def model_test(use_existing):
    print('-' * 30)
    print('Loading test data...')
    print('-' * 30)

    # Loading test data:
    filename = cm.filename
    modelname = cm.modellist[0]
    originFile_list = sorted(
        glob(cm.workingPath.originTestingSet_path + filename))
    maskFile_list = sorted(glob(cm.workingPath.maskTestingSet_path + filename))
    preFile_list = sorted(glob(cm.workingPath.testingSet_path + 'mask*.dcm'))

    out_test_images = []
    out_test_masks = []
    out_pre_masks = []

    for i in range(len(originFile_list)):
        # originTestVolInfo = loadFileInformation(originFile_list[i])
        # maskTestVolInfo = loadFileInformation(maskFile_list[i])

        originTestVol, originTestVol_num, originTestVolwidth, originTestVolheight = loadFile(
            originFile_list[i])
        maskTestVol, maskTestVol_num, maskTestVolwidth, maskTestVolheight = loadFile(
            maskFile_list[i])
        preTestVol, preTestVol_num, preTestVolwidth, preTestVolheight = loadFile(
            preFile_list[i])

        for j in range(len(maskTestVol)):
            maskTestVol[j] = np.where(maskTestVol[j] != 0, 1, 0)
        for img in originTestVol:
            out_test_images.append(img)
        for img in maskTestVol:
            out_test_masks.append(img)
        for img in preTestVol:
            out_pre_masks.append(img)

    num_test_images = len(out_test_images)

    final_test_images = np.ndarray([num_test_images, 512, 512], dtype=np.int16)
    final_test_masks = np.ndarray([num_test_images, 512, 512], dtype=np.int8)
    final_pre_masks = np.ndarray([num_test_images, 512, 512], dtype=np.int8)

    for i in range(num_test_images):
        final_test_images[i] = out_test_images[i]
        final_test_masks[i] = out_test_masks[i]
        final_pre_masks[i] = out_pre_masks[i]

    final_test_images = np.expand_dims(final_test_images, axis=-1)
    final_test_masks = np.expand_dims(final_test_masks, axis=-1)
    final_pre_masks = np.expand_dims(final_pre_masks, axis=-1)

    for i in range(num_test_images):
        dice_coef_slice = nw.dice_coef_np(final_test_masks[i],
                                          final_pre_masks[i])
        total_progress = i / num_test_images * 100

        print('predicting slice: %03d' % (i),
              '  total progress: %5.2f%%' % (total_progress),
              '  dice coef: %5.3f' % (dice_coef_slice))
示例#2
0
def model_test(use_existing):
    print('-' * 30)
    print('Loading test data...')
    print('-' * 30)

    # Loading test data:
    filename = cm.filename
    modelname = cm.modellist[0]
    originFile_list = sorted(
        glob(cm.workingPath.originTestingSet_path + filename))
    maskFile_list = sorted(glob(cm.workingPath.maskTestingSet_path + filename))
    file = str(originFile_list[0])[23:]

    out_test_images = []
    out_test_masks = []
    for i in range(len(originFile_list)):
        # originTestVolInfo = loadFileInformation(originFile_list[i])
        # maskTestVolInfo = loadFileInformation(maskFile_list[i])

        originTestVol, originTestVol_num, originTestVolwidth, originTestVolheight = loadFile(
            originFile_list[i])
        maskTestVol, maskTestVol_num, maskTestVolwidth, maskTestVolheight = loadFile(
            maskFile_list[i])

        for j in range(len(maskTestVol)):
            maskTestVol[j] = np.where(maskTestVol[j] != 0, 1, 0)
        for img in originTestVol:
            # new_img = resize(img, [512, 512])
            out_test_images.append(img)
        for img in maskTestVol:
            # new_mask = resize(img, [512, 512])
            out_test_masks.append(img)

    num_test_images = len(out_test_images)
    # num_test_images = 1
    # test_num = 241

    final_test_images = np.ndarray([num_test_images, 512, 512], dtype=np.int16)
    final_test_masks = np.ndarray([num_test_images, 512, 512], dtype=np.int8)
    # import pdb; pdb.set_trace()
    for i in range(num_test_images):
        final_test_images[i] = out_test_images[i]
        final_test_masks[i] = out_test_masks[i]
    final_test_images = np.expand_dims(final_test_images, axis=-1)
    final_test_masks = np.expand_dims(final_test_masks, axis=-1)

    learning_rate = 0.0001
    decay_rate = 5e-6
    momentum = 0.9

    # sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False)
    adam = Adam(lr=learning_rate, decay=decay_rate)

    opti = adam
    print('_' * 30)
    print('calculating model...')
    print('_' * 30)
    # model = nw.get_unet_more_feature()
    # model = nw.get_unet_less_feature()
    # model = nw.get_unet_dilated_conv_4()
    model = nw.get_unet(opti)
    # model = nw.get_shallow_unet()
    # model = nw.get_dropout_unet()

    using_start_end = 0
    start_slice = 121
    end_slice = 283

    if use_existing:
        model.load_weights(modelname)

    imgs_mask_test = np.ndarray([num_test_images, 512, 512, 1],
                                dtype=np.float32)

    # logs = []
    for i in range(num_test_images):
        imgs_mask_test[i] = resize(
            (model.predict([final_test_images[i:i + 1]], verbose=0)[0]),
            [512, 512, 1])

        # imgs_mask_test[i] = np.where(imgs_mask_test[i] < 0.5, 0, 1)

        # imgs_mask_test[i] = morphology.erosion(imgs_mask_test[i], np.ones([2, 2, 1]))
        # imgs_mask_test[i] = morphology.dilation(imgs_mask_test[i], np.ones([5, 5, 1]))

        dice_coef_slice = nw.dice_coef_np(final_test_masks[i],
                                          imgs_mask_test[i])
        total_progress = i / num_test_images * 100

        print('predicting slice: %03d' % (i),
              '  total progress: %5.2f%%' % (total_progress),
              '  dice coef: %5.3f' % (dice_coef_slice))

    final_test_images = final_test_images + 4000

    np.save(cm.workingPath.testingSet_path + 'testImages.npy',
            final_test_images)
    np.save(cm.workingPath.testingSet_path + 'testMasks.npy', final_test_masks)

    np.save(cm.workingPath.testingSet_path + 'masksTestPredicted.npy',
            imgs_mask_test)

    # Load data:

    imgs_origin = np.load(cm.workingPath.testingSet_path +
                          'testImages.npy').astype(np.int16)
    imgs_true = np.load(cm.workingPath.testingSet_path +
                        'testMasks.npy').astype(np.int8)
    imgs_predict = np.load(cm.workingPath.testingSet_path +
                           'masksTestPredicted.npy').astype(np.float32)
    imgs_predict_threshold = np.load(cm.workingPath.testingSet_path +
                                     'masksTestPredicted.npy').astype(
                                         np.float32)

    imgs_origin = np.squeeze(imgs_origin, axis=-1)
    imgs_true = np.squeeze(imgs_true, axis=-1)
    imgs_predict = np.squeeze(imgs_predict, axis=-1)
    imgs_predict_threshold = np.squeeze(imgs_predict_threshold, axis=-1)

    imgs_predict_threshold = np.where(imgs_predict_threshold < 0.5, 0, 1)

    if using_start_end == 1:
        mean = nw.dice_coef_np(imgs_predict[start_slice:end_slice],
                               imgs_true[start_slice:end_slice])
    else:
        mean = nw.dice_coef_np(imgs_predict, imgs_true)

    np.savetxt(cm.workingPath.testingSet_path + 'dicemean.txt',
               np.array(mean).reshape(1, ),
               fmt='%.5f')
    print('-' * 30)
    print('Model file:', modelname)
    print('Total Dice Coeff', mean)
    print('-' * 30)

    # Draw the subplots of figures:

    color1 = 'gray'  # ***
    color2 = 'viridis'  # ******
    # color = 'plasma'  # **
    # color = 'magma'  # ***
    # color2 = 'RdPu'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***

    transparent1 = 1.0
    transparent2 = 0.5

    # Slice parameters:

    #############################################
    # Automatically:

    steps = 40
    slice = range(0, len(imgs_true), steps)
    plt_row = 3
    plt_col = int(len(imgs_true) / steps)

    plt.figure(1, figsize=(25, 12))

    for i in slice:
        if i == 0:
            plt_num = int(i / steps) + 1
        else:
            plt_num = int(i / steps)

        if plt_num <= plt_col:

            plt.figure(1)

            ax1 = plt.subplot(plt_row, plt_col, plt_num)
            title = 'slice=' + str(i)
            plt.title(title)
            ax1.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax1.imshow(imgs_true[i, :, :], cmap=color2, alpha=transparent2)

            ax2 = plt.subplot(plt_row, plt_col, plt_num + plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax2.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax2.imshow(imgs_predict[i, :, :], cmap=color2, alpha=transparent2)

            ax3 = plt.subplot(plt_row, plt_col, plt_num + 2 * plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax3.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax3.imshow(imgs_predict_threshold[i, :, :],
                       cmap=color2,
                       alpha=transparent2)
        else:
            pass

    modelname = cm.modellist[0]

    imageName = re.findall(r'\d+\.?\d*', modelname)
    epoch_num = int(imageName[0]) + 1
    accuracy = float(
        np.loadtxt(cm.workingPath.testingSet_path + 'dicemean.txt', float))

    # saveName = 'epoch_' + str(epoch_num) + '_dice_' +str(accuracy) + '.png'
    saveName = 'epoch_%02d_dice_%.3f.png' % (epoch_num - 1, accuracy)

    plt.subplots_adjust(left=0.0,
                        bottom=0.05,
                        right=1.0,
                        top=0.95,
                        hspace=0.3,
                        wspace=0.3)
    plt.savefig(cm.workingPath.testingSet_path + saveName)
    # plt.show()

    ###################################
    # Manually:
    #
    # slice = (100,150,230,250)
    #
    # plt.figure(2)
    #
    # ax1 = plt.subplot(2,4,1)
    # title = 'slice=' + str(slice[0])
    # plt.title(title)
    # ax1.imshow(new_imgs_origin[slice[0],0,:,:],cmap=color1,alpha=transparent1)
    # ax1.imshow(new_imgs_true[slice[0],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax2 = plt.subplot(2,4,5)
    # title = 'slice=' + str(slice[0])
    # plt.title(title)
    # ax2.imshow(new_imgs_origin[slice[0],0,:,:],cmap=color1,alpha=transparent1)
    # ax2.imshow(new_imgs_predict[slice[0],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax3 = plt.subplot(2,4,2)
    # title = 'slice=' + str(slice[1])
    # plt.title(title)
    # ax3.imshow(new_imgs_origin[slice[1],0,:,:],cmap=color1,alpha=transparent1)
    # ax3.imshow(new_imgs_true[slice[1],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax4 = plt.subplot(2,4,6)
    # title = 'slice=' + str(slice[1])
    # plt.title(title)
    # ax4.imshow(new_imgs_origin[slice[1],0,:,:],cmap=color1,alpha=transparent1)
    # ax4.imshow(new_imgs_predict[slice[1],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax5 = plt.subplot(2,4,3)
    # title = 'slice=' + str(slice[2])
    # plt.title(title)
    # ax5.imshow(new_imgs_origin[slice[2],0,:,:],cmap=color1,alpha=transparent1)
    # ax5.imshow(new_imgs_true[slice[2],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax6 = plt.subplot(2,4,7)
    # title = 'slice=' + str(slice[2])
    # plt.title(title)
    # ax6.imshow(new_imgs_origin[slice[2],0,:,:],cmap=color1,alpha=transparent1)
    # ax6.imshow(new_imgs_predict[slice[2],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax7 = plt.subplot(2,4,4)
    # title = 'slice=' + str(slice[3])
    # plt.title(title)
    # ax7.imshow(new_imgs_origin[slice[3],0,:,:],cmap=color1,alpha=transparent1)
    # ax7.imshow(new_imgs_true[slice[3],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax8 = plt.subplot(2,4,8)
    # title = 'slice=' + str(slice[3])
    # plt.title(title)
    # ax8.imshow(new_imgs_origin[slice[3],0,:,:],cmap=color1,alpha=transparent1)
    # ax8.imshow(new_imgs_predict[slice[3],0,:,:],cmap=color2,alpha=transparent2)
    #
    # plt.show()

    #############################################

    print('Images saved')

    # Save npy as dcm files:

    imgs_origin = np.uint16(imgs_origin)
    imgs_true = np.uint16(imgs_true)
    imgs_predict_threshold = np.uint16(imgs_predict_threshold)

    new_imgs_origin_dcm = sitk.GetImageFromArray(imgs_origin)
    new_imgs_true_dcm = sitk.GetImageFromArray(imgs_true)
    new_imgs_predict_dcm = sitk.GetImageFromArray(imgs_predict_threshold)

    sitk.WriteImage(new_imgs_predict_dcm,
                    cm.workingPath.testingSet_path + "Predicted_" + file)

    ds1 = dicom.read_file(maskFile_list[0])
    ds2 = dicom.read_file(cm.workingPath.testingSet_path + "Predicted_" + file)
    ds1.PixelData = ds2.PixelData
    ds1.save_as(cm.workingPath.testingSet_path + "Predicted_" + file)

    print('DICOM saved')
示例#3
0
def train_and_predict(use_existing):
    print('-' * 30)
    print('Loading and preprocessing train data...')
    print('-' * 30)

    # Choose which subset you would like to use:
    i = 0

    imgs_train = np.load(cm.workingPath.training3DSet_path +
                         'trainImages_%04d.npy' % (i)).astype(np.float32)
    imgs_mask_train = np.load(cm.workingPath.training3DSet_path +
                              'trainMasks_%04d.npy' % (i)).astype(np.float32)

    # imgs_test = np.load(cm.workingPath.trainingSet_path + 'testImages_%04d.npy'%(i)).astype(np.float32)
    # imgs_mask_test_true = np.load(cm.workingPath.trainingSet_path + 'testMasks_%04d.npy'%(i)).astype(np.float32)

    # Mean for data centering:
    # mean= np.mean(imgs_train)
    # Std for data normalization:
    # std = np.std(imgs_train)

    # imgs_train -= mean
    # imgs_train /= std

    print('_' * 30)
    print('Creating and compiling model...')
    print('_' * 30)

    model = nw.get_3D_unet()
    # model = nw.get_3D_unet_2()
    # model = nw.get_simple_3D_unet()

    modelname = 'model.png'
    plot_model(model,
               show_shapes=True,
               to_file=cm.workingPath.model_path + modelname)
    model.summary()
    # config = model.get_config()
    # print(config)

    # Callbacks:

    filepath = cm.workingPath.model_path + 'weights.{epoch:02d}-{loss:.5f}.hdf5'
    bestfilepath = cm.workingPath.model_path + 'Best_weights.{epoch:02d}-{loss:.5f}.hdf5'

    model_checkpoint = callbacks.ModelCheckpoint(filepath,
                                                 monitor='loss',
                                                 verbose=0,
                                                 save_best_only=False)
    model_best_checkpoint = callbacks.ModelCheckpoint(bestfilepath,
                                                      monitor='val_loss',
                                                      verbose=0,
                                                      save_best_only=True)

    # history = cm.LossHistory_Gerda(cm.workingPath.working_path)
    history = nw.LossHistory()
    # model_history = callbacks.TensorBoard(log_dir='./logs', histogram_freq=1, write_graph=True, write_images=True,
    #  							embeddings_freq=1, embeddings_layer_names=None, embeddings_metadata= None)

    callbacks_list = [history, model_best_checkpoint]

    # Should we load existing weights?
    # Set argument for call to train_and_predict to true at end of script
    if use_existing:
        model.load_weights('./unet.hdf5')

    print('-' * 30)
    print('Fitting model...')
    print('-' * 30)

    model.fit(imgs_train,
              imgs_mask_train,
              batch_size=1,
              epochs=400,
              verbose=1,
              shuffle=True,
              validation_split=0.1,
              callbacks=callbacks_list)

    print('training finished')
def train_and_predict(use_existing, x_train, x_val, y_train, y_val, cross, pre_lrate):
  cm.mkdir(cm.workingPath.model_path)
  cm.mkdir(cm.workingPath.best_model_path)

  class LossHistory(callbacks.Callback):
    def on_train_begin(self, logs={}):
      self.losses = [1]
      self.val_losses = []
      self.lr = []

    def on_epoch_end(self, epoch, logs={}):
      self.losses.append(logs.get('loss'))
      loss_file = (list(self.losses))
      np.savetxt(cm.workingPath.model_path + 'loss_' + 'Val.%02d.txt' % (cross), loss_file[1:], newline='\r\n')

      self.val_losses.append(logs.get('val_loss'))
      val_loss_file = (list(self.val_losses))
      np.savetxt(cm.workingPath.model_path + 'val_loss_' + 'Val.%02d.txt' % (cross), val_loss_file, newline='\r\n')

      self.lr.append(step_decay(len(self.losses)))
      print('\nLearning rate:', step_decay(len(self.losses)))
      lrate_file = (list(self.lr))
      np.savetxt(cm.workingPath.model_path + 'lrate_' + 'Val.%02d.txt' % (cross), lrate_file, newline='\r\n')

  if cross == 0:
    learning_rate = 0.0001
    decay_rate = 5e-6
    momentum = 0.9
  else:
    learning_rate = pre_lrate
    decay_rate = 5e-6
    momentum = 0.9

  # sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False)
  adam = Adam(lr=learning_rate, decay=decay_rate)

  opti = adam

  def step_decay(losses):
    if float(2 * np.sqrt(np.array(history.losses[-1]))) < 100:
      if cross == 0:
        lrate = 0.0001 * 1 / (1 + 0.1 * len(history.losses))
        # lrate = 0.0001
        momentum = 0.8
        decay_rate = 2e-6
      else:
        lrate = pre_lrate * 1 / (1 + 0.1 * len(history.losses))
        # lrate = 0.0001
        momentum = 0.8
        decay_rate = 2e-6
      return lrate
    else:
      if cross == 0:
        lrate = 0.0001
      else:
        lrate = pre_lrate
      return lrate

  history = LossHistory()
  lrate = LearningRateScheduler(step_decay)

  print('_' * 30)
  print('Creating and compiling model...')
  print('_' * 30)

  # model = nw.get_simple_unet(opti)
  # model = nw.get_shallow_unet(sgd)
  model = nw.get_unet(opti)
  # model = nw.get_dropout_unet()
  # model = nw.get_unet_less_feature()
  # model = nw.get_unet_dilated_conv_4()
  # model = nw.get_unet_dilated_conv_7()
  # model = nw.get_2D_Deeply_supervised_network()

  modelname = 'model.png'
  # plot_model(model, show_shapes=True, to_file=cm.workingPath.model_path + modelname)
  model.summary()

  # Callbacks:

  filepath = cm.workingPath.model_path + 'Val.%02d_' % (cross) + 'weights.{epoch:02d}-{loss:.5f}.hdf5'
  bestfilepath = cm.workingPath.best_model_path + 'Val.%02d_' % (cross) + 'Best_weights.{epoch:02d}-{loss:.5f}.hdf5'
  unet_hdf5_path = cm.workingPath.working_path + 'unet.hdf5'

  model_checkpoint = callbacks.ModelCheckpoint(filepath, monitor='loss', verbose=0, save_best_only=True)
  model_best_checkpoint = callbacks.ModelCheckpoint(bestfilepath, monitor='val_loss', verbose=0, save_best_only=True)
  model_best_unet_hdf5 = callbacks.ModelCheckpoint(unet_hdf5_path, monitor='val_loss', verbose=0, save_best_only=True)

  history = LossHistory()

  callbacks_list = [history, lrate, model_checkpoint, model_best_checkpoint, model_best_unet_hdf5]

  # Should we load existing weights?
  # Set argument for call to train_and_predict to true at end of script
  if use_existing:
    model.load_weights('./unet.hdf5')

  print('-' * 30)
  print('Fitting model...')
  print('-' * 30)

  model.fit(x_train, y_train, batch_size=4, epochs=50, verbose=1, shuffle=True,
            validation_data=(x_val, y_val), callbacks=callbacks_list)

  print('training finished')
示例#5
0
def model_test(use_existing, ii):
    print('-' * 30)
    print('Loading test data...')
    print('-' * 30)

    # Loading test data:
    filename = cm.filename
    modelname = cm.modellist[ii]
    originFile_list = glob(cm.workingPath.originTestingSet_path + filename)
    maskFile_list = glob(cm.workingPath.maskTestingSet_path + filename)

    out_test_images = []
    out_test_masks = []
    for i in range(len(originFile_list)):
        # originTestVolInfo = loadFileInformation(originFile_list[i])
        # maskTestVolInfo = loadFileInformation(maskFile_list[i])

        originTestVol, originTestVol_num, originTestVolwidth, originTestVolheight = loadFile(
            originFile_list[i])
        maskTestVol, maskTestVol_num, maskTestVolwidth, maskTestVolheight = loadFile(
            maskFile_list[i])

        for j in range(len(maskTestVol)):
            maskTestVol[j] = np.where(maskTestVol[j] != 0, 1, 0)
        for img in originTestVol:
            # new_img = resize(img, [512, 512])
            out_test_images.append(img)
        for img in maskTestVol:
            # new_mask = resize(img, [512, 512])
            out_test_masks.append(img)

    # num_test_images = len(out_test_images)
    num_test_images = 1
    test_num = 140

    final_test_images = np.ndarray([num_test_images, 512, 512],
                                   dtype=np.float32)
    final_test_masks = np.ndarray([num_test_images, 512, 512],
                                  dtype=np.float32)
    # import pdb; pdb.set_trace()
    final_test_images[0] = out_test_images[test_num]
    final_test_masks[0] = out_test_masks[test_num]
    final_test_images = np.expand_dims(final_test_images, axis=-1)
    final_test_masks = np.expand_dims(final_test_masks, axis=-1)

    print('_' * 30)
    print('calculating model...')
    print('_' * 30)
    model = nw.get_unet()

    if use_existing:
        model.load_weights(modelname)

    imgs_mask_test = np.ndarray([num_test_images, 512, 512, 1],
                                dtype=np.float32)

    imgs_mask_test[0] = resize(
        (model.predict([final_test_images[0:1]], verbose=0)[0]), [512, 512, 1])

    np.save(cm.workingPath.testingSet_path + 'testImages.npy',
            final_test_images)
    np.save(cm.workingPath.testingSet_path + 'testMasks.npy', final_test_masks)

    np.save(cm.workingPath.testingSet_path + 'masksTestPredicted.npy',
            imgs_mask_test)

    # Save npy as dcm files:
    imgs_origin = np.load(cm.workingPath.testingSet_path +
                          'testImages.npy').astype(np.uint16)

    imgs_true = np.load(cm.workingPath.testingSet_path +
                        'testMasks.npy').astype(np.uint16)
    imgs_predict = np.load(cm.workingPath.testingSet_path +
                           'masksTestPredicted.npy').astype(np.uint16)

    # for j in range(len(imgs_true)):
    # 	imgs_true[j] = np.where(imgs_true[j]  < 0.5, 0, 1)
    # for j in range(len(imgs_predict)):
    # 	imgs_predict[j] = np.where(imgs_predict[j]  < 0.5, 0, 1)

    imgs_origin = np.squeeze(imgs_origin, axis=-1)
    imgs_true = np.squeeze(imgs_true, axis=-1)
    imgs_predict = np.squeeze(imgs_predict, axis=-1)

    new_image_origin = sitk.GetImageFromArray(imgs_origin)
    new_image_true = sitk.GetImageFromArray(imgs_true)
    new_image_predict = sitk.GetImageFromArray(imgs_predict)

    # sitk.WriteImage(new_image_origin, cm.workingPath.testingSet_path + 'testImages.dcm')
    # sitk.WriteImage(new_image_true, cm.workingPath.testingSet_path + 'testMasks.dcm')
    # sitk.WriteImage(new_image_predict, cm.workingPath.testingSet_path + 'masksTestPredicted.dcm')

    mean = 0.0

    for i in range(num_test_images):
        mean += nw.dice_coef_np(final_test_masks[i], imgs_mask_test[i])
    mean /= num_test_images
    np.savetxt(cm.workingPath.testingSet_path + 'dicemean.txt',
               np.array(mean).reshape(1, ),
               fmt='%.3f')

    print('model file:', modelname)
    print('Mean Dice Coeff', mean)

    # Load data:

    imgs_origin = np.load(cm.workingPath.testingSet_path +
                          'testImages.npy').astype(np.float32)

    imgs_true = np.load(cm.workingPath.testingSet_path +
                        'testMasks.npy').astype(np.float32)
    imgs_predict = np.load(cm.workingPath.testingSet_path +
                           'masksTestPredicted.npy').astype(np.float32)

    # Turn images into binary images from (0,1):

    for i in range(len(imgs_true)):
        imgs_true[i] = np.where(imgs_true[i] < 0.5, 0, 1)

    for j in range(len(imgs_predict)):
        imgs_predict[j] = np.where(imgs_predict[j] < 0.5, 0, 1)

    # Prepare to do some operations on images, or not:
    new_imgs_origin = imgs_origin
    new_imgs_true = imgs_true
    new_imgs_predict = imgs_predict

    # for i in range(len(imgs_true)):
    # 	new_imgs_true[len(imgs_true)-i-1] = imgs_true[i]
    #
    # for i in range(len(imgs_predict)):
    # 	new_imgs_predict[len(imgs_predict)-i-1] = imgs_predict[i]

    # Draw the subplots of figures:

    color1 = 'gray'  # ***
    color2 = 'viridis'  # ******
    # color = 'plasma'  # **
    # color = 'magma'  # ***
    # color2 = 'RdPu'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***

    transparent1 = 1.0
    transparent2 = 0.5

    # Slice parameters:

    #############################################
    # Automatically:

    steps = 1
    slice = range(0, len(new_imgs_true), steps)
    plt_row = 2
    plt_col = int(len(new_imgs_true) / steps)

    plt.figure(1, figsize=(20, 10))

    for i in slice:
        if i == 0:
            plt_num = int(i / steps) + 1
        else:
            plt_num = int(i / steps)

        if plt_num <= plt_col:

            plt.figure(1)

            ax1 = plt.subplot(plt_row, plt_col, plt_num)
            title = 'slice=' + str(i)
            plt.title(title)
            ax1.imshow(new_imgs_origin[i, :, :, 0],
                       cmap=color1,
                       alpha=transparent1)
            ax1.imshow(new_imgs_true[i, :, :, 0],
                       cmap=color2,
                       alpha=transparent2)

            ax2 = plt.subplot(plt_row, plt_col, plt_num + plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax2.imshow(new_imgs_origin[i, :, :, 0],
                       cmap=color1,
                       alpha=transparent1)
            ax2.imshow(new_imgs_predict[i, :, :, 0],
                       cmap=color2,
                       alpha=transparent2)
        else:
            pass

    modelname = cm.modellist[ii]

    imageName = re.findall(r'\d+\.?\d*', modelname)
    epoch_num = int(imageName[0]) + 1
    accuracy = float(
        np.loadtxt(cm.workingPath.testingSet_path + 'dicemean.txt', float))

    # saveName = 'epoch_' + str(epoch_num) + '_dice_' +str(accuracy) + '.png'
    saveName = 'epoch_%02d_dice_%.3f.png' % (epoch_num, accuracy)

    plt.savefig(cm.workingPath.testingSet_path + saveName)
    # plt.show()

    ###################################
    # Manually:
    #
    # slice = (100,150,230,250)
    #
    # plt.figure(2)
    #
    # ax1 = plt.subplot(2,4,1)
    # title = 'slice=' + str(slice[0])
    # plt.title(title)
    # ax1.imshow(new_imgs_origin[slice[0],0,:,:],cmap=color1,alpha=transparent1)
    # ax1.imshow(new_imgs_true[slice[0],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax2 = plt.subplot(2,4,5)
    # title = 'slice=' + str(slice[0])
    # plt.title(title)
    # ax2.imshow(new_imgs_origin[slice[0],0,:,:],cmap=color1,alpha=transparent1)
    # ax2.imshow(new_imgs_predict[slice[0],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax3 = plt.subplot(2,4,2)
    # title = 'slice=' + str(slice[1])
    # plt.title(title)
    # ax3.imshow(new_imgs_origin[slice[1],0,:,:],cmap=color1,alpha=transparent1)
    # ax3.imshow(new_imgs_true[slice[1],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax4 = plt.subplot(2,4,6)
    # title = 'slice=' + str(slice[1])
    # plt.title(title)
    # ax4.imshow(new_imgs_origin[slice[1],0,:,:],cmap=color1,alpha=transparent1)
    # ax4.imshow(new_imgs_predict[slice[1],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax5 = plt.subplot(2,4,3)
    # title = 'slice=' + str(slice[2])
    # plt.title(title)
    # ax5.imshow(new_imgs_origin[slice[2],0,:,:],cmap=color1,alpha=transparent1)
    # ax5.imshow(new_imgs_true[slice[2],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax6 = plt.subplot(2,4,7)
    # title = 'slice=' + str(slice[2])
    # plt.title(title)
    # ax6.imshow(new_imgs_origin[slice[2],0,:,:],cmap=color1,alpha=transparent1)
    # ax6.imshow(new_imgs_predict[slice[2],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax7 = plt.subplot(2,4,4)
    # title = 'slice=' + str(slice[3])
    # plt.title(title)
    # ax7.imshow(new_imgs_origin[slice[3],0,:,:],cmap=color1,alpha=transparent1)
    # ax7.imshow(new_imgs_true[slice[3],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax8 = plt.subplot(2,4,8)
    # title = 'slice=' + str(slice[3])
    # plt.title(title)
    # ax8.imshow(new_imgs_origin[slice[3],0,:,:],cmap=color1,alpha=transparent1)
    # ax8.imshow(new_imgs_predict[slice[3],0,:,:],cmap=color2,alpha=transparent2)
    #
    # plt.show()

    #############################################

    print('Images showing')
def main():
    """ Builds, trains, and runs the neural network. """
    app_time = timer.Timer()

    # Gets the phenotype names and the regression y values.
    print()
    pheno_names, pheno_data = dh.get_data("./data/8.pheno.2.txt", False)
    print("Phenotypes:", pheno_data.shape, "\n\n", pheno_names, "\n\n",
          pheno_data, "\n")

    # Gets the snp names and the regressors.
    snp_names, snp_data = dh.get_data("./data/8.snps.txt", True)
    snp_names = np.transpose(snp_names)
    snp_data = np.transpose(snp_data)
    print("SNPs:", snp_data.shape, "\n\n", snp_names, "\n\n", snp_data, "\n")

    # Make batches out of snp_data and unallocate snp_data
    snp_data = bb.make_batches(snp_data, len(pheno_data[0]))

    # Initialize graph structure.
    layer = net.ConnectedLayer(len(snp_data[0][0]), OUT_SIZE)
    layer.shape()

    # Start TensorFlow session.
    sess = sh.start_session()

    past_loss = 0
    step = 1
    index = np.arange(len(snp_data))

    while True:
        # rng_state = np.random.get_state()
        # np.random.shuffle(snp_data)
        # np.random.set_state(rng_state)
        # np.random.shuffle(pheno_data[0])

        # Train for an epoch
        # Get the current loss and train the graph.
        np.random.shuffle(index)
        for i in range(len(snp_data)):
            snp_sample = snp_data[index[i]]
            pheno_sample = [[pheno_data[0][index[i]]]]

            current_loss, _ = sess.run([layer.loss, layer.train_step],
                                       feed_dict={
                                           layer.input: snp_sample,
                                           layer.observed: pheno_sample
                                       })
            prog.progress(i, len(snp_data),
                          "Training Completed in Epoch " + str(step))

        prog.log_training(past_loss, current_loss, ALPHA, step, app_time)

        # Save the weight and bias tensors when the model converges.
        if abs(past_loss - current_loss) < (ALPHA):
            np.savetxt("w.out",
                       sess.run(layer.weight,
                                feed_dict={
                                    layer.input:
                                    snp_data[0],
                                    layer.observed:
                                    np.asarray([pheno_data[0][0]
                                                ]).reshape(1, OUT_SIZE)
                                }),
                       delimiter="\t")
            np.savetxt("b.out",
                       sess.run(layer.bias,
                                feed_dict={
                                    layer.input:
                                    snp_data[0],
                                    layer.observed:
                                    np.asarray([pheno_data[0][0]
                                                ]).reshape(1, OUT_SIZE)
                                }),
                       delimiter="\t")
            break
        past_loss = current_loss
        step += 1

    print(" [", app_time.get_time(), "]", "Closing session...\n")
    sess.close()
def model_test(use_existing):
    print('-' * 30)
    print('Loading test data...')

    # Loading test data:
    filename = cm.filename
    modelname = cm.modellist[0]
    originFile_list = sorted(
        glob(cm.workingPath.originTestingSet_path + filename))
    maskFile_list = sorted(glob(cm.workingPath.maskTestingSet_path + filename))

    out_test_images = []
    out_test_masks = []

    for i in range(len(originFile_list)):
        # originTestVolInfo = loadFileInformation(originFile_list[i])
        # maskTestVolInfo = loadFileInformation(maskFile_list[i])

        originTestVol, originTestVol_num, originTestVolwidth, originTestVolheight = loadFile(
            originFile_list[i])
        maskTestVol, maskTestVol_num, maskTestVolwidth, maskTestVolheight = loadFile(
            maskFile_list[i])

        for j in range(len(maskTestVol)):
            maskTestVol[j] = np.where(maskTestVol[j] != 0, 1, 0)
        for img in originTestVol:
            out_test_images.append(img)
        for img in maskTestVol:
            out_test_masks.append(img)

    num_test_images = len(out_test_images)

    final_test_images = np.ndarray([num_test_images, 512, 512], dtype=np.int16)
    final_test_masks = np.ndarray([num_test_images, 512, 512], dtype=np.int8)

    for i in range(num_test_images):
        final_test_images[i] = out_test_images[i]
        final_test_masks[i] = out_test_masks[i]
    final_test_images = np.expand_dims(final_test_images, axis=-1)
    final_test_masks = np.expand_dims(final_test_masks, axis=-1)

    row = nw.img_rows_3d
    col = nw.img_cols_3d
    num_rowes = 1
    num_coles = 1
    row_1 = int((512 - row) / 2)
    row_2 = int(512 - (512 - row) / 2)
    col_1 = int((512 - col) / 2)
    col_2 = int(512 - (512 - col) / 2)
    slices = nw.slices_3d
    gaps = nw.gaps_3d

    final_images_crop = final_test_images[:, row_1:row_2, col_1:col_2, :]
    final_masks_crop = final_test_masks[:, row_1:row_2, col_1:col_2, :]

    num_patches = int((num_test_images - slices) / gaps)
    num_patches1 = int(final_images_crop.shape[0] / slices)

    test_image = np.ndarray([1, slices, row, col, 1], dtype=np.int16)
    test_mask = np.ndarray([1, slices, row, col, 1], dtype=np.int8)

    predicted_mask_volume = np.ndarray([num_test_images, row, col],
                                       dtype=np.float32)

    # model = nw.get_3D_unet()
    model = nw.get_3D_CNN()
    # model = nw.get_3D_unet_drop_1()
    # model = nw.get_3D_unet_BN()

    using_start_end = 1
    start_slice = cm.start_slice
    end_slice = -1

    if use_existing:
        model.load_weights(modelname)

    for i in range(num_patches):
        count1 = i * gaps
        count2 = i * gaps + slices
        test_image[0] = final_images_crop[count1:count2]
        test_mask[0] = final_masks_crop[count1:count2]

        predicted_mask = model.predict(test_image)

        predicted_mask_volume[count1:count2] += predicted_mask[0, :, :, :, 0]

    predicted_mask_volume = np.expand_dims(predicted_mask_volume, axis=-1)
    np.save(cm.workingPath.testingSet_path + 'testImages.npy',
            final_images_crop)
    np.save(cm.workingPath.testingSet_path + 'testMasks.npy', final_masks_crop)
    np.save(cm.workingPath.testingSet_path + 'masksTestPredicted.npy',
            predicted_mask_volume)

    imgs_origin = np.load(cm.workingPath.testingSet_path +
                          'testImages.npy').astype(np.int16)
    imgs_true = np.load(cm.workingPath.testingSet_path +
                        'testMasks.npy').astype(np.int8)
    imgs_predict = np.load(cm.workingPath.testingSet_path +
                           'masksTestPredicted.npy').astype(np.float32)

    imgs_origin = np.squeeze(imgs_origin, axis=-1)
    imgs_true = np.squeeze(imgs_true, axis=-1)
    imgs_predict = np.squeeze(imgs_predict, axis=-1)

    imgs_predict_threshold = np.load(cm.workingPath.testingSet_path +
                                     'masksTestPredicted.npy').astype(
                                         np.float32)
    imgs_predict_threshold = np.squeeze(imgs_predict_threshold, axis=-1)
    imgs_predict_threshold = np.where(imgs_predict_threshold < (8), 0, 1)

    if using_start_end == 1:
        mean = nw.dice_coef_np(imgs_predict_threshold[start_slice:end_slice],
                               imgs_true[start_slice:end_slice])
    else:
        mean = nw.dice_coef_np(imgs_predict_threshold, imgs_true)

    np.savetxt(cm.workingPath.testingSet_path + 'dicemean.txt',
               np.array(mean).reshape(1, ),
               fmt='%.5f')

    print('Model file:', modelname)
    print('Total Dice Coeff', mean)
    print('-' * 30)

    # mean=[]
    #
    # for thre in range(1,17):
    #   imgs_predict_threshold = np.load(cm.workingPath.testingSet_path + 'masksTestPredicted.npy').astype(np.float32)
    #   imgs_predict_threshold = np.squeeze(imgs_predict_threshold, axis=-1)
    #   imgs_predict_threshold = np.where(imgs_predict_threshold < (thre), 0, 1)
    #
    #   if using_start_end == 1:
    #     meantemp = nw.dice_coef_np(imgs_predict_threshold[start_slice:end_slice], imgs_true[start_slice:end_slice])
    #     mean.append(meantemp)
    #   else:
    #     meantemp = nw.dice_coef_np(imgs_predict_threshold, imgs_true)
    #     mean.append(meantemp)
    #
    # np.savetxt(cm.workingPath.testingSet_path + 'dicemean.txt', mean, fmt='%.5f')
    #
    # print('Model file:', modelname)
    # print('Total Dice Coeff', mean)
    # print('-' * 30)

    # Draw the subplots of figures:

    color1 = 'gray'  # ***
    color2 = 'viridis'  # ******
    # color = 'plasma'  # **
    # color = 'magma'  # ***
    # color2 = 'RdPu'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***

    transparent1 = 1.0
    transparent2 = 0.5

    # Slice parameters:

    #############################################
    # Automatically:

    steps = 40
    slice = range(0, len(imgs_origin), steps)
    plt_row = 3
    plt_col = int(len(imgs_origin) / steps)

    plt.figure(1, figsize=(25, 12))

    for i in slice:
        if i == 0:
            plt_num = int(i / steps) + 1
        else:
            plt_num = int(i / steps)

        if plt_num <= plt_col:

            plt.figure(1)

            ax1 = plt.subplot(plt_row, plt_col, plt_num)
            title = 'slice=' + str(i)
            plt.title(title)
            ax1.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax1.imshow(imgs_true[i, :, :], cmap=color2, alpha=transparent2)

            ax2 = plt.subplot(plt_row, plt_col, plt_num + plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax2.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax2.imshow(imgs_predict[i, :, :], cmap=color2, alpha=transparent2)

            ax3 = plt.subplot(plt_row, plt_col, plt_num + 2 * plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax3.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax3.imshow(imgs_predict_threshold[i, :, :],
                       cmap=color2,
                       alpha=transparent2)
        else:
            pass

    modelname = cm.modellist[0]

    imageName = re.findall(r'\d+\.?\d*', modelname)
    epoch_num = int(imageName[0]) + 1
    accuracy = float(
        np.loadtxt(cm.workingPath.testingSet_path + 'dicemean.txt', float))

    # saveName = 'epoch_' + str(epoch_num) + '_dice_' +str(accuracy) + '.png'
    saveName = 'epoch_%02d_dice_%.3f.png' % (epoch_num - 1, accuracy)

    plt.subplots_adjust(left=0.0,
                        bottom=0.05,
                        right=1.0,
                        top=0.95,
                        hspace=0.3,
                        wspace=0.3)
    plt.savefig(cm.workingPath.testingSet_path + saveName)
    # plt.show()

    print('Images saved')

    # Save npy as dcm files:

    # final_test_predicted_threshold = np.ndarray([num_test_images, 512, 512], dtype=np.int8)

    # final_test_images = np.squeeze(final_test_images + 4000, axis=-1)
    final_test_masks = np.squeeze(final_test_masks, axis=-1)

    # final_test_images[0:num_patches1 * slices, row_1:row_2, col_1:col_2,] = imgs_origin[:, :, :]
    # final_test_masks[0:num_patches1 * slices:, row_1:row_2, col_1:col_2,] = imgs_true[:, :, :]
    final_test_predicted_threshold = final_test_masks
    final_test_predicted_threshold[:, row_1:row_2, col_1:
                                   col_2] = imgs_predict_threshold[:, :, :]

    final_test_predicted_threshold = np.uint16(final_test_predicted_threshold)

    new_imgs_predict_dcm = sitk.GetImageFromArray(
        final_test_predicted_threshold)

    sitk.WriteImage(new_imgs_predict_dcm,
                    cm.workingPath.testingSet_path + 'masksTestPredicted.dcm')

    ds1 = dicom.read_file(maskFile_list[0])
    ds2 = dicom.read_file(cm.workingPath.testingSet_path +
                          'masksTestPredicted.dcm')
    ds1.PixelData = ds2.PixelData
    ds1.save_as(cm.workingPath.testingSet_path + 'masksTestPredicted.dcm')

    print('DICOM saved')
示例#8
0
def model_test(use_existing, modelnum):
    print('-' * 30)
    print('Loading test data...')
    print('-' * 30)

    # Loading test data:
    filename = cm.filename
    modelname = cm.modelname
    originFile_list = glob(cm.workingPath.originTestingSet_path + filename)
    maskFile_list = glob(cm.workingPath.maskTestingSet_path + filename)

    out_test_images = []
    out_test_masks = []
    for i in range(len(originFile_list)):
        # originTestVolInfo = loadFileInformation(originFile_list[i])
        # maskTestVolInfo = loadFileInformation(maskFile_list[i])

        originTestVol, originTestVol_num, originTestVolwidth, originTestVolheight = loadFile(
            originFile_list[i])
        maskTestVol, maskTestVol_num, maskTestVolwidth, maskTestVolheight = loadFile(
            maskFile_list[i])

        for j in range(len(maskTestVol)):
            maskTestVol[j] = np.where(maskTestVol[j] != 0, 1, 0)
        for img in originTestVol:
            # new_img = resize(img, [512, 512])
            out_test_images.append(img)
        for img in maskTestVol:
            # new_mask = resize(img, [512, 512])
            out_test_masks.append(img)

    # num_test_images = len(out_test_images)
    num_test_images = 1
    test_num = 177

    final_test_images = np.ndarray([num_test_images, 512, 512],
                                   dtype=np.float32)
    final_test_masks = np.ndarray([num_test_images, 512, 512],
                                  dtype=np.float32)
    # import pdb; pdb.set_trace()
    for i in range(num_test_images):
        final_test_images[i] = out_test_images[i + test_num]
        final_test_masks[i] = out_test_masks[i + test_num]
    final_test_images = np.expand_dims(final_test_images, axis=-1)
    final_test_masks = np.expand_dims(final_test_masks, axis=-1)

    print('_' * 30)
    print('calculating model...')
    print('_' * 30)
    # model = nw.get_unet_more_feature()
    model = nw.get_unet()

    if use_existing:
        model.load_weights(cm.modellist[modelnum])

    imgs_mask_test = np.ndarray([num_test_images, 512, 512, 1],
                                dtype=np.float32)

    # logs = []
    for i in range(num_test_images):
        imgs_mask_test[i] = resize(
            (model.predict([final_test_images[i:i + 1]], verbose=0)[0]),
            [512, 512, 1])

        # imgs_mask_test[i] = np.where(imgs_mask_test[i] < 0.5, 0, 1)

        # imgs_mask_test[i] = morphology.erosion(imgs_mask_test[i], np.ones([2, 2, 1]))
        # imgs_mask_test[i] = morphology.dilation(imgs_mask_test[i], np.ones([5, 5, 1]))

        dice_coef_slice = nw.dice_coef_np(final_test_masks[i],
                                          imgs_mask_test[i])
        total_progress = i / num_test_images * 100

        # log_slice = 'predicting slice: %03d' %(i),'  total progress: %5.2f%%' %(total_progress), '  dice coef: %5.3f'%(dice_coef_slice)
        # log_slice = str(log_slice)
        # np.append(logs, log_slice)
        print('predicting slice: %03d' % (i),
              '  total progress: %5.2f%%' % (total_progress),
              '  dice coef: %5.3f' % (dice_coef_slice))
    # logs = np.array(logs)
    # np.savetxt(cm.workingPath.testingSet_path + 'logs.txt', logs)
    final_test_images = final_test_images + 4000

    np.save(cm.workingPath.testingSet_path + 'testImages.npy',
            final_test_images)
    np.save(cm.workingPath.testingSet_path + 'testMasks.npy', final_test_masks)

    np.save(cm.workingPath.testingSet_path + 'masksTestPredicted.npy',
            imgs_mask_test)

    # Load data:

    imgs_origin = np.load(cm.workingPath.testingSet_path +
                          'testImages.npy').astype(np.float32)
    imgs_true = np.load(cm.workingPath.testingSet_path +
                        'testMasks.npy').astype(np.float32)
    imgs_predict = np.load(cm.workingPath.testingSet_path +
                           'masksTestPredicted.npy').astype(np.float32)
    imgs_predict_threshold = np.load(cm.workingPath.testingSet_path +
                                     'masksTestPredicted.npy').astype(
                                         np.float32)

    imgs_origin = np.squeeze(imgs_origin, axis=-1)
    imgs_true = np.squeeze(imgs_true, axis=-1)
    imgs_predict = np.squeeze(imgs_predict, axis=-1)
    imgs_predict_threshold = np.squeeze(imgs_predict_threshold, axis=-1)

    imgs_predict_threshold = np.where(imgs_predict_threshold < 0.5, 0, 1)

    mean = nw.dice_coef_np(imgs_predict, imgs_true)

    np.savetxt(cm.workingPath.testingSet_path + 'dicemean.txt',
               np.array(mean).reshape(1, ),
               fmt='%.5f')
    print('-' * 30)
    print('Model file:', modelname)
    print('Total Dice Coeff', mean)
    print('-' * 30)

    # Draw the subplots of figures:

    color1 = 'gray'  # ***
    color2 = 'viridis'  # ******
    # color = 'plasma'  # **
    # color = 'magma'  # ***
    # color2 = 'RdPu'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***

    transparent1 = 1.0
    transparent2 = 0.5

    # Slice parameters:

    #############################################
    # Automatically:

    steps = 1
    slice = range(0, len(imgs_true), steps)
    plt_row = 3
    plt_col = int(len(imgs_true) / steps)

    plt.figure('Single Slice', figsize=(4, 12))

    for i in slice:
        if i == 0:
            plt_num = int(i / steps) + 1
        else:
            plt_num = int(i / steps)

        if plt_num <= plt_col:

            plt.figure(1)

            ax1 = plt.subplot(plt_row, plt_col, plt_num)
            title = 'slice=' + str(i)
            plt.title(title)
            ax1.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax1.imshow(imgs_true[i, :, :], cmap=color2, alpha=transparent2)

            ax2 = plt.subplot(plt_row, plt_col, plt_num + plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax2.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax2.imshow(imgs_predict[i, :, :], cmap=color2, alpha=transparent2)

            ax3 = plt.subplot(plt_row, plt_col, plt_num + 2 * plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax3.imshow(imgs_origin[i, :, :], cmap=color1, alpha=transparent1)
            ax3.imshow(imgs_predict_threshold[i, :, :],
                       cmap=color2,
                       alpha=transparent2)
        else:
            pass

    modelname = cm.modelname

    imageName = re.findall(r'\d+\.?\d*', modelname)
    epoch_num = int(imageName[0]) + 1
    accuracy = float(
        np.loadtxt(cm.workingPath.testingSet_path + 'dicemean.txt', float))

    # saveName = 'epoch_' + str(epoch_num) + '_dice_' +str(accuracy) + '.png'
    saveName = 'epoch_%02d_dice_%.3f.png' % (modelnum, accuracy)

    plt.subplots_adjust(left=0.0,
                        bottom=0.05,
                        right=1.0,
                        top=0.95,
                        hspace=0.3,
                        wspace=0.3)
    plt.savefig(cm.workingPath.testingSet_path + saveName)
    # plt.show()

    ###################################
    # Manually:
    #
    # slice = (100,150,230,250)
    #
    # plt.figure(2)
    #
    # ax1 = plt.subplot(2,4,1)
    # title = 'slice=' + str(slice[0])
    # plt.title(title)
    # ax1.imshow(new_imgs_origin[slice[0],0,:,:],cmap=color1,alpha=transparent1)
    # ax1.imshow(new_imgs_true[slice[0],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax2 = plt.subplot(2,4,5)
    # title = 'slice=' + str(slice[0])
    # plt.title(title)
    # ax2.imshow(new_imgs_origin[slice[0],0,:,:],cmap=color1,alpha=transparent1)
    # ax2.imshow(new_imgs_predict[slice[0],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax3 = plt.subplot(2,4,2)
    # title = 'slice=' + str(slice[1])
    # plt.title(title)
    # ax3.imshow(new_imgs_origin[slice[1],0,:,:],cmap=color1,alpha=transparent1)
    # ax3.imshow(new_imgs_true[slice[1],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax4 = plt.subplot(2,4,6)
    # title = 'slice=' + str(slice[1])
    # plt.title(title)
    # ax4.imshow(new_imgs_origin[slice[1],0,:,:],cmap=color1,alpha=transparent1)
    # ax4.imshow(new_imgs_predict[slice[1],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax5 = plt.subplot(2,4,3)
    # title = 'slice=' + str(slice[2])
    # plt.title(title)
    # ax5.imshow(new_imgs_origin[slice[2],0,:,:],cmap=color1,alpha=transparent1)
    # ax5.imshow(new_imgs_true[slice[2],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax6 = plt.subplot(2,4,7)
    # title = 'slice=' + str(slice[2])
    # plt.title(title)
    # ax6.imshow(new_imgs_origin[slice[2],0,:,:],cmap=color1,alpha=transparent1)
    # ax6.imshow(new_imgs_predict[slice[2],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax7 = plt.subplot(2,4,4)
    # title = 'slice=' + str(slice[3])
    # plt.title(title)
    # ax7.imshow(new_imgs_origin[slice[3],0,:,:],cmap=color1,alpha=transparent1)
    # ax7.imshow(new_imgs_true[slice[3],0,:,:],cmap=color2,alpha=transparent2)
    #
    # ax8 = plt.subplot(2,4,8)
    # title = 'slice=' + str(slice[3])
    # plt.title(title)
    # ax8.imshow(new_imgs_origin[slice[3],0,:,:],cmap=color1,alpha=transparent1)
    # ax8.imshow(new_imgs_predict[slice[3],0,:,:],cmap=color2,alpha=transparent2)
    #
    # plt.show()

    #############################################

    print('Images saved')
示例#9
0
def model_test(use_existing):
    print('-' * 30)
    print('Loading test data...')
    print('-' * 30)

    # Loading test data:
    filename = cm.filename
    modelname = cm.modellist[0]
    originFile_list = sorted(
        glob(cm.workingPath.originTestingSet_path + filename))
    maskFile_list = sorted(glob(cm.workingPath.maskTestingSet_path + filename))

    out_test_images = []
    out_test_masks = []

    for i in range(len(originFile_list)):
        # originTestVolInfo = loadFileInformation(originFile_list[i])
        # maskTestVolInfo = loadFileInformation(maskFile_list[i])

        originTestVol, originTestVol_num, originTestVolwidth, originTestVolheight = loadFile(
            originFile_list[i])
        maskTestVol, maskTestVol_num, maskTestVolwidth, maskTestVolheight = loadFile(
            maskFile_list[i])

        for j in range(len(maskTestVol)):
            maskTestVol[j] = np.where(maskTestVol[j] != 0, 1, 0)
        for img in originTestVol:
            out_test_images.append(img)
        for img in maskTestVol:
            out_test_masks.append(img)

    num_test_images = len(out_test_images)

    final_test_images = np.ndarray([num_test_images, 512, 512], dtype=np.int16)
    final_test_masks = np.ndarray([num_test_images, 512, 512], dtype=np.int8)

    # import pdb; pdb.set_trace()
    for i in range(num_test_images):
        final_test_images[i] = out_test_images[i]
        final_test_masks[i] = out_test_masks[i]
    final_test_images = np.expand_dims(final_test_images, axis=-1)
    final_test_masks = np.expand_dims(final_test_masks, axis=-1)

    row = nw.img_rows_3d
    col = nw.img_cols_3d
    num_rows = 3
    num_coles = 3
    row_1 = int((512 - row * num_rows) / 2)
    row_2 = int(512 - (512 - row * num_rows) / 2)
    col_1 = int((512 - col * num_coles) / 2)
    col_2 = int(512 - (512 - col * num_coles) / 2)
    slices = 32
    final_test_images_crop = final_test_images[:, row_1:row_2, col_1:col_2, :]
    final_test_masks_crop = final_test_masks[:, row_1:row_2, col_1:col_2, :]

    imgs_image_test = np.ndarray([0, row, col, 1], dtype=np.int16)
    imgs_mask_test = np.ndarray([0, row, col, 1], dtype=np.float32)

    num_patches = int(final_test_images_crop.shape[0] / slices)
    for num_patch in range(0, num_patches):
        for num_row in range(0, num_rows):
            for num_col in range(0, num_coles):
                imgs_image_test = np.concatenate(
                    (imgs_image_test,
                     final_test_images_crop[num_patch *
                                            slices:(num_patch * slices +
                                                    slices), num_row *
                                            row:(num_row * row + row),
                                            num_col * col:(num_col * col +
                                                           col), :]),
                    axis=0)

                imgs_mask_test = np.concatenate(
                    (imgs_mask_test,
                     final_test_masks_crop[num_patch *
                                           slices:(num_patch * slices +
                                                   slices), num_row *
                                           row:(num_row * row + row), num_col *
                                           col:(num_col * col + col), :]),
                    axis=0)

    tubes = int(imgs_image_test.shape[0] / slices)
    imgs_image_test_last = np.ndarray([tubes, slices, row, col, 1],
                                      dtype=np.int16)
    imgs_mask_test_last = np.ndarray([tubes, slices, row, col, 1],
                                     dtype=np.int8)
    imgs_predict_last = np.ndarray([tubes, slices, row, col, 1],
                                   dtype=np.float32)

    for i in range(tubes):
        imgs_image_test_last[i, :, :, :, :] = imgs_image_test[i *
                                                              slices:(i + 1) *
                                                              slices, :, :, :]
        imgs_mask_test_last[i, :, :, :, :] = imgs_mask_test[i *
                                                            slices:(i + 1) *
                                                            slices, :, :, :]

    print('_' * 30)
    print('calculating model...')
    print('_' * 30)

    model = nw.get_3D_unet()

    if use_existing:
        model.load_weights(modelname)

    # logs = []
    for i in range(imgs_image_test_last.shape[0]):
        imgs_predict_last[i] = model.predict([imgs_image_test_last[i:i + 1]])

        # imgs_mask_test[i] = np.where(imgs_mask_test[i] < 0.5, 0, 1)

        # imgs_mask_test[i] = morphology.erosion(imgs_mask_test[i], np.ones([2, 2, 1]))
        # imgs_mask_test[i] = morphology.dilation(imgs_mask_test[i], np.ones([5, 5, 1]))

        dice_coef_slice = nw.dice_coef_np(imgs_predict_last[i],
                                          imgs_mask_test_last[i])
        total_progress = i / imgs_image_test_last.shape[0] * 100

        print('predicting slice: %03d' % (i),
              '  total progress: %5.2f%%' % (total_progress),
              '  dice coef: %5.3f' % (dice_coef_slice))

    imgs_image_test_last = imgs_image_test_last + 4000

    np.save(cm.workingPath.testingSet_path + 'testImages.npy',
            imgs_image_test_last)
    np.save(cm.workingPath.testingSet_path + 'testMasks.npy',
            imgs_mask_test_last)
    np.save(cm.workingPath.testingSet_path + 'masksTestPredicted.npy',
            imgs_predict_last)

    # Load data:

    imgs_origin = np.load(cm.workingPath.testingSet_path +
                          'testImages.npy').astype(np.int16)
    imgs_true = np.load(cm.workingPath.testingSet_path +
                        'testMasks.npy').astype(np.int8)
    imgs_predict = np.load(cm.workingPath.testingSet_path +
                           'masksTestPredicted.npy').astype(np.float32)
    imgs_predict_threshold = np.load(cm.workingPath.testingSet_path +
                                     'masksTestPredicted.npy').astype(
                                         np.float32)

    imgs_origin = np.squeeze(imgs_origin, axis=-1)
    imgs_true = np.squeeze(imgs_true, axis=-1)
    imgs_predict = np.squeeze(imgs_predict, axis=-1)
    imgs_predict_threshold = np.squeeze(imgs_predict_threshold, axis=-1)

    imgs_predict_threshold = np.where(imgs_predict_threshold < 0.5, 0, 1)

    mean = nw.dice_coef_np(imgs_predict_threshold, imgs_true)

    np.savetxt(cm.workingPath.testingSet_path + 'dicemean.txt',
               np.array(mean).reshape(1, ),
               fmt='%.5f')
    print('-' * 30)
    print('Model file:', modelname)
    print('Total Dice Coeff', mean)
    print('-' * 30)

    imgs_image_sized = np.ndarray(
        [num_patches * slices, row * num_rows, col * num_coles],
        dtype=np.int16)
    imgs_mask_sized = np.ndarray(
        [num_patches * slices, row * num_rows, col * num_coles], dtype=np.int8)
    imgs_predict_sized = np.ndarray(
        [num_patches * slices, row * num_rows, col * num_coles],
        dtype=np.float32)
    imgs_predict_threshold_sized = np.ndarray(
        [num_patches * slices, row * num_rows, col * num_coles], dtype=np.int8)

    num_patches = int(final_test_images_crop.shape[0] / slices)
    for num_patch in range(0, num_patches):
        for num_row in range(0, num_rows):
            for num_col in range(0, num_coles):
                count = num_patch * num_rows * num_coles + num_row * num_coles + num_col
                imgs_image_sized[num_patch * slices:(num_patch + 1) * slices,
                                 num_row * row:(num_row + 1) * row,
                                 num_col * col:(num_col + 1) *
                                 col] = imgs_origin[count, :, :, :]
                imgs_mask_sized[num_patch * slices:(num_patch + 1) * slices,
                                num_row * row:(num_row + 1) * row,
                                num_col * col:(num_col + 1) *
                                col] = imgs_true[count, :, :, :]
                imgs_predict_sized[num_patch * slices:(num_patch + 1) * slices,
                                   num_row * row:(num_row + 1) * row,
                                   num_col * col:(num_col + 1) *
                                   col] = imgs_predict[count, :, :, :]
                imgs_predict_threshold_sized[
                    num_patch * slices:(num_patch + 1) * slices,
                    num_row * row:(num_row + 1) * row,
                    num_col * col:(num_col + 1) *
                    col] = imgs_predict_threshold[count, :, :, :]

    # Draw the subplots of figures:

    color1 = 'gray'  # ***
    color2 = 'viridis'  # ******
    # color = 'plasma'  # **
    # color = 'magma'  # ***
    # color2 = 'RdPu'  # ***
    # color = 'gray'  # ***
    # color = 'gray'  # ***

    transparent1 = 1.0
    transparent2 = 0.5

    # Slice parameters:

    #############################################
    # Automatically:

    steps = 40
    slice = range(0, len(imgs_mask_sized), steps)
    plt_row = 3
    plt_col = int(len(imgs_mask_sized) / steps)

    plt.figure(1, figsize=(25, 12))

    for i in slice:
        if i == 0:
            plt_num = int(i / steps) + 1
        else:
            plt_num = int(i / steps)

        if plt_num <= plt_col:

            plt.figure(1)

            ax1 = plt.subplot(plt_row, plt_col, plt_num)
            title = 'slice=' + str(i)
            plt.title(title)
            ax1.imshow(imgs_image_sized[i, :, :],
                       cmap=color1,
                       alpha=transparent1)
            ax1.imshow(imgs_mask_sized[i, :, :],
                       cmap=color2,
                       alpha=transparent2)

            ax2 = plt.subplot(plt_row, plt_col, plt_num + plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax2.imshow(imgs_image_sized[i, :, :],
                       cmap=color1,
                       alpha=transparent1)
            ax2.imshow(imgs_predict_sized[i, :, :],
                       cmap=color2,
                       alpha=transparent2)

            ax3 = plt.subplot(plt_row, plt_col, plt_num + 2 * plt_col)
            title = 'slice=' + str(i)
            plt.title(title)
            ax3.imshow(imgs_image_sized[i, :, :],
                       cmap=color1,
                       alpha=transparent1)
            ax3.imshow(imgs_predict_threshold_sized[i, :, :],
                       cmap=color2,
                       alpha=transparent2)
        else:
            pass

    modelname = cm.modellist[0]

    imageName = re.findall(r'\d+\.?\d*', modelname)
    epoch_num = int(imageName[0]) + 1
    accuracy = float(
        np.loadtxt(cm.workingPath.testingSet_path + 'dicemean.txt', float))

    # saveName = 'epoch_' + str(epoch_num) + '_dice_' +str(accuracy) + '.png'
    saveName = 'epoch_%02d_dice_%.3f.png' % (epoch_num, accuracy)

    plt.subplots_adjust(left=0.0,
                        bottom=0.05,
                        right=1.0,
                        top=0.95,
                        hspace=0.3,
                        wspace=0.3)
    plt.savefig(cm.workingPath.testingSet_path + saveName)
    # plt.show()

    print('Images saved')

    # Save npy as dcm files:

    # final_test_predicted_threshold = np.ndarray([num_test_images, 512, 512], dtype=np.int8)

    final_test_images = np.squeeze(final_test_images + 4000, axis=-1)
    final_test_masks = np.squeeze(final_test_masks, axis=-1)

    final_test_images[0:num_patches * slices, row_1:row_2,
                      col_1:col_2] = imgs_image_sized[:, :, :]
    final_test_masks[0:num_patches * slices:, row_1:row_2,
                     col_1:col_2] = imgs_mask_sized[:, :, :]
    final_test_predicted_threshold = final_test_masks
    final_test_predicted_threshold[
        0:num_patches * slices, row_1:row_2,
        col_1:col_2] = imgs_predict_threshold_sized[:, :, :]

    final_test_images = np.uint16(final_test_images)
    final_test_masks = np.uint16(final_test_masks)
    final_test_predicted_threshold = np.uint16(final_test_predicted_threshold)

    new_imgs_origin_dcm = sitk.GetImageFromArray(final_test_images)
    new_imgs_true_dcm = sitk.GetImageFromArray(final_test_masks)
    new_imgs_predict_dcm = sitk.GetImageFromArray(
        final_test_predicted_threshold)

    # sitk.WriteImage(new_imgs_origin_dcm, cm.workingPath.testingSet_path + 'testImages.dcm')
    # sitk.WriteImage(new_imgs_true_dcm, cm.workingPath.testingSet_path + 'testMasks.dcm')
    sitk.WriteImage(new_imgs_predict_dcm,
                    cm.workingPath.testingSet_path + 'masksTestPredicted.dcm')

    ds1 = dicom.read_file(maskFile_list[0])
    ds2 = dicom.read_file(cm.workingPath.testingSet_path +
                          'masksTestPredicted.dcm')
    ds1.PixelData = ds2.PixelData
    ds1.save_as(cm.workingPath.testingSet_path + 'masksTestPredicted.dcm')

    print('DICOM saved')