示例#1
0
文件: NFA_main.py 项目: csunlab/NFA
#Define meta list and properties that will store optimal networks
results = []
results_header = []


#Start looping the columns; e.g., year 2000, then 2001, then 2002
for column in arange(len(data.columns.values)):
    current = data.columns.values[column]
    print("")
    print("Starting {0}".format(current))

    #Find none blank values and assign them in list distribution purely to get the zeta values in default 'D' mode
    if zeta_type != 'S' and zeta_type != 'M':
        from NFA_zeta import zeta_default
        zeta_list = zeta_default(pd.to_numeric(data.ix[:,column]).dropna())

    #Define list to store all the temporarily results for the current column
    temp_results = []

    #Compute, store, and save all networks for list of zeta coefficients
    for i in arange(len(zeta_list)):
        temp_results.append(network_calc(pd.to_numeric(data.ix[:,column]).dropna(), zeta_list[i], column)) 
        if record_all == 'Y':
            temp_zeta = [temp_results[i][1]]
            temp_zeta_current = int(current)
            save_individual_results(temp_results[i], temp_results[i][1], file_name, current)
            plot_final_network(temp_results[i], temp_results[i][1], file_name, current, x_label, coef_show, column_name, mode_value, x_scale, y_scale, x_limits1, x_limits2, y_limits1, y_limits2, grid_lines)

    #Determine "optimal" network
    giant_size = []
示例#2
0
文件: NFA_main.py 项目: csunlab/NFA
    grid_lines = ""

#Define meta list and properties that will store optimal networks
results = []
results_header = []

#Start looping the columns; e.g., year 2000, then 2001, then 2002
for column in arange(len(data.columns.values)):
    current = data.columns.values[column]
    print("")
    print("Starting {0}".format(current))

    #Find none blank values and assign them in list distribution purely to get the zeta values in default 'D' mode
    if zeta_type != 'S' and zeta_type != 'M':
        from NFA_zeta import zeta_default
        zeta_list = zeta_default(pd.to_numeric(data.ix[:, column]).dropna())

    #Define list to store all the temporarily results for the current column
    temp_results = []

    #Compute, store, and save all networks for list of zeta coefficients
    for i in arange(len(zeta_list)):
        temp_results.append(
            network_calc(
                pd.to_numeric(data.ix[:, column]).dropna(), zeta_list[i],
                column))
        if record_all == 'Y':
            temp_zeta = [temp_results[i][1]]
            temp_zeta_current = int(current)
            save_individual_results(temp_results[i], temp_results[i][1],
                                    file_name, current)
示例#3
0
文件: NFA_main.py 项目: csunlab/NFA
    grid_lines = ""

#Define meta list and properties that will store optimal networks
results = []
results_header = []

#Start looping the columns; e.g., year 2000, then 2001, then 2002
for column in arange(len(data.columns.values)):
    current = data.columns.values[column]
    print("")
    print("Starting {0}".format(current))

    #Find none blank values and assign them in list distribution purely to get the zeta values in default 'D' mode
    if zeta_type != 'S' and zeta_type != 'M':
        from NFA_zeta import zeta_default
        zeta_list = zeta_default(
            data.ix[:, column].convert_objects(convert_numeric=True).dropna())

    #Define list to store all the temporarily results for the current column
    temp_results = []

    #Compute, store, and save all networks for list of zeta coefficients
    for i in arange(len(zeta_list)):
        temp_results.append(
            network_calc(
                data.ix[:,
                        column].convert_objects(convert_numeric=True).dropna(),
                zeta_list[i], column))
        if record_all == 'Y':
            temp_zeta = [temp_results[i][1]]
            temp_zeta_current = int(current)
            save_individual_results(temp_results[i], temp_results[i][1],