示例#1
0
def centerOfMass(img, yx, window=5):
    """
    find peak by center of mass in a 2D image

    img:    a 2D image array
    yx:     (y,x) in the image
    window: a window where CM calculation is performed on

    return yx
    """
    # prepare small image
    s = N.array([window, window])
    c = s / 2.
    yx = N.round_(yx)
    yx -= c
    yi, xi = N.indices(s)
    yi += yx[0]
    xi += yx[1]
    cc = img[yi, xi]

    # calculate center of mass
    yxi = N.indices(s)
    yxi *= cc
    yxi = yxi.T
    vv = N.sum(yxi, axis=0)
    vv = N.sum(vv, axis=0)
    yxs = vv / float(N.sum(cc))
    yxs += yx
    return yxs
示例#2
0
def cutOutCenter(arr, windowSize, sectWise=None, interpolate=True):
    """
    windowSize:  scalar (in pixel or as percent < 1.) or ((z,)y,x)
    sectWise:    conern only XY of windowSize
    """
    shape = N.array(arr.shape)
    center = shape / 2.
    return pointsCutOutND(arr, [center], windowSize, sectWise, interpolate)[0]
示例#3
0
def paddingFourier(arr, shape, value=0, interpolate=True):
    """
    arr:         assuming origin at 0, rfft product (half x size), up to 3D
    shape:       target shape
    value:       the value to fill in empty part 
    interpolate: shift by interpolation if necessary

    return array with target shape
    """
    # prepare buffer
    dtype = arr.dtype.type
    canvas = N.empty(shape, dtype)
    canvas[:] = value

    # calc and shift
    shapeS = N.array(arr.shape)
    shapeL = N.asarray(shape)
    halfS = shapeS / 2.
    subpx_shift = halfS % 1
    if interpolate and N.sometrue(subpx_shift):
        arr = U.nd.shift(arr, subpx_shift)

    # create empty list for slices
    nds = arr.ndim - 1
    choices = ['slice(halfS[%i])', 'slice(-halfS[%i], None)']
    nchoices = len(choices)
    nds2 = nds**2
    slcs = []
    for ns in range(nds2):
        slcs.append([])
        for n in range(nchoices * nds):
            slcs[ns].append(
                [Ellipsis])  # Ellipsis help to make arbitray number of list

    # fill the empty list by slice (here I don't know how to use 4D..)
    for i in range(nds2):
        for d in range(nds):
            for x in range(nds):
                for c, choice in enumerate(choices):
                    if d == 0 and x == 0:
                        idx = x * (nchoices) + c
                    else:  # how can I use 4D??
                        idx = x * (nchoices) + (nchoices - 1) - c
                    exec('content=' + choice % d)
                    slcs[i][idx] += [content]

    # cutout and paste
    for slc in slcs:
        for s in slc:
            s.append(slice(shapeS[-1]))
            #print s
            canvas[s] = arr[s]
    return canvas
示例#4
0
def radialaverage(data, center=None, useMaxShape=False):
    """
    data: ND array
    center: coordinate of center of radii
    useMinShape: the output uses the maximum shape available

    return 1D array
    """
    if center is None:
        center = N.array(data.shape) // 2
    if len(center) != data.ndim:
        raise ValueError, 'dimension of center (%i) does not match the dimension of data (%i)' % (
            len(center), data.ndim)

    zyx = N.indices((data.shape))
    r = N.zeros(data.shape, N.float32)
    for i, t in enumerate(zyx):
        r += (t - center[i])**2
    r = N.sqrt(r)
    #y, x = N.indices((data.shape))
    #r = N.sqrt((x - center[0])**2 + (y - center[1])**2) # distance from the center
    r = r.astype(N.int)

    if data.dtype.type in (N.complex64, N.complex128):
        rbin = N.bincount(r.ravel(), data.real.ravel())
        ibin = N.bincount(r.ravel(), data.imag.ravel())
        tbin = N.empty(rbin.shape, data.dtype.type)
        tbin.real = rbin
        tbin.imag = ibin

    else:
        tbin = N.bincount(r.ravel(), data.ravel())
    nr = N.bincount(r.ravel())
    radialprofile = tbin / nr.astype(N.float32)

    if not useMaxShape:
        minShape = min(list(N.array(data.shape) - center) + list(center))
        radialprofile = radialprofile[:minShape]
    return radialprofile
示例#5
0
def _smoothBorder(arr, start, stop, smooth, value):
    """
    start, stop: [z,y,x]
    """
    # prepare coordinates
    shape = N.array(arr.shape)
    start = N.ceil(start).astype(N.int16)
    stop = N.ceil(stop).astype(N.int16)
    smooth_start = start - smooth
    smooth_stop = stop + smooth
    smooth_start = N.where(smooth_start < 0, 0, smooth_start)
    smooth_stop = N.where(smooth_stop > shape, shape, smooth_stop)
    #print smooth_start, smooth_stop

    import copy
    sliceTemplate = [slice(None, None, None)] * arr.ndim
    shapeTemplate = list(shape)
    for d in range(arr.ndim):
        smooth_shape = shapeTemplate[:d] + shapeTemplate[d + 1:]

        # make an array containing the edge value
        edges = N.empty([2] + smooth_shape, N.float32)
        # start side
        slc = copy.copy(sliceTemplate)
        slc[d] = slice(start[d], start[d] + 1, None)
        edges[0] = arr[slc].reshape(smooth_shape)
        # stop side
        slc = copy.copy(sliceTemplate)
        slc[d] = slice(stop[d] - 1, stop[d], None)
        edges[1] = arr[slc].reshape(smooth_shape)

        edges = (edges - value) / float(
            smooth + 1)  # this value can be array??

        # both side
        for s, side in enumerate([start, stop]):
            if s == 0:
                rs = range(smooth_start[d], start[d])
                rs.sort(reverse=True)
            elif s == 1:
                rs = range(stop[d], smooth_stop[d])
            # smoothing
            for f, i in enumerate(rs):
                slc = copy.copy(sliceTemplate)
                slc[d] = slice(i, i + 1, None)
                edgeArr = edges[s].reshape(arr[slc].shape)
                #arr[slc] += edgeArr * (smooth - f)
                arr[slc] = arr[slc] + edgeArr * (smooth - f)  # casting rule

    arr = N.ascontiguousarray(arr)
    return arr
示例#6
0
def shiftFullFFT(arr, delta=None):
    """
    returns new array: arr shifted by delta (tuple)
       it uses fft (not rfft), multiplying with "shift array", ifft
    delta defaults to half of arr.shape 
    """
    shape = arr.shape
    if delta is None:
        delta = N.array(shape) / 2.
    elif not hasattr(delta, '__len__'):
        delta = (delta, ) * len(shape)
    elif len(shape) != len(delta):
        raise ValueError, "shape and delta not same dimension"

    return F.ifft(F.fourierShiftArr(shape, delta) * F.fft(arr))
示例#7
0
def img2polar2D(img,
                center,
                final_radius=None,
                initial_radius=None,
                phase_width=360):
    """
    img: array
    center: coordinate y, x
    final_radius: ending radius
    initial_radius: starting radius
    phase_width: npixles / circle
    """
    if img.ndim > 2 or len(center) > 2:
        raise ValueError, 'this function only support 2D, you entered %i-dim array and %i-dim center coordinate' % (
            img.ndim, len(center))

    if initial_radius is None:
        initial_radius = 0

    if final_radius is None:
        rad0 = N.ceil(N.array(img.shape) - center)
        final_radius = min((min(rad0), min(N.ceil(center))))

    if phase_width is None:
        phase_width = N.sum(img.shape[-2:]) * 2

    theta, R = np.meshgrid(np.linspace(0, 2 * np.pi, phase_width),
                           np.arange(initial_radius, final_radius))

    Ycart, Xcart = polar2cart2D(R, theta, center)

    Ycart = N.where(Ycart >= img.shape[0], img.shape[0] - 1, Ycart)
    Xcart = N.where(Xcart >= img.shape[1], img.shape[1] - 1, Xcart)

    Ycart = Ycart.astype(int)
    Xcart = Xcart.astype(int)

    polar_img = img[Ycart, Xcart]
    polar_img = np.reshape(polar_img,
                           (final_radius - initial_radius, phase_width))

    return polar_img
示例#8
0
def getSphericalAbbe(arr3D, kmin=2, kmax=60, plot=False):
    """
    compare frequency above and below the focus

    return amplitude var(above)/var(below)
    """
    afz = getFourierZprofile(arr3D)

    # get z profile around the reasonable frequency
    aa = N.abs(N.average(afz[:, kmin:kmax], axis=1))
    # previously it was N.average(N.abs(afz[:,kmin:kmax]), axis=1), but that seems wrong...

    # findMax
    inds = N.indices(aa.shape, dtype=N.float64)
    v, _0, _1, z = U.findMax(aa)
    parm, check = imgFit.fitGaussianND(aa, [z], window=len(aa))
    if check == 5:
        raise RuntimeError, 'Peak not found check=%i' % check

    gg = imgFit.yGaussianND(parm, inds, 3)
    amg = aa - gg

    z0 = parm[2]
    mask = (parm[-1] * 3) / 2.  # sigma * 3 / 2
    ms0 = N.ceil(z0 - mask)
    ms1 = N.ceil(z0 + mask)
    amg[ms0:ms1] = 0

    below = N.var(amg[:ms0])
    above = N.var(amg[ms1:])

    if plot:
        Y.ploty(N.array((aa, gg, amg)))
        print 'below: ', below
        print 'above: ', above
        print ms0, ms1, z0

    return above / (above + below)  #above / below
示例#9
0
def paddingValue(img, shape, value=0, shift=None, smooth=0, interpolate=True):
    """
    shape:       in the same dimension as img
    value:       value in padded region, can be scaler or array with the shape
    shift:       scaler or in the same dimension as img and shape (default 0)
    smooth:      scaler value to smoothen border (here value must be scaler)
    interpolate: shift array by subpixel interpolation to adjust center

    return:      padded array with shape
    """
    # create buffer
    dtype = img.dtype.type
    canvas = N.empty(shape, dtype)
    canvas[:] = value

    # calculate position
    shape = N.array(shape)
    shapeS = img.shape
    center = N.divide(shape, 2)
    if shift is None:
        shift = 0  #[0] * len(shapeS)
    shapeL = shape  #N.add(shapeS, center+shift)
    start, stop = (shapeL - shapeS) / 2., (shapeL + shapeS) / 2.
    slc = [slice(start[d], stop[d], None) for d in range(img.ndim)]
    #print slc, shapeS, shapeL

    # shift if necessary
    if interpolate:
        subpx_shift = start % 1  # should be 0.5 or 0
        if N.sometrue(subpx_shift):
            img = U.nd.shift(img, subpx_shift)
    # padding
    canvas[slc] = img
    if smooth:
        canvas = _smoothBorder(canvas, start, stop, smooth, value)
    canvas = N.ascontiguousarray(canvas)
    #print shapeS, shapeL, slc
    return canvas
示例#10
0
def mask_gaussianND(arr, zyx, v, sigma=2., ret=None, rot=0, clipZero=True):
    ''' 
    subtract elliptical gaussian at y,x with peakVal v
    if ret, return arr, else, arr itself is edited
    '''
    import imgGeo
    zyx = N.asarray(zyx)
    ndim = arr.ndim
    shape = N.array(arr.shape)
    try:
        if len(sigma) != ndim:
            raise ValueError, 'len(sigma) must be the same as len(shape)'
        else:
            sigma = N.asarray(sigma)
    except TypeError:  #(TypeError, ValueError):
        sigma = N.asarray([sigma] * ndim)

    # prepare small window
    slc = imgGeo.nearbyRegion(shape, N.floor(zyx), sigma * 10)
    inds, LD = imgFit.rotateIndicesND(slc, dtype=N.float32, rot=rot)
    param = (
        0,
        v,
    ) + tuple(zyx) + tuple(sigma)
    sidx = 2 + ndim
    g = imgFit.yGaussianND(N.asarray(param), inds, sidx).astype(arr.dtype.type)
    roi = arr[slc]
    if clipZero:
        g = N.where(g > roi, roi, g)

    if ret:
        e = N.zeros_like(arr)
        e[slc] = g  # this may be faster than copy()
        return arr - e
    else:
        arr[slc] -= g
示例#11
0
def pointsCutOutND(arr,
                   posList,
                   windowSize=100,
                   sectWise=None,
                   interpolate=True):
    """
    array:       nd array
    posList:     ([(z,)y,x]...)
    windowSize:  scalar (in pixel or as percent < 1.) or ((z,)y,x)
                 if arr.ndim > 2, and len(windowSize) == 2, then
                 cut out section-wise (higher dimensions stay the same)
    sectWise:    conern only XY of windowSize (higher dimensions stay the same)
    interpolate: shift array by subpixel interpolation to adjust center

    return:      list of array centered at each pos in posList
    """
    shape = N.array(arr.shape)
    center = shape / 2.
    # prepare N-dimensional window size
    try:
        len(windowSize)  # seq
        if sectWise:
            windowSize = windowSize[-2:]
        if len(windowSize) != arr.ndim:
            dim = len(windowSize)
            windowSize = tuple(shape[:-dim]) + tuple(windowSize)
    except TypeError:  # scaler
        if windowSize < 1 and windowSize > 0:  # percentage
            w = shape * windowSize
            if sectWise:
                w[:-2] = shape[:-2]
            windowSize = w.astype(N.uint16)
        else:
            windowSize = N.where(shape >= windowSize, windowSize, shape)
            if sectWise:
                windowSize = arr.shape[:-2] + windowSize[-2:]
    windowSize = N.asarray(windowSize)

    # cutout individual position
    arrList = []
    for pos in posList:
        # prepare N-dimensional coordinate
        n = len(pos)
        if n != len(windowSize):
            temp = center.copy()
            center[-n:] = pos
            pos = center

        # calculate idx
        ori = pos - (windowSize / 2.)  # float value
        oidx = N.ceil(ori)  # idx
        subpxl = oidx - ori  # subpixel mod
        if interpolate and N.sometrue(subpxl):  # comit to make shift
            SHIFT = 1
        else:
            SHIFT = 0

        # prepare slice
        # when comitted to make shift, first cut out window+1,
        # then make subpixle shift, and then cutout 1 edge
        slc = [Ellipsis]  # Ellipsis is unnecessary, just in case...
        slc_edge = [slice(1, -1, None)] * arr.ndim
        for d in range(arr.ndim):
            start = oidx[d] - SHIFT
            if start < 0:
                start = 0
                slc_edge[d] = slice(0, slc_edge[d].stop, None)
            stop = oidx[d] + windowSize[d] + SHIFT
            if stop > shape[d]:
                stop = shape[d]
                slc_edge[d] = slice(slc_edge[d].start, shape[d], None)
            slc += [slice(int(start), int(stop), None)]

        # cutout, shift and cutout
        try:
            canvas = arr[slc]
            if SHIFT:
                canvas = U.nd.shift(canvas, subpxl)
                canvas = canvas[slc_edge]
            check = 1
        except IndexError:
            print 'position ', pos, ' was skipped'
            check = 0
            raise
        if check:
            arrList += [N.ascontiguousarray(canvas)]

    return arrList