def main(): opt = BaseOptions().parse() if opt.test_type == 'video' or opt.test_type == 'image': import Test_Gen_Models.Test_Video_Model as Gen_Model from Dataloader.Test_load_video import Test_VideoFolder elif opt.test_type == 'audio': import Test_Gen_Models.Test_Audio_Model as Gen_Model from Dataloader.Test_load_audio import Test_VideoFolder else: raise ('test type select error') opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.sequence_length = 1 test_nums = [1, 2, 3, 4] # choose input identity images model = Gen_Model.GenModel(opt) # _, _, start_epoch = util.load_test_checkpoint(opt.test_resume_path, model) start_epoch = opt.start_epoch visualizer = Visualizer(opt) # find the checkpoint's path name without the 'checkpoint.pth.tar' path_name = ntpath.basename(opt.test_resume_path)[:-19] web_dir = os.path.join(opt.results_dir, path_name, '%s_%s' % ('test', start_epoch)) for i in test_nums: A_path = os.path.join(opt.test_A_path, 'test_sample' + str(i) + '.jpg') test_folder = Test_VideoFolder(root=opt.test_root, A_path=A_path, config=opt) test_dataloader = DataLoader(test_folder, batch_size=1, shuffle=False, num_workers=1) model, _, start_epoch = util.load_test_checkpoint( opt.test_resume_path, model) # inference during test for i2, data in enumerate(test_dataloader): if i2 < 5: model.set_test_input(data) model.test_train() # test start = time.time() for i3, data in enumerate(test_dataloader): model.set_test_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() visualizer.save_images_test(web_dir, visuals, img_path, i3, opt.test_num) end = time.time() print('finish processing in %03f seconds' % (end - start))
from torch.utils.data import DataLoader from Dataloader.Test_load_audio import Test_VideoFolder import os from Options_all import BaseOptions import matlab.engine matlab = matlab.engine.start_matlab() wf = wave.open('0572_0019_0003.wav', 'rb') wav = wf.readframes(16000 * 10) wav = wav[1::2] wav = np.fromstring(wav, 'Int16') wav = wav opt = BaseOptions().parse() opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.sequence_length = 1 A_path = os.path.join(opt.test_A_path, 'test_sample' + str(3) + '.jpg') test_folder = Test_VideoFolder(root='./0572_0019_0003', A_path=A_path, config=opt) test_dataloader = DataLoader(test_folder, batch_size=1) enum = list(enumerate(test_dataloader)) mfcc_bin = enum[0][1]['B_audio'].numpy()[0][0][0] mfcc_feat = mfcc(wav[0:10000], 16000, winlen=0.025, winstep=0.01,
from torch.utils.data import DataLoader import os import ntpath opt = BaseOptions().parse() if opt.test_type == 'video' or 'image': import Test_Gen_Models.Test_Video_Model as Gen_Model from Dataloader.Test_load_video import Test_VideoFolder elif opt.test_type == 'audio': import Test_Gen_Models.Test_Audio_Model as Gen_Model from Dataloader.Test_load_audio import Test_VideoFolder else: raise('test type select error') opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.sequence_length = 1 test_nums = [1, 2, 3, 4] # choose input identity images model = Gen_Model.GenModel(opt) # _, _, start_epoch = util.load_test_checkpoint(opt.test_resume_path, model) start_epoch = opt.start_epoch visualizer = Visualizer(opt) # find the checkpoint's path name without the 'checkpoint.pth.tar' path_name = ntpath.basename(opt.test_resume_path)[:-19] web_dir = os.path.join(opt.results_dir, path_name, '%s_%s' % ('test', start_epoch)) for i in test_nums: A_path = os.path.join(opt.test_A_path, '/test_sample' + str(i) + '.jpg') test_folder = Test_VideoFolder(root=opt.test_root, A_path=A_path, config=opt) test_dataloader = DataLoader(test_folder, batch_size=1, shuffle=False, num_workers=1)