示例#1
0
def centerOfMass(img, yx, window=5):
    """
    find peak by center of mass in a 2D image

    img:    a 2D image array
    yx:     (y,x) in the image
    window: a window where CM calculation is performed on

    return yx
    """
    # prepare small image
    s = N.array([window, window])
    c = s / 2.
    yx = N.round_(yx)
    yx -= c
    yi, xi = N.indices(s)
    yi += yx[0]
    xi += yx[1]
    cc = img[yi, xi]

    # calculate center of mass
    yxi = N.indices(s)
    yxi *= cc
    yxi = yxi.T
    vv = N.sum(yxi, axis=0)
    vv = N.sum(vv, axis=0)
    yxs = vv / float(N.sum(cc))
    yxs += yx
    return yxs
示例#2
0
def arr_edgeFilter(img, sigma=1.5):
    """
    average-deviation with a gaussian prefilter
    img must be in an even shape
    """
    if sigma:
        g = gaussianArrND(img.shape, sigma)
        g = F.shift(g)
        img = F.convolve(img.astype(N.float32), g)
    gr = N.gradient(img.astype(N.float32))
    ff = N.sum(N.power(gr, 2), 0)
    return ff
示例#3
0
def img2polar2D(img,
                center,
                final_radius=None,
                initial_radius=None,
                phase_width=360):
    """
    img: array
    center: coordinate y, x
    final_radius: ending radius
    initial_radius: starting radius
    phase_width: npixles / circle
    """
    if img.ndim > 2 or len(center) > 2:
        raise ValueError, 'this function only support 2D, you entered %i-dim array and %i-dim center coordinate' % (
            img.ndim, len(center))

    if initial_radius is None:
        initial_radius = 0

    if final_radius is None:
        rad0 = N.ceil(N.array(img.shape) - center)
        final_radius = min((min(rad0), min(N.ceil(center))))

    if phase_width is None:
        phase_width = N.sum(img.shape[-2:]) * 2

    theta, R = np.meshgrid(np.linspace(0, 2 * np.pi, phase_width),
                           np.arange(initial_radius, final_radius))

    Ycart, Xcart = polar2cart2D(R, theta, center)

    Ycart = N.where(Ycart >= img.shape[0], img.shape[0] - 1, Ycart)
    Xcart = N.where(Xcart >= img.shape[1], img.shape[1] - 1, Xcart)

    Ycart = Ycart.astype(int)
    Xcart = Xcart.astype(int)

    polar_img = img[Ycart, Xcart]
    polar_img = np.reshape(polar_img,
                           (final_radius - initial_radius, phase_width))

    return polar_img