "no_dependency" in self.styles: if token1 != token2 and paths.has_key( token1) and paths[token1].has_key(token2): edges = self.multiEdgeFeatureBuilder.getEdges( sentenceGraph.dependencyGraph, path) else: edges = None if "graph_kernel" in self.styles: self.graphKernelFeatureBuilder.setFeatureVector( features, entity1, entity2) self.graphKernelFeatureBuilder.buildGraphKernelFeatures( sentenceGraph, path, edges) self.graphKernelFeatureBuilder.setFeatureVector(None) if "entity_type" in self.styles: features[self.featureSet.getId("e1_" + entity1.attrib["type"])] = 1 features[self.featureSet.getId("e2_" + entity2.attrib["type"])] = 1 features[self.featureSet.getId("distance_" + str(len(path)))] = 1 if not "no_dependency" in self.styles: if token1 == token2: features[self.featureSet.getId("tokenSelfLoop")] = 1 self.multiEdgeFeatureBuilder.setFeatureVector( features, entity1, entity2) #self.multiEdgeFeatureBuilder.buildStructureFeatures(sentenceGraph, paths) # remove for fast if not "disable_entity_features" in self.styles: self.multiEdgeFeatureBuilder.buildEntityFeatures( sentenceGraph) self.multiEdgeFeatureBuilder.buildPathLengthFeatures(path) if not "disable_terminus_features" in self.styles: self.multiEdgeFeatureBuilder.buildTerminusTokenFeatures( path, sentenceGraph) # remove for fast if not "disable_single_element_features" in self.styles: self.multiEdgeFeatureBuilder.buildSingleElementFeatures( path, edges, sentenceGraph) if not "disable_ngram_features" in self.styles: self.multiEdgeFeatureBuilder.buildPathGrams( 2, path, edges, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams( 3, path, edges, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams( 4, path, edges, sentenceGraph) # remove for fast #self.buildEdgeCombinations(path, edges, sentenceGraph, features) # remove for fast #if edges != None: # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[0], edges[0][1]+edges[1][0], "t1", sentenceGraph) # remove for fast # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[-1], edges[len(path)-1][len(path)-2]+edges[len(path)-2][len(path)-1], "t2", sentenceGraph) # remove for fast if not "disable_path_edge_features" in self.styles: self.multiEdgeFeatureBuilder.buildPathEdgeFeatures( path, edges, sentenceGraph) self.multiEdgeFeatureBuilder.buildSentenceFeatures( sentenceGraph) self.multiEdgeFeatureBuilder.setFeatureVector(None) if "nodalida" in self.styles: self.nodalidaFeatureBuilder.setFeatureVector( features, entity1, entity2) shortestPaths = self.nodalidaFeatureBuilder.buildShortestPaths( sentenceGraph.dependencyGraph, path) print shortestPaths if len(shortestPaths) > 0: self.nodalidaFeatureBuilder.buildNGrams( shortestPaths, sentenceGraph) self.nodalidaFeatureBuilder.setFeatureVector(None) if not "no_linear" in self.styles: self.tokenFeatureBuilder.setFeatureVector(features) for i in range(len(sentenceGraph.tokens)): if sentenceGraph.tokens[i] == token1: token1Index = i if sentenceGraph.tokens[i] == token2: token2Index = i linearPreTag = "linfw_" if token1Index > token2Index: token1Index, token2Index = token2Index, token1Index linearPreTag = "linrv_" self.tokenFeatureBuilder.buildLinearOrderFeatures( token1Index, sentenceGraph, 2, 2, preTag="linTok1") self.tokenFeatureBuilder.buildLinearOrderFeatures( token2Index, sentenceGraph, 2, 2, preTag="linTok2") # Before, middle, after # self.tokenFeatureBuilder.buildTokenGrams(0, token1Index-1, sentenceGraph, "bf") # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, "bw") # self.tokenFeatureBuilder.buildTokenGrams(token2Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, "af") # before-middle, middle, middle-after # self.tokenFeatureBuilder.buildTokenGrams(0, token2Index-1, sentenceGraph, linearPreTag+"bf", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, linearPreTag+"bw", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, linearPreTag+"af", max=2) self.tokenFeatureBuilder.setFeatureVector(None) if "random" in self.styles: self.randomFeatureBuilder.setFeatureVector(features) self.randomFeatureBuilder.buildRandomFeatures(100, 0.01) self.randomFeatureBuilder.setFeatureVector(None) if "genia_limits" in self.styles: e1Type = entity1.get("type") e2Type = entity2.get("type") assert (entity1.get("isName") == "False") if entity2.get("isName") == "True": features[self.featureSet.getId( "GENIA_target_protein")] = 1 else: features[self.featureSet.getId( "GENIA_nested_event")] = 1 if e1Type.find( "egulation" ) != -1: # leave r out to avoid problems with capitalization if entity2.get("isName") == "True": features[self.featureSet.getId( "GENIA_regulation_of_protein")] = 1 else: features[self.featureSet.getId( "GENIA_regulation_of_event")] = 1 else: features[self.featureSet.getId("always_negative")] = 1 if "subset" in self.styles: features[self.featureSet.getId("out_of_scope")] = 1 else: features[self.featureSet.getId("always_negative")] = 1 if "subset" in self.styles: features[self.featureSet.getId("out_of_scope")] = 1 path = [token1, token2] self.triggerFeatureBuilder.tag = "" self.triggerFeatureBuilder.setFeatureVector(None) # define extra attributes # if int(path[0].attrib["id"].split("_")[-1]) < int(path[-1].attrib["id"].split("_")[-1]): # #extra = {"xtype":"edge","type":"i","t1":path[0],"t2":path[-1]} # extra = {"xtype":"asym","type":"i","t1":path[0].get("id"),"t2":path[-1].get("id")} # extra["deprev"] = False # else: # #extra = {"xtype":"edge","type":"i","t1":path[-1],"t2":path[0]} # extra = {"xtype":"asym","type":"i","t1":path[-1].get("id"),"t2":path[0].get("id")} # extra["deprev"] = True extra = { "xtype": "asym", "type": "i", "t1": token1.get("id"), "t2": token2.get("id") } if entity1 != None: #extra["e1"] = entity1 extra["e1"] = entity1.get("id") if entity2 != None: #extra["e2"] = entity2 extra["e2"] = entity2.get("id") extra["categoryName"] = categoryName sentenceOrigId = sentenceGraph.sentenceElement.get("origId") if sentenceOrigId != None: extra["SOID"] = sentenceOrigId # make example if "binary" in self.styles: if categoryName != "neg": category = 1 else: category = -1 categoryName = "i" else: category = self.classSet.getId(categoryName) return (sentenceGraph.getSentenceId() + ".x" + str(exampleIndex), category, features, extra)
class AsymmetricEventExampleBuilder(ExampleBuilder): def __init__(self, style=["typed","directed"], length=None, types=[], featureSet=None, classSet=None): if featureSet == None: featureSet = IdSet() if classSet == None: classSet = IdSet(1) else: classSet = classSet assert( classSet.getId("neg") == 1 ) ExampleBuilder.__init__(self, classSet=classSet, featureSet=featureSet) if style.find(",") != -1: style = style.split(",") self.styles = style self.negFrac = None self.posPairGaz = POSPairGazetteer() for s in style: if s.find("negFrac") != -1: self.negFrac = float(s.split("_")[-1]) print >> sys.stderr, "Downsampling negatives to", self.negFrac self.negRand = random.Random(15) elif s.find("posPairGaz") != -1: self.posPairGaz = POSPairGazetteer(loadFrom=s.split("_", 1)[-1]) self.multiEdgeFeatureBuilder = MultiEdgeFeatureBuilder(self.featureSet) self.triggerFeatureBuilder = TriggerFeatureBuilder(self.featureSet) if "graph_kernel" in self.styles: from FeatureBuilders.GraphKernelFeatureBuilder import GraphKernelFeatureBuilder self.graphKernelFeatureBuilder = GraphKernelFeatureBuilder(self.featureSet) if "noAnnType" in self.styles: self.multiEdgeFeatureBuilder.noAnnType = True if "noMasking" in self.styles: self.multiEdgeFeatureBuilder.maskNamedEntities = False if "maxFeatures" in self.styles: self.multiEdgeFeatureBuilder.maximum = True self.tokenFeatureBuilder = TokenFeatureBuilder(self.featureSet) if "ontology" in self.styles: self.multiEdgeFeatureBuilder.ontologyFeatureBuilder = BioInferOntologyFeatureBuilder(self.featureSet) if "nodalida" in self.styles: self.nodalidaFeatureBuilder = NodalidaFeatureBuilder(self.featureSet) #IF LOCAL if "bioinfer_limits" in self.styles: self.bioinferOntologies = OntologyUtils.getBioInferTempOntology() #self.bioinferOntologies = OntologyUtils.loadOntologies(OntologyUtils.g_bioInferFileName) #ENDIF self.pathLengths = length assert(self.pathLengths == None) self.types = types if "random" in self.styles: from FeatureBuilders.RandomFeatureBuilder import RandomFeatureBuilder self.randomFeatureBuilder = RandomFeatureBuilder(self.featureSet) #self.outFile = open("exampleTempFile.txt","wt") @classmethod def run(cls, input, output, parse, tokenization, style, idFileTag=None): classSet, featureSet = cls.getIdSets(idFileTag) if style != None: e = cls(style=style, classSet=classSet, featureSet=featureSet) else: e = cls(classSet=classSet, featureSet=featureSet) sentences = cls.getSentences(input, parse, tokenization) e.buildExamplesForSentences(sentences, output, idFileTag) if "printClassIds" in e.styles: print >> sys.stderr, e.classSet.Ids def definePredictedValueRange(self, sentences, elementName): self.multiEdgeFeatureBuilder.definePredictedValueRange(sentences, elementName) def getPredictedValueRange(self): return self.multiEdgeFeatureBuilder.predictedRange def filterEdgesByType(self, edges, typesToInclude): if len(typesToInclude) == 0: return edges edgesToKeep = [] for edge in edges: if edge.get("type") in typesToInclude: edgesToKeep.append(edge) return edgesToKeep def getCategoryNameFromTokens(self, sentenceGraph, t1, t2, directed=True): types = set() themeE1Types = set() intEdges = [] if sentenceGraph.interactionGraph.has_edge(t1, t2): intEdges = sentenceGraph.interactionGraph.get_edge_data(t1, t2, default={}) # NOTE: Only works if keys are ordered integers for i in range(len(intEdges)): types.add(intEdges[i]["element"].get("type")) # if (not directed) and sentenceGraph.interactionGraph.has_edge(t2, t1): # intEdgesReverse = sentenceGraph.interactionGraph.get_edge(t2, t1, default={}) # # NOTE: Only works if keys are ordered integers # for i in range(len(intEdgesReverse)): # intElement = intEdgesReverse[i]["element"] # intType = intElement.get("type") # types.add(intType) # intEdges.extend(intEdgesReverse) for i in range(len(intEdges)): intElement = intEdges[i]["element"] intType = intElement.get("type") if intType == "Theme": e1Entity = sentenceGraph.entitiesById[intElement.get("e1")] themeE1Types.add(e1Entity.get("type")) #types.add(intType) if len(themeE1Types) != 0: themeE1Types = list(themeE1Types) themeE1Types.sort() categoryName = "" for name in themeE1Types: if categoryName != "": categoryName += "---" categoryName += name return categoryName else: types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def getCategoryName(self, sentenceGraph, e1, e2, directed=True): interactions = sentenceGraph.getInteractions(e1, e2) if not directed: interactions.extend(sentenceGraph.getInteractions(e2, e1)) types = set() for interaction in interactions: types.add(interaction.attrib["type"]) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg" def preProcessExamples(self, allExamples): # Duplicates cannot be removed here, as they should only be removed from the training set. This is done # in the classifier. # if "no_duplicates" in self.styles: # count = len(allExamples) # print >> sys.stderr, " Removing duplicates,", # allExamples = ExampleUtils.removeDuplicates(allExamples) # print >> sys.stderr, "removed", count - len(allExamples) if "normalize" in self.styles: print >> sys.stderr, " Normalizing feature vectors" ExampleUtils.normalizeFeatureVectors(allExamples) return allExamples def isPotentialGeniaInteraction(self, e1, e2): if e1.get("isName") == "True": return False else: return True #IF LOCAL def getBioInferParentType(self, eType): if eType == "Physical_entity" or OntologyUtils.hasParent(eType, "Physical_entity", self.bioinferOntologies): return "Physical" elif eType == "Property_entity" or OntologyUtils.hasParent(eType, "Property_entity", self.bioinferOntologies): return "Property" elif OntologyUtils.hasParent(eType, "Relationship", self.bioinferOntologies): return "Process" else: assert False, eType # if self.bioinferOntologies["Entity"].has_key(eType): # if OntologyUtils.hasParent(eType, "Physical_entity", self.bioinferOntologies): # assert not OntologyUtils.hasParent(eType, "Property_entity", self.bioinferOntologies), eType # return "Physical" # else: # assert OntologyUtils.hasParent(eType, "Property_entity", self.bioinferOntologies), eType # return "Property" # # else: # assert self.bioinferOntologies.has_key(eType), eType # #assert OntologyUtils.hasParent(eType, "Process_entity", self.bioinferOntologies["Relationship"]), eType # return "Process" def isPotentialBioInferInteraction(self, e1, e2, categoryName): e1Type = self.getBioInferParentType(e1.get("type")) e2Type = self.getBioInferParentType(e2.get("type")) if e1Type == "Process" or e1Type == "Property": return True elif e1Type == "Physical" and e2Type == "Physical": return True elif e1Type == "Physical" and e2Type == "Process": # hack return True else: assert(categoryName == "neg"), categoryName + " category for " + e1Type + " and " + e2Type return False #ENDIF def nxMultiDiGraphToUndirected(self, graph): undirected = NX10.MultiGraph(name=graph.name) undirected.add_nodes_from(graph) undirected.add_edges_from(graph.edges_iter()) return undirected def buildExamples(self, sentenceGraph): examples = [] exampleIndex = 0 clearGraph = sentenceGraph.getCleared() #undirected = sentenceGraph.getUndirectedDependencyGraph() undirected = self.nxMultiDiGraphToUndirected(sentenceGraph.dependencyGraph) ##undirected = sentenceGraph.dependencyGraph.to_undirected() ###undirected = NX10.MultiGraph(sentenceGraph.dependencyGraph) This didn't work paths = NX10.all_pairs_shortest_path(undirected, cutoff=999) self.triggerFeatureBuilder.initSentence(clearGraph) # Generate examples based on interactions between entities or interactions between tokens if "entities" in self.styles: loopRange = len(sentenceGraph.entities) else: loopRange = len(sentenceGraph.tokens) #for i in range(loopRange-1): for i in range(loopRange): # allow self-interactions #for j in range(i+1,loopRange): for j in range(i,loopRange): # allow self-interactions eI = None eJ = None if "entities" in self.styles: eI = sentenceGraph.entities[i] eJ = sentenceGraph.entities[j] tI = sentenceGraph.entityHeadTokenByEntity[eI] tJ = sentenceGraph.entityHeadTokenByEntity[eJ] #if "no_ne_interactions" in self.styles and eI.get("isName") == "True" and eJ.get("isName") == "True": # continue if eI.get("type") == "neg" or eJ.get("type") == "neg": continue else: tI = sentenceGraph.tokens[i] tJ = sentenceGraph.tokens[j] # # only consider paths between entities (NOTE! entities, not only named entities) # if "headsOnly" in self.styles: # if (len(sentenceGraph.tokenIsEntityHead[tI]) == 0) or (len(sentenceGraph.tokenIsEntityHead[tJ]) == 0): # continue if "directed" in self.styles: # define forward if "entities" in self.styles: categoryName = self.getCategoryName(sentenceGraph, eI, eJ, True) else: categoryName = self.getCategoryNameFromTokens(sentenceGraph, tI, tJ, True) self.exampleStats.beginExample(categoryName) if self.negFrac == None or categoryName != "neg" or (categoryName == "neg" and self.negRand.random() < self.negFrac): makeExample = True if ("genia_limits" in self.styles) and not self.isPotentialGeniaInteraction(eI, eJ): makeExample = False self.exampleStats.filter("genia_limits") if self.posPairGaz.getNegFrac((tI.get("POS"), tJ.get("POS"))) == 1.0: makeExample = False self.exampleStats.filter("pos_pair") if makeExample: if not sentenceGraph.tokenIsName[tI]: examples.append( self.buildExample(tI, tJ, paths, clearGraph, categoryName, exampleIndex, eI, eJ) ) exampleIndex += 1 else: self.exampleStats.filter("genia_token_limits") else: self.exampleStats.filter("neg_frac") self.exampleStats.endExample() # define reverse if "entities" in self.styles: categoryName = self.getCategoryName(sentenceGraph, eJ, eI, True) else: categoryName = self.getCategoryNameFromTokens(sentenceGraph, tJ, tI, True) self.exampleStats.beginExample(categoryName) if self.negFrac == None or categoryName != "neg" or (categoryName == "neg" and self.negRand.random() < self.negFrac): makeExample = True if ("genia_limits" in self.styles) and not self.isPotentialGeniaInteraction(eJ, eI): makeExample = False self.exampleStats.filter("genia_limits") if ("bioinfer_limits" in self.styles) and not self.isPotentialBioInferInteraction(eJ, eI, categoryName): makeExample = False self.exampleStats.filter("bioinfer_limits") if self.posPairGaz.getNegFrac((tJ.get("POS"), tI.get("POS"))) == 1.0: makeExample = False self.exampleStats.filter("pos_pair") if makeExample: if not sentenceGraph.tokenIsName[tJ]: examples.append( self.buildExample(tJ, tI, paths, clearGraph, categoryName, exampleIndex, eJ, eI) ) exampleIndex += 1 else: self.exampleStats.filter("genia_token_limits") else: self.exampleStats.filter("neg_frac") self.exampleStats.endExample() # else: # if "entities" in self.styles: # categoryName = self.getCategoryName(sentenceGraph, eI, eJ, False) # else: # categoryName = self.getCategoryNameFromTokens(sentenceGraph, tI, tJ, False) # forwardExample = self.buildExample(tI, tJ, paths, clearGraph, categoryName, exampleIndex, eI, eJ) # if not "graph_kernel" in self.styles: # reverseExample = self.buildExample(tJ, tI, paths, clearGraph, categoryName, exampleIndex, eJ, eI) # forwardExample[2].update(reverseExample[2]) # examples.append(forwardExample) # exampleIndex += 1 return examples def buildExample(self, token1, token2, paths, sentenceGraph, categoryName, exampleIndex, entity1=None, entity2=None): # define features features = {} if True: #token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): if token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): path = paths[token1][token2] else: path = [token1, token2] assert(self.pathLengths == None) if self.pathLengths == None or len(path)-1 in self.pathLengths: if not "no_trigger": self.triggerFeatureBuilder.setFeatureVector(self.features) self.triggerFeatureBuilder.tag = "trg_t1_" self.triggerFeatureBuilder.buildFeatures(eventToken) self.triggerFeatureBuilder.tag = "trg_t2_" self.triggerFeatureBuilder.buildFeatures(eventToken) # if not "no_ontology" in self.styles: # self.ontologyFeatureBuilder.setFeatureVector(features) # self.ontologyFeatureBuilder.buildOntologyFeaturesForPath(sentenceGraph, path) # self.ontologyFeatureBuilder.setFeatureVector(None) if "graph_kernel" in self.styles or not "no_dependency" in self.styles: if token1 != token2 and paths.has_key(token1) and paths[token1].has_key(token2): edges = self.multiEdgeFeatureBuilder.getEdges(sentenceGraph.dependencyGraph, path) else: edges = None if "graph_kernel" in self.styles: self.graphKernelFeatureBuilder.setFeatureVector(features, entity1, entity2) self.graphKernelFeatureBuilder.buildGraphKernelFeatures(sentenceGraph, path, edges) self.graphKernelFeatureBuilder.setFeatureVector(None) if "entity_type" in self.styles: features[self.featureSet.getId("e1_"+entity1.attrib["type"])] = 1 features[self.featureSet.getId("e2_"+entity2.attrib["type"])] = 1 features[self.featureSet.getId("distance_"+str(len(path)))] = 1 if not "no_dependency" in self.styles: if token1 == token2: features[self.featureSet.getId("tokenSelfLoop")] = 1 self.multiEdgeFeatureBuilder.setFeatureVector(features, entity1, entity2) #self.multiEdgeFeatureBuilder.buildStructureFeatures(sentenceGraph, paths) # remove for fast if not "disable_entity_features" in self.styles: self.multiEdgeFeatureBuilder.buildEntityFeatures(sentenceGraph) self.multiEdgeFeatureBuilder.buildPathLengthFeatures(path) if not "disable_terminus_features" in self.styles: self.multiEdgeFeatureBuilder.buildTerminusTokenFeatures(path, sentenceGraph) # remove for fast if not "disable_single_element_features" in self.styles: self.multiEdgeFeatureBuilder.buildSingleElementFeatures(path, edges, sentenceGraph) if not "disable_ngram_features" in self.styles: self.multiEdgeFeatureBuilder.buildPathGrams(2, path, edges, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams(3, path, edges, sentenceGraph) # remove for fast self.multiEdgeFeatureBuilder.buildPathGrams(4, path, edges, sentenceGraph) # remove for fast #self.buildEdgeCombinations(path, edges, sentenceGraph, features) # remove for fast #if edges != None: # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[0], edges[0][1]+edges[1][0], "t1", sentenceGraph) # remove for fast # self.multiEdgeFeatureBuilder.buildTerminusFeatures(path[-1], edges[len(path)-1][len(path)-2]+edges[len(path)-2][len(path)-1], "t2", sentenceGraph) # remove for fast if not "disable_path_edge_features" in self.styles: self.multiEdgeFeatureBuilder.buildPathEdgeFeatures(path, edges, sentenceGraph) self.multiEdgeFeatureBuilder.buildSentenceFeatures(sentenceGraph) self.multiEdgeFeatureBuilder.setFeatureVector(None) if "nodalida" in self.styles: self.nodalidaFeatureBuilder.setFeatureVector(features, entity1, entity2) shortestPaths = self.nodalidaFeatureBuilder.buildShortestPaths(sentenceGraph.dependencyGraph, path) print shortestPaths if len(shortestPaths) > 0: self.nodalidaFeatureBuilder.buildNGrams(shortestPaths, sentenceGraph) self.nodalidaFeatureBuilder.setFeatureVector(None) if not "no_linear" in self.styles: self.tokenFeatureBuilder.setFeatureVector(features) for i in range(len(sentenceGraph.tokens)): if sentenceGraph.tokens[i] == token1: token1Index = i if sentenceGraph.tokens[i] == token2: token2Index = i linearPreTag = "linfw_" if token1Index > token2Index: token1Index, token2Index = token2Index, token1Index linearPreTag = "linrv_" self.tokenFeatureBuilder.buildLinearOrderFeatures(token1Index, sentenceGraph, 2, 2, preTag="linTok1") self.tokenFeatureBuilder.buildLinearOrderFeatures(token2Index, sentenceGraph, 2, 2, preTag="linTok2") # Before, middle, after # self.tokenFeatureBuilder.buildTokenGrams(0, token1Index-1, sentenceGraph, "bf") # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, "bw") # self.tokenFeatureBuilder.buildTokenGrams(token2Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, "af") # before-middle, middle, middle-after # self.tokenFeatureBuilder.buildTokenGrams(0, token2Index-1, sentenceGraph, linearPreTag+"bf", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, token2Index-1, sentenceGraph, linearPreTag+"bw", max=2) # self.tokenFeatureBuilder.buildTokenGrams(token1Index+1, len(sentenceGraph.tokens)-1, sentenceGraph, linearPreTag+"af", max=2) self.tokenFeatureBuilder.setFeatureVector(None) if "random" in self.styles: self.randomFeatureBuilder.setFeatureVector(features) self.randomFeatureBuilder.buildRandomFeatures(100, 0.01) self.randomFeatureBuilder.setFeatureVector(None) if "genia_limits" in self.styles: e1Type = entity1.get("type") e2Type = entity2.get("type") assert(entity1.get("isName") == "False") if entity2.get("isName") == "True": features[self.featureSet.getId("GENIA_target_protein")] = 1 else: features[self.featureSet.getId("GENIA_nested_event")] = 1 if e1Type.find("egulation") != -1: # leave r out to avoid problems with capitalization if entity2.get("isName") == "True": features[self.featureSet.getId("GENIA_regulation_of_protein")] = 1 else: features[self.featureSet.getId("GENIA_regulation_of_event")] = 1 else: features[self.featureSet.getId("always_negative")] = 1 if "subset" in self.styles: features[self.featureSet.getId("out_of_scope")] = 1 else: features[self.featureSet.getId("always_negative")] = 1 if "subset" in self.styles: features[self.featureSet.getId("out_of_scope")] = 1 path = [token1, token2] self.triggerFeatureBuilder.tag = "" self.triggerFeatureBuilder.setFeatureVector(None) # define extra attributes # if int(path[0].attrib["id"].split("_")[-1]) < int(path[-1].attrib["id"].split("_")[-1]): # #extra = {"xtype":"edge","type":"i","t1":path[0],"t2":path[-1]} # extra = {"xtype":"asym","type":"i","t1":path[0].get("id"),"t2":path[-1].get("id")} # extra["deprev"] = False # else: # #extra = {"xtype":"edge","type":"i","t1":path[-1],"t2":path[0]} # extra = {"xtype":"asym","type":"i","t1":path[-1].get("id"),"t2":path[0].get("id")} # extra["deprev"] = True extra = {"xtype":"asym","type":"i","t1":token1.get("id"),"t2":token2.get("id")} if entity1 != None: #extra["e1"] = entity1 extra["e1"] = entity1.get("id") if entity2 != None: #extra["e2"] = entity2 extra["e2"] = entity2.get("id") extra["categoryName"] = categoryName sentenceOrigId = sentenceGraph.sentenceElement.get("origId") if sentenceOrigId != None: extra["SOID"] = sentenceOrigId # make example if "binary" in self.styles: if categoryName != "neg": category = 1 else: category = -1 categoryName = "i" else: category = self.classSet.getId(categoryName) return (sentenceGraph.getSentenceId()+".x"+str(exampleIndex),category,features,extra)