def main(): opt = BaseOptions().parse() if opt.test_type == 'video' or opt.test_type == 'image': import Test_Gen_Models.Test_Video_Model as Gen_Model from Dataloader.Test_load_video import Test_VideoFolder elif opt.test_type == 'audio': import Test_Gen_Models.Test_Audio_Model as Gen_Model from Dataloader.Test_load_audio import Test_VideoFolder else: raise ('test type select error') opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.sequence_length = 1 test_nums = [1, 2, 3, 4] # choose input identity images model = Gen_Model.GenModel(opt) # _, _, start_epoch = util.load_test_checkpoint(opt.test_resume_path, model) start_epoch = opt.start_epoch visualizer = Visualizer(opt) # find the checkpoint's path name without the 'checkpoint.pth.tar' path_name = ntpath.basename(opt.test_resume_path)[:-19] web_dir = os.path.join(opt.results_dir, path_name, '%s_%s' % ('test', start_epoch)) for i in test_nums: A_path = os.path.join(opt.test_A_path, 'test_sample' + str(i) + '.jpg') test_folder = Test_VideoFolder(root=opt.test_root, A_path=A_path, config=opt) test_dataloader = DataLoader(test_folder, batch_size=1, shuffle=False, num_workers=1) model, _, start_epoch = util.load_test_checkpoint( opt.test_resume_path, model) # inference during test for i2, data in enumerate(test_dataloader): if i2 < 5: model.set_test_input(data) model.test_train() # test start = time.time() for i3, data in enumerate(test_dataloader): model.set_test_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() visualizer.save_images_test(web_dir, visuals, img_path, i3, opt.test_num) end = time.time() print('finish processing in %03f seconds' % (end - start))
import torch import torch.nn as nn import torch.nn.functional as F from Options_all import BaseOptions opt = BaseOptions().parse() def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias) class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes): super(ConvBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = conv3x3(in_planes, int(out_planes / 2)) self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4)) self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4)) if in_planes != out_planes: self.downsample = nn.Sequential( nn.BatchNorm2d(in_planes), nn.ReLU(True),
from __future__ import print_function import torch import numpy as np from PIL import Image import inspect, re import torch.nn as nn import os from Options_all import BaseOptions import collections config = BaseOptions().parse() def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 PIL_image = image_numpy return PIL_image.astype(imtype) def tensor2image(image_tensor, imtype=np.uint8): image_numpy = image_tensor.cpu().float().numpy() image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 PIL_image = image_numpy return PIL_image.astype(imtype) def tensor2mfcc(image_tensor, imtype=np.uint8): image_numpy = image_tensor[0].cpu().float().numpy()
import matplotlib.pyplot as plt from matplotlib import cm from torch.utils.data import DataLoader from Dataloader.Test_load_audio import Test_VideoFolder import os from Options_all import BaseOptions import matlab.engine matlab = matlab.engine.start_matlab() wf = wave.open('0572_0019_0003.wav', 'rb') wav = wf.readframes(16000 * 10) wav = wav[1::2] wav = np.fromstring(wav, 'Int16') wav = wav opt = BaseOptions().parse() opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.sequence_length = 1 A_path = os.path.join(opt.test_A_path, 'test_sample' + str(3) + '.jpg') test_folder = Test_VideoFolder(root='./0572_0019_0003', A_path=A_path, config=opt) test_dataloader = DataLoader(test_folder, batch_size=1) enum = list(enumerate(test_dataloader)) mfcc_bin = enum[0][1]['B_audio'].numpy()[0][0][0] mfcc_feat = mfcc(wav[0:10000], 16000,
import time from Options_all import BaseOptions from util import util from util.visualizer import Visualizer from torch.utils.data import DataLoader import os import ntpath opt = BaseOptions().parse() if opt.test_type == 'video' or 'image': import Test_Gen_Models.Test_Video_Model as Gen_Model from Dataloader.Test_load_video import Test_VideoFolder elif opt.test_type == 'audio': import Test_Gen_Models.Test_Audio_Model as Gen_Model from Dataloader.Test_load_audio import Test_VideoFolder else: raise('test type select error') opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.sequence_length = 1 test_nums = [1, 2, 3, 4] # choose input identity images model = Gen_Model.GenModel(opt) # _, _, start_epoch = util.load_test_checkpoint(opt.test_resume_path, model) start_epoch = opt.start_epoch visualizer = Visualizer(opt) # find the checkpoint's path name without the 'checkpoint.pth.tar' path_name = ntpath.basename(opt.test_resume_path)[:-19] web_dir = os.path.join(opt.results_dir, path_name, '%s_%s' % ('test', start_epoch)) for i in test_nums: