def test_find_lowest_cost_points(self, map_data: MapData) -> None: cr = 7 safe_query_radius = 14 expected_max_distance = 2 * safe_query_radius influence_grid = map_data.get_air_vs_ground_grid() cost_point = (50, 130) influence_grid = map_data.add_cost(position=cost_point, radius=cr, grid=influence_grid) safe_points = map_data.find_lowest_cost_points(from_pos=cost_point, radius=safe_query_radius, grid=influence_grid) assert ( safe_points[0][0], np.integer), f"safe_points[0][0] = {safe_points[0][0]}, type {type(safe_points[0][0])}" assert isinstance(safe_points[0][1], np.integer), f"safe_points[0][1] = {safe_points[0][1]}, type {type(safe_points[0][1])}" cost = influence_grid[safe_points[0]] for p in safe_points: assert (influence_grid[ p] == cost), f"grid type = air_vs_ground_grid, p = {p}, " \ f"influence_grid[p] = {influence_grid[p]}, expected cost = {cost}" assert (map_data.distance(cost_point, p) < expected_max_distance) influence_grid = map_data.get_clean_air_grid() cost_point = (50, 130) influence_grid = map_data.add_cost(position=cost_point, radius=cr, grid=influence_grid) safe_points = map_data.find_lowest_cost_points(from_pos=cost_point, radius=safe_query_radius, grid=influence_grid) cost = influence_grid[safe_points[0]] for p in safe_points: assert (influence_grid[ p] == cost), f"grid type = clean_air_grid, p = {p}, " \ f"influence_grid[p] = {influence_grid[p]}, expected cost = {cost}" assert (map_data.distance(cost_point, p) < expected_max_distance) influence_grid = map_data.get_pyastar_grid() cost_point = (50, 130) influence_grid = map_data.add_cost(position=cost_point, radius=cr, grid=influence_grid) safe_points = map_data.find_lowest_cost_points(from_pos=cost_point, radius=safe_query_radius, grid=influence_grid) cost = influence_grid[safe_points[0]] for p in safe_points: assert (influence_grid[ p] == cost), f"grid type = pyastar_grid, p = {p}, " \ f"influence_grid[p] = {influence_grid[p]}, expected cost = {cost}" assert (map_data.distance(cost_point, p) < expected_max_distance) influence_grid = map_data.get_climber_grid() cost_point = (50, 130) influence_grid = map_data.add_cost(position=cost_point, radius=cr, grid=influence_grid) safe_points = map_data.find_lowest_cost_points(from_pos=cost_point, radius=safe_query_radius, grid=influence_grid) cost = influence_grid[safe_points[0]] for p in safe_points: assert (influence_grid[ p] == cost), f"grid type = climber_grid, p = {p}, " \ f"influence_grid[p] = {influence_grid[p]}, expected cost = {cost}" assert (map_data.distance(cost_point, p) < expected_max_distance)
def test_sensitivity(self, map_data: MapData) -> None: base = map_data.bot.townhalls[0] reg_start = map_data.where_all(base.position_tuple)[0] reg_end = map_data.where_all(map_data.bot.enemy_start_locations[0].position)[0] p0 = reg_start.center p1 = reg_end.center arr = map_data.get_pyastar_grid() path_pure = map_data.pathfind(p0, p1, grid=arr) path_sensitive_5 = map_data.pathfind(p0, p1, grid=arr, sensitivity=5) path_sensitive_1 = map_data.pathfind(p0, p1, grid=arr, sensitivity=1) assert (len(path_sensitive_5) < len(path_pure)) assert (p in path_pure for p in path_sensitive_5) assert (path_sensitive_1 == path_pure)
def test_pathing_influence(self, map_data: MapData, caplog: LogCaptureFixture) -> None: logger.info(map_data) base = map_data.bot.townhalls[0] reg_start = map_data.where_all(base.position_tuple)[0] reg_end = map_data.where_all(map_data.bot.enemy_start_locations[0].position)[0] p0 = reg_start.center p1 = reg_end.center pts = [] r = 10 for i in range(50): pts.append(get_random_point(0, 200, 0, 200)) arr = map_data.get_pyastar_grid() for p in pts: arr = map_data.add_cost(p, r, arr) path = map_data.pathfind(p0, p1, grid=arr) assert (path is not None)
def test_handle_illegal_values(self, map_data: MapData) -> None: base = map_data.bot.townhalls[0] reg_start = map_data.where_all(base.position_tuple)[0] assert (isinstance(reg_start, Region)), f"reg_start = {reg_start}, base = {base}, position_tuple = {base.position_tuple}" reg_end = map_data.where_all(map_data.bot.enemy_start_locations[0].position)[0] p0 = reg_start.center p1 = reg_end.center pts = [] r = 10 for i in range(50): pts.append(get_random_point(-500, -250, -500, -250)) arr = map_data.get_pyastar_grid() for p in pts: arr = map_data.add_cost(p, r, arr) path = map_data.pathfind(p0, p1, grid=arr) assert (path is not None), f"path = {path}"
map_data.plot_map() map_data.show() # map_data.save('fname') # TEST ILLEGAL VALUES ISOLATED base = map_data.bot.townhalls[0] reg_start = map_data.where(base.position_tuple) reg_end = map_data.where(map_data.bot.enemy_start_locations[0].position) p0 = reg_start.center p1 = reg_end.center pts = [] r = 10 for i in range(50): pts.append(get_random_point(-500, -250, -500, -250)) arr = map_data.get_pyastar_grid() for p in pts: arr = map_data.add_cost(p, r, arr) path = map_data.pathfind(p0, p1, grid=arr) map_data.plot_influenced_path(start=p0, goal=p1, weight_array=arr) map_data.show() assert (path is not None), f"path = {path}" # TEST MINERAL WALL ON GOLDENWALL ISOLATED # start = (110, 95) # goal = (110, 40) # grid = map_data.get_pyastar_grid() # grid = map_data.add_cost((170, 140), r=20, arr=grid, weight=np.inf) # resource_blockers = [Point2(m.position) for m in map_data.mineral_fields if "rich" in m.name.lower()] # for pos in resource_blockers: # radius = 1
for mf in map_files: if 'death' in mf.lower(): # if 'abys' in mf.lower(): with lzma.open(mf, "rb") as f: raw_game_data, raw_game_info, raw_observation = pickle.load(f) bot = import_bot_instance(raw_game_data, raw_game_info, raw_observation) map_data = MapData(bot, loglevel="DEBUG") base = map_data.bot.townhalls[0] reg_start = map_data.where_all(base.position_tuple)[0] reg_end = map_data.where_all( map_data.bot.enemy_start_locations[0].position)[0] p0 = Point2(reg_start.center) p1 = Point2(reg_end.center) influence_grid = map_data.get_air_vs_ground_grid(default_weight=50) influence_grid = map_data.get_pyastar_grid() # p = (50, 130) # influence_grid = map_data.add_cost(grid=influence_grid, position=p, radius=10, initial_default_weights=50) map_data.plot_influenced_path(start=p0, goal=p1, weight_array=influence_grid, allow_diagonal=False) map_data.show() # import matplotlib.pyplot as plt # import numpy as np # # print(np.unique(map_data.path_arr)) # plt.imshow(map_data.path_arr, origin="lower") # plt.show() # plt.imshow(map_data.placement_arr, origin="lower") # plt.show()