示例#1
0
def detectMeteors(ff_directory, ff_name, config, flat_struct=None):
    """ Detect meteors on the given FF bin image. Here are the steps in the detection:
            - input image (FF bin format file) is thresholded (converted to black and white)
            - several morphological operations are applied to clean the image
            - image is then broken into several image "windows" (these "windows" are reconstructed from the input FF file, given
              an input frame range (e.g. 64-128) which helps reduce the noise further)
            - on each "window" the Kernel-based Hough transform is performed to find any lines on the image
            - similar lines are joined
            - stripe around the lines is extracted
            - 3D line finding (third dimension is time) is applied to check if the line propagates in time
            - centroiding is performed, which calculates the position and intensity of meteor on each frame
    
    Arguments:
        ff_directory: [string] an absolute path to the input FF bin file
        ff_name: [string] file name of the FF bin file on which to run the detection on
        config: [config object] configuration object (loaded from the .config file)

    Keyword arguments:
        flat_struct: [Flat struct] Structure containing the flat field. None by default.
    
    Return:
        meteor_detections: [list] a list of detected meteors, with these elements:
            - rho: [float] meteor line distance from image center (polar coordinates, in pixels)
            - theta: [float] meteor line angle from image center (polar coordinates, in degrees)
            - centroids: [list] [frame, X, Y, level] list of meteor points
    """

    t1 = time()
    t_all = time()

    # Load the FF bin file
    ff = FFfile.read(ff_directory, ff_name)

    # Load the mask file
    mask = MaskImage.loadMask(config.mask_file)

    # Mask the FF file
    ff = MaskImage.applyMask(ff, mask, ff_flag=True)

    # Apply the flat to maxpixel and avepixel
    if flat_struct is not None:

        ff.maxpixel = Image.applyFlat(ff.maxpixel, flat_struct)
        ff.avepixel = Image.applyFlat(ff.avepixel, flat_struct)

    # At the end, a check that the detection has a surface brightness above the background will be performed.
    # The assumption here is that the peak of the meteor should have the intensity which is at least
    # that of a patch of 4x4 pixels that are of the mean background brightness
    min_patch_intensity = 4 * 4 * (np.mean(ff.maxpixel - ff.avepixel) +
                                   config.k1_det * np.mean(ff.stdpixel) +
                                   config.j1)

    # # Show the maxpixel image
    # show2(ff_name+' maxpixel', ff.maxpixel)

    # Get lines on the image
    line_list = getLines(ff, config.k1_det, config.j1_det, config.time_slide,
                         config.time_window_size, config.max_lines_det,
                         config.max_white_ratio, config.kht_lib_path)

    logDebug('List of lines:', line_list)

    # Init meteor list
    meteor_detections = []

    # Only if there are some lines in the image
    if len(line_list):

        # Join similar lines
        line_list = mergeLines(line_list, config.line_min_dist, ff.ncols,
                               ff.nrows)

        logDebug('Time for finding lines:', time() - t1)

        logDebug('Number of KHT lines: ', len(line_list))
        logDebug(line_list)

        # Plot lines
        # plotLines(ff, line_list)

        # Threshold the image
        img_thres = thresholdImg(ff, config.k1_det, config.j1_det)

        filtered_lines = []

        # Analyze stripes of each line
        for line in line_list:
            rho, theta, frame_min, frame_max = line

            logDebug('rho, theta, frame_min, frame_max')
            logDebug(rho, theta, frame_min, frame_max)

            # Bounded the thresholded image by min and max frames
            img = selectFrames(np.copy(img_thres), ff, frame_min, frame_max)

            # Remove lonely pixels
            img = morph.clean(img)

            # Get indices of stripe pixels around the line
            stripe_indices = getStripeIndices(rho, theta, config.stripe_width,
                                              img.shape[0], img.shape[1])

            # Extract the stripe from the thresholded image
            stripe = np.zeros((ff.nrows, ff.ncols), np.uint8)
            stripe[stripe_indices] = img[stripe_indices]

            # Show stripe
            #COMMENTED
            # show2("stripe", stripe*255)

            # Show 3D could
            # show3DCloud(ff, stripe)

            # Get stripe positions
            stripe_positions = stripe.nonzero()
            xs = stripe_positions[1]
            ys = stripe_positions[0]
            zs = ff.maxframe[stripe_positions]

            # Limit the number of points to search if too large
            if len(zs) > config.max_points_det:

                # Extract weights of each point
                maxpix_elements = ff.maxpixel[ys, xs].astype(np.float64)
                weights = maxpix_elements / np.sum(maxpix_elements)

                # Random sample the point, sampling is weighted by pixel intensity
                indices = np.random.choice(len(zs),
                                           config.max_points_det,
                                           replace=False,
                                           p=weights)
                ys = ys[indices]
                xs = xs[indices]
                zs = zs[indices]

            # Make an array to feed into the gropuing algorithm
            stripe_points = np.vstack((xs, ys, zs))
            stripe_points = np.swapaxes(stripe_points, 0, 1)

            # Sort stripe points by frame
            stripe_points = stripe_points[stripe_points[:, 2].argsort()]

            t1 = time()

            logDebug('finding lines...')

            # Find a single line in the point cloud
            detected_line = find3DLines(stripe_points,
                                        time(),
                                        config,
                                        fireball_detection=False)

            logDebug('time for GROUPING: ', time() - t1)

            # Extract the first and only line if any
            if detected_line:
                detected_line = detected_line[0]

                # logDebug(detected_line)

                # Show 3D cloud
                # show3DCloud(ff, stripe, detected_line, stripe_points, config)

                # Add the line to the results list
                filtered_lines.append(detected_line)

        # Merge similar lines in 3D
        filtered_lines = merge3DLines(filtered_lines, config.vect_angle_thresh)

        logDebug('after filtering:')
        logDebug(filtered_lines)

        for detected_line in filtered_lines:

            # Get frame range
            frame_min = detected_line[4]
            frame_max = detected_line[5]

            # Check if the line covers a minimum frame range
            if (abs(frame_max - frame_min) + 1 <
                    config.line_minimum_frame_range_det):
                continue

            # Extand the frame range for several frames, just to be sure to catch all parts of a meteor
            frame_min -= config.frame_extension
            frame_max += config.frame_extension

            # Cap values to 0-255
            frame_min = max(frame_min, 0)
            frame_max = min(frame_max, 255)

            logDebug(detected_line)

            # Get coordinates of 2 points that describe the line
            x1, y1, z1 = detected_line[0]
            x2, y2, z2 = detected_line[1]

            # Convert Cartesian line coordinates to polar
            rho, theta = getPolarLine(x1, y1, x2, y2, ff.nrows, ff.ncols)

            # Convert Cartesian line coordinate to CAMS compatible polar coordinates (flipped Y axis)
            rho_cams, theta_cams = getPolarLine(x1, ff.nrows - y1, x2,
                                                ff.nrows - y2, ff.nrows,
                                                ff.ncols)

            logDebug('converted rho, theta')
            logDebug(rho, theta)

            # Bounded the thresholded image by min and max frames
            img = selectFrames(np.copy(img_thres), ff, frame_min, frame_max)

            # Remove lonely pixels
            img = morph.clean(img)

            # Get indices of stripe pixels around the line
            stripe_indices = getStripeIndices(rho, theta,
                                              int(config.stripe_width * 1.5),
                                              img.shape[0], img.shape[1])

            # Extract the stripe from the thresholded image
            stripe = np.zeros((ff.nrows, ff.ncols), np.uint8)
            stripe[stripe_indices] = img[stripe_indices]

            # Show detected line
            # show('detected line: '+str(frame_min)+'-'+str(frame_max), stripe)

            # Get stripe positions
            stripe_positions = stripe.nonzero()
            xs = stripe_positions[1]
            ys = stripe_positions[0]
            zs = ff.maxframe[stripe_positions]

            # Make an array to feed into the centroiding algorithm
            stripe_points = np.vstack((xs, ys, zs))
            stripe_points = np.swapaxes(stripe_points, 0, 1)

            # Sort stripe points by frame
            stripe_points = stripe_points[stripe_points[:, 2].argsort()]

            # Show 3D cloud
            # show3DCloud(ff, stripe, detected_line, stripe_points, config)

            # Get points of the given line
            line_points = getAllPoints(stripe_points,
                                       x1,
                                       y1,
                                       z1,
                                       x2,
                                       y2,
                                       z2,
                                       config,
                                       fireball_detection=False)

            # Skip if no points were returned
            if not line_points.any():
                continue

            # Skip if the points cover too small a frame range
            if abs(np.max(line_points[:, 2]) - np.min(line_points[:, 2])
                   ) + 1 < config.line_minimum_frame_range_det:
                continue

            # Calculate centroids
            centroids = []

            for i in range(frame_min, frame_max + 1):

                # Select pixel indicies belonging to a given frame
                frame_pixels_inds = np.where(line_points[:, 2] == i)

                # Get pixel positions in a given frame (pixels belonging to a found line)
                frame_pixels = line_points[frame_pixels_inds].astype(np.int64)

                # Get pixel positions in a given frame (pixels belonging to the whole stripe)
                frame_pixels_stripe = stripe_points[np.where(
                    stripe_points[:, 2] == i)].astype(np.int64)

                # Skip if there are no pixels in the frame
                if not len(frame_pixels):
                    continue

                # Calculate weights for centroiding
                max_avg_corrected = ff.maxpixel - ff.avepixel
                flattened_weights = (max_avg_corrected).astype(
                    np.float32) / ff.stdpixel

                # Calculate centroids by half-frame
                for half_frame in range(2):

                    # Apply deinterlacing if it is present in the video
                    if config.deinterlace_order >= 0:

                        # Deinterlace by fields (line lixels)
                        half_frame_pixels = frame_pixels[
                            frame_pixels[:, 1] %
                            2 == (config.deinterlace_order + half_frame) % 2]

                        # Deinterlace by fields (stripe pixels)
                        half_frame_pixels_stripe = frame_pixels_stripe[
                            frame_pixels_stripe[:, 1] %
                            2 == (config.deinterlace_order + half_frame) % 2]

                        # Skip if there are no pixels in the half-frame
                        if not len(half_frame_pixels):
                            continue

                        # Calculate half-frame value
                        frame_no = i + half_frame * 0.5

                    # No deinterlacing
                    else:

                        # Skip the second half frame
                        if half_frame == 1:
                            continue

                        half_frame_pixels = frame_pixels
                        half_frame_pixels_stripe = frame_pixels_stripe
                        frame_no = i

                    # Get maxpixel-avepixel values of given pixel indices (this will be used as weights)
                    max_weights = flattened_weights[half_frame_pixels[:, 1],
                                                    half_frame_pixels[:, 0]]

                    # Calculate weighted centroids
                    x_weighted = half_frame_pixels[:, 0] * np.transpose(
                        max_weights)
                    x_centroid = np.sum(x_weighted) / float(
                        np.sum(max_weights))

                    y_weighted = half_frame_pixels[:, 1] * np.transpose(
                        max_weights)
                    y_centroid = np.sum(y_weighted) / float(
                        np.sum(max_weights))

                    # Calculate intensity as the sum of threshold passer pixels on the stripe
                    #intensity_values = max_avg_corrected[half_frame_pixels[:,1], half_frame_pixels[:,0]]
                    intensity_values = max_avg_corrected[
                        half_frame_pixels_stripe[:, 1],
                        half_frame_pixels_stripe[:, 0]]
                    intensity = np.sum(intensity_values)

                    logDebug("centroid: ", frame_no, x_centroid, y_centroid,
                             intensity)

                    centroids.append(
                        [frame_no, x_centroid, y_centroid, intensity])

            # Filter centroids
            centroids = filterCentroids(centroids,
                                        config.centroids_max_deviation,
                                        config.centroids_max_distance)

            # Convert to numpy array for easy slicing
            centroids = np.array(centroids)

            # Reject the solution if there are too few centroids
            if len(centroids) < config.line_minimum_frame_range_det:
                continue

            # Check that the detection has a surface brightness above the background
            # The assumption here is that the peak of the meteor should have the intensity which is at least
            # that of a patch of 4x4 pixels that are of the mean background brightness
            if np.max(centroids[:, 3]) < min_patch_intensity:
                continue

            # Check the detection if it has the proper angular velocity
            if not checkAngularVelocity(centroids, config):
                continue

            # Append the result to the meteor detections
            meteor_detections.append([rho_cams, theta_cams, centroids])

            logDebug('time for processing:', time() - t_all)

            # # Plot centroids to image
            # fig, (ax1, ax2) = plt.subplots(nrows=2)

            # ax1.imshow(ff.maxpixel - ff.avepixel, cmap='gray')
            # ax1.scatter(centroids[:,1], centroids[:,2], s=5, c='r', edgecolors='none')

            # # Plot lightcurve
            # ax2.plot(centroids[:,0], centroids[:,3])

            # # # Plot relative angular velocity
            # # ang_vels = []
            # # fr_prev, x_prev, y_prev, _ = centroids[0]
            # # for fr, x, y, _ in centroids[1:]:
            # #     dx = x - x_prev
            # #     dy = y - y_prev
            # #     dfr = fr - fr_prev

            # #     ddist = np.sqrt(dx**2 + dy**2)
            # #     dt = dfr/config.fps

            # #     ang_vels.append(ddist/dt)

            # #     x_prev = x
            # #     y_prev = y
            # #     fr_prev = fr

            # # ax2.plot(ang_vels)

            # plt.show()

    return meteor_detections
示例#2
0
def generateThumbnails(dir_path, config, mosaic_type, file_list=None):
    """ Generates a mosaic of thumbnails from all FF files in the given folder and saves it as a JPG image.
    
    Arguments:
        dir_path: [str] Path of the night directory.
        config: [Conf object] Configuration.
        mosaic_type: [str] Type of the mosaic (e.g. "Captured" or "Detected")

    Keyword arguments:
        file_list: [list] A list of file names (without full path) which will be searched for FF files. This
            is used when generating separate thumbnails for captured and detected files.

    Return:
        file_name: [str] Name of the thumbnail file.

    """

    if file_list is None:
        file_list = sorted(os.listdir(dir_path))


    # Make a list of all FF files in the night directory
    ff_list = []

    for file_name in file_list:
        if FFfile.validFFName(file_name):
            ff_list.append(file_name)


    # Calculate the dimensions of the binned image
    bin_w = int(config.width/config.thumb_bin)
    bin_h = int(config.height/config.thumb_bin)


    ### RESIZE AND STACK THUMBNAILS ###
    ##########################################################################################################

    timestamps = []
    stacked_imgs = []

    for i in range(0, len(ff_list), config.thumb_stack):

        img_stack = np.zeros((bin_h, bin_w))

        # Stack thumb_stack images using the 'if lighter' method
        for j in range(config.thumb_stack):

            if (i + j) < len(ff_list):

                # Read maxpixel image
                img = FFfile.read(dir_path, ff_list[i + j]).maxpixel

                # Resize the image
                img = cv2.resize(img, (bin_w, bin_h))

                # Stack the image
                img_stack = stackIfLighter(img_stack, img)

            else:
                break


        # Save the timestamp of the first image in the stack
        timestamps.append(FFfile.filenameToDatetime(ff_list[i]))

        # Save the stacked image
        stacked_imgs.append(img_stack)

        # cv2.imshow('test', img_stack)
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()



    ##########################################################################################################

    ### ADD THUMBS TO ONE MOSAIC IMAGE ###
    ##########################################################################################################

    header_height = 20
    timestamp_height = 10

    # Calculate the number of rows for the thumbnail image
    n_rows = int(np.ceil(float(len(ff_list))/config.thumb_stack/config.thumb_n_width))

    # Calculate the size of the mosaic
    mosaic_w = int(config.thumb_n_width*bin_w)
    mosaic_h = int((bin_h + timestamp_height)*n_rows + header_height)

    mosaic_img = np.zeros((mosaic_h, mosaic_w), dtype=np.uint8)

    # Write header text
    header_text = 'Station: ' + str(config.stationID) + ' Night: ' + os.path.basename(dir_path) \
        + ' Type: ' + mosaic_type
    cv2.putText(mosaic_img, header_text, (0, header_height//2), \
                    cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1)

    for row in range(n_rows):

        for col in range(config.thumb_n_width):

            # Calculate image index
            indx = row*config.thumb_n_width + col

            if indx < len(stacked_imgs):

                # Calculate position of the text
                text_x = col*bin_w
                text_y = row*bin_h + (row + 1)*timestamp_height - 1 + header_height

                # Add timestamp text
                cv2.putText(mosaic_img, timestamps[indx].strftime('%H:%M:%S'), (text_x, text_y), \
                    cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)

                # Add the image to the mosaic
                img_pos_x = col*bin_w
                img_pos_y = row*bin_h + (row + 1)*timestamp_height + header_height

                mosaic_img[img_pos_y : img_pos_y + bin_h, img_pos_x : img_pos_x + bin_w] = stacked_imgs[indx]


            else:
                break

    ##########################################################################################################

    thumb_name = "{:s}_{:s}_{:s}_thumbs.jpg".format(str(config.stationID), os.path.basename(dir_path), \
        mosaic_type)

    # Save the mosaic
    cv2.imwrite(os.path.join(dir_path, thumb_name), mosaic_img, [int(cv2.IMWRITE_JPEG_QUALITY), 80])


    return thumb_name
示例#3
0
def view(dir_path, ff_path, fr_path, config, save_frames=False):
    """ Shows the detected fireball stored in the FR file. 
    
    Arguments:
        dir_path: [str] Current directory.
        ff: [str] path to the FF bin file
        fr: [str] path to the FR bin file
        config: [conf object] configuration structure

    """

    name = fr_path
    fr = FRbin.read(dir_path, fr_path)

    if ff_path is None:
        #background = np.zeros((config.height, config.width), np.uint8)

        # Get the maximum extent of the meteor frames
        y_size = max(
            max(np.array(fr.yc[0]) + np.array(fr.size[0]) // 2)
            for i in range(fr.lines))
        x_size = max(
            max(np.array(fr.xc[0]) + np.array(fr.size[0]) // 2)
            for i in range(fr.lines))

        # Make the image square
        img_size = max(y_size, x_size)

        background = np.zeros((img_size, img_size), np.uint8)

    else:
        background = FFfile.read(dir_path, ff_path).maxpixel

    print("Number of lines:", fr.lines)

    first_image = True

    for current_line in range(fr.lines):

        print('Frame,  Y ,  X , size')

        for z in range(fr.frameNum[current_line]):

            # Get the center position of the detection on the current frame
            yc = fr.yc[current_line][z]
            xc = fr.xc[current_line][z]

            # Get the frame number
            t = fr.t[current_line][z]

            # Get the size of the window
            size = fr.size[current_line][z]

            print("  {:3d}, {:3d}, {:3d}, {:d}".format(t, yc, xc, size))

            img = np.copy(background)

            # Paste the frames onto the big image
            y_img = np.arange(yc - size // 2, yc + size // 2)
            x_img = np.arange(xc - size // 2, xc + size // 2)

            Y_img, X_img = np.meshgrid(y_img, x_img)

            y_frame = np.arange(len(y_img))
            x_frame = np.arange(len(x_img))

            Y_frame, X_frame = np.meshgrid(y_frame, x_frame)

            img[Y_img, X_img] = fr.frames[current_line][z][Y_frame, X_frame]

            # Save frame to disk
            if save_frames:
                frame_file_name = fr_path.replace(
                    '.bin', '') + "_frame_{:03d}.png".format(t)
                cv2.imwrite(os.path.join(dir_path, frame_file_name), img)

            # Show the frame
            cv2.imshow(name, img)

            # If this is the first image, move it to the upper left corner
            if first_image:
                cv2.moveWindow(name, 0, 0)
                first_image = False

            cv2.waitKey(2 * int(1000.0 / config.fps))

    cv2.destroyWindow(name)
示例#4
0
        # Add star info to the star list
        star_list.append([ff_name, star_data])

        # Print found stars
        print('   ROW    COL   amplitude  intensity')
        for x, y, max_ampl, level in star_data:
            print(' {:06.2f} {:06.2f} {:6d} {:6d}'.format(
                round(y, 2), round(x, 2), int(max_ampl), int(level)))

        # # Show stars if there are only more then 10 of them
        # if len(x2) < 20:
        #     continue

        # # Load the FF bin file
        # ff = FFfile.read(ff_dir, ff_name)

        # plotStars(ff, x2, y2)

    # Load data about the image
    ff = FFfile.read(ff_dir, ff_name)

    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \
        + os.path.basename(ff_dir) + '.txt'

    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, ff.camno,
                           ff.nrows, ff.ncols)

    print('Total time taken: ', time.clock() - time_start)
示例#5
0
def extractStars(ff_dir,
                 ff_name,
                 config=None,
                 max_global_intensity=150,
                 border=10,
                 neighborhood_size=10,
                 intensity_threshold=5,
                 flat_struct=None):
    """ Extracts stars on a given FF bin by searching for local maxima and applying PSF fit for star 
        confirmation.

        Source of one part of the code: 
    http://stackoverflow.com/questions/9111711/get-coordinates-of-local-maxima-in-2d-array-above-certain-value
    
    Arguments:
        ff: [ff bin struct] FF bin file loaded in the FF bin structure
        config: [config object] configuration object (loaded from the .config file)
        max_global_intensity: [int] maximum mean intensity of an image before it is discared as too bright
        border: [int] apply a mask on the detections by removing all that are too close to the given image 
            border (in pixels)
        neighborhood_size: [int] size of the neighbourhood for the maximum search (in pixels)
        intensity_threshold: [float] a threshold for cutting the detections which are too faint (0-255)
        flat_struct: [Flat struct] Structure containing the flat field. None by default.

    Return:
        x2, y2, background, intensity: [list of ndarrays]
            - x2: X axis coordinates of the star
            - y2: Y axis coordinates of the star
            - background: background intensity
            - intensity: intensity of the star
    """

    # Load parameters from config if given
    if config:
        max_global_intensity = config.max_global_intensity
        border = config.border
        neighborhood_size = config.neighborhood_size
        intensity_threshold = config.intensity_threshold

    # Load the FF bin file
    ff = FFfile.read(ff_dir, ff_name)

    # Load the mask file
    mask = MaskImage.loadMask(config.mask_file)

    # Mask the FF file
    ff = MaskImage.applyMask(ff, mask, ff_flag=True)

    # Apply the flat to maxpixel and avepixel
    if flat_struct is not None:

        ff.maxpixel = Image.applyFlat(ff.maxpixel, flat_struct)
        ff.avepixel = Image.applyFlat(ff.avepixel, flat_struct)

    # Calculate image mean and stddev
    global_mean = np.mean(ff.avepixel)

    # Check if the image is too bright and skip the image
    if global_mean > max_global_intensity:
        return [[], [], [], []]

    data = ff.avepixel.astype(np.float32)

    # Apply a mean filter to the image to reduce noise
    data = ndimage.filters.convolve(data, weights=np.full((2, 2), 1.0 / 4))

    # Locate local maxima on the image
    data_max = filters.maximum_filter(data, neighborhood_size)
    maxima = (data == data_max)
    data_min = filters.minimum_filter(data, neighborhood_size)
    diff = ((data_max - data_min) > intensity_threshold)
    maxima[diff == 0] = 0

    # Apply a border mask
    border_mask = np.ones_like(maxima) * 255
    border_mask[:border, :] = 0
    border_mask[-border:, :] = 0
    border_mask[:, :border] = 0
    border_mask[:, -border:] = 0
    maxima = MaskImage.applyMask(maxima, (True, border_mask))

    # Find and label the maxima
    labeled, num_objects = ndimage.label(maxima)

    # Skip the image if there are too many maxima to process
    if num_objects > config.max_stars:
        print('Too many candidate stars to process! {:d}/{:d}'.format(
            num_objects, config.max_stars))
        return [[], [], [], []]

    # Find centres of mass of each labeled objects
    xy = np.array(
        ndimage.center_of_mass(data, labeled, range(1, num_objects + 1)))

    # Remove all detection on the border
    #xy = xy[np.where((xy[:, 1] > border) & (xy[:,1] < ff.ncols - border) & (xy[:,0] > border) & (xy[:,0] < ff.nrows - border))]

    # Unpack star coordinates
    y, x = np.hsplit(xy, 2)

    # # Plot stars before the PSF fit
    # plotStars(ff, x, y)

    # Fit a PSF to each star
    x2, y2, amplitude, intensity = fitPSF(ff, global_mean, x, y, config=config)
    # x2, y2, amplitude, intensity = list(x), list(y), [], [] # Skip PSF fit

    # # Plot stars after PSF fit filtering
    # plotStars(ff, x2, y2)

    return x2, y2, amplitude, intensity
示例#6
0
    # Adjust levels
    img_data = adjustLevels(img_data, 100, 1.2, 240)

    plt.imshow(img_data, cmap='gray')
    plt.show()



    #### Apply the flat

    # Load an FF file
    dir_path = "/home/dvida/Dropbox/Apps/Elginfield RPi RMS data/ArchivedFiles/CA0001_20171018_230520_894458_detected"
    file_name = "FF_CA0001_20171019_092744_161_1118976.fits"

    ff = FFfile.read(dir_path, file_name)

    # Load the flat
    flat_struct = loadFlat(os.getcwd(), config.flat_file)


    t1 = time.clock()

    # Apply the flat
    img = applyFlat(ff.maxpixel, flat_struct)

    print('Flat time:', time.clock() - t1)

    plt.imshow(img, cmap='gray', vmin=0, vmax=255)
    plt.show()
示例#7
0
def extractStars(ff_dir, ff_name, config=None, max_global_intensity=150, border=10, neighborhood_size=10, 
        intensity_threshold=5, flat_struct=None, dark=None, mask=None):
    """ Extracts stars on a given FF bin by searching for local maxima and applying PSF fit for star 
        confirmation.

        Source of one part of the code: 
    http://stackoverflow.com/questions/9111711/get-coordinates-of-local-maxima-in-2d-array-above-certain-value
    
    Arguments:
        ff: [ff bin struct] FF bin file loaded in the FF bin structure
        config: [config object] configuration object (loaded from the .config file)
        max_global_intensity: [int] maximum mean intensity of an image before it is discared as too bright
        border: [int] apply a mask on the detections by removing all that are too close to the given image 
            border (in pixels)
        neighborhood_size: [int] size of the neighbourhood for the maximum search (in pixels)
        intensity_threshold: [float] a threshold for cutting the detections which are too faint (0-255)
        flat_struct: [Flat struct] Structure containing the flat field. None by default.
        dark: [ndarray] Dark frame. None by default.
        mask: [ndarray] Mask image. None by default.

    Return:
        x2, y2, background, intensity, sigma_fitted: [list of ndarrays]
            - x2: X axis coordinates of the star
            - y2: Y axis coordinates of the star
            - background: background intensity
            - intensity: intensity of the star
            - Gaussian stddev of fitted stars
    """

    # This will be returned if there was an error
    error_return = [[], [], [], []]

    # Load parameters from config if given
    if config:
        max_global_intensity = config.max_global_intensity
        border = config.border
        neighborhood_size = config.neighborhood_size
        intensity_threshold = config.intensity_threshold
        

    # Load the FF bin file
    ff = FFfile.read(ff_dir, ff_name)


    # If the FF file could not be read, skip star extraction
    if ff is None:
        return error_return


    # Apply the dark frame
    if dark is not None:
        ff.avepixel = Image.applyDark(ff.avepixel, dark)

    # Apply the flat
    if flat_struct is not None:
        ff.avepixel = Image.applyFlat(ff.avepixel, flat_struct)

    # Mask the FF file
    if mask is not None:
        ff = MaskImage.applyMask(ff, mask, ff_flag=True)


    # Calculate image mean and stddev
    global_mean = np.mean(ff.avepixel)

    # Check if the image is too bright and skip the image
    if global_mean > max_global_intensity:
        return error_return

    data = ff.avepixel.astype(np.float32)


    # Apply a mean filter to the image to reduce noise
    data = ndimage.filters.convolve(data, weights=np.full((2, 2), 1.0/4))

    # Locate local maxima on the image
    data_max = filters.maximum_filter(data, neighborhood_size)
    maxima = (data == data_max)
    data_min = filters.minimum_filter(data, neighborhood_size)
    diff = ((data_max - data_min) > intensity_threshold)
    maxima[diff == 0] = 0

    # Apply a border mask
    border_mask = np.ones_like(maxima)*255
    border_mask[:border,:] = 0
    border_mask[-border:,:] = 0
    border_mask[:,:border] = 0
    border_mask[:,-border:] = 0
    maxima = MaskImage.applyMask(maxima, border_mask, image=True)


    # Find and label the maxima
    labeled, num_objects = ndimage.label(maxima)

    # Skip the image if there are too many maxima to process
    if num_objects > config.max_stars:
        print('Too many candidate stars to process! {:d}/{:d}'.format(num_objects, config.max_stars))
        return error_return

    # Find centres of mass of each labeled objects
    xy = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1)))

    # Remove all detection on the border
    #xy = xy[np.where((xy[:, 1] > border) & (xy[:,1] < ff.ncols - border) & (xy[:,0] > border) & (xy[:,0] < ff.nrows - border))]

    # Unpack star coordinates
    y, x = np.hsplit(xy, 2)

    # # Plot stars before the PSF fit
    # plotStars(ff, x, y)

    # Fit a PSF to each star
    x2, y2, amplitude, intensity, sigma_y_fitted, sigma_x_fitted = fitPSF(ff, global_mean, x, y, config)
    
    # x2, y2, amplitude, intensity = list(x), list(y), [], [] # Skip PSF fit

    # # Plot stars after PSF fit filtering
    # plotStars(ff, x2, y2)
    

    # Compute one dimensional sigma
    sigma_x_fitted = np.array(sigma_x_fitted)
    sigma_y_fitted = np.array(sigma_y_fitted)
    sigma_fitted = np.sqrt(sigma_x_fitted**2 + sigma_y_fitted**2)


    return ff_name, x2, y2, amplitude, intensity, sigma_fitted
示例#8
0
    plot(points, ff.nrows//config.f, ff.ncols//config.f)

def plot(points, y_dim, x_dim):
    fig = plt.figure()
    
    ax = fig.add_subplot(111, projection='3d')
    plt.title(name)
    
    y = points[:,0]
    x = points[:,1]
    z = points[:,2]
    
    # Plot points in 3D
    ax.scatter(x, y, z)

    # Set axes limits
    ax.set_zlim(0, 255)
    plt.xlim([0, x_dim])
    plt.ylim([0, y_dim])
    
    ax.set_ylabel("Y")
    ax.set_xlabel("X")
    ax.set_zlabel("Time")
    
    plt.show()


if __name__ == "__main__":
    ff = FFfile.read(sys.argv[1], sys.argv[2], array=True)
    
    view(ff)
def generateThumbnails(dir_path, config, mosaic_type, file_list=None):
    """ Generates a mosaic of thumbnails from all FF files in the given folder and saves it as a JPG image.
    
    Arguments:
        dir_path: [str] Path of the night directory.
        config: [Conf object] Configuration.
        mosaic_type: [str] Type of the mosaic (e.g. "Captured" or "Detected")

    Keyword arguments:
        file_list: [list] A list of file names (without full path) which will be searched for FF files. This
            is used when generating separate thumbnails for captured and detected files.

    Return:
        file_name: [str] Name of the thumbnail file.

    """

    if file_list is None:
        file_list = sorted(os.listdir(dir_path))


    # Make a list of all FF files in the night directory
    ff_list = []

    for file_name in file_list:
        if FFfile.validFFName(file_name):
            ff_list.append(file_name)


    # Calculate the dimensions of the binned image
    bin_w = int(config.width/config.thumb_bin)
    bin_h = int(config.height/config.thumb_bin)


    ### RESIZE AND STACK THUMBNAILS ###
    ##########################################################################################################

    timestamps = []
    stacked_imgs = []

    for i in range(0, len(ff_list), config.thumb_stack):

        img_stack = np.zeros((bin_h, bin_w))

        # Stack thumb_stack images using the 'if lighter' method
        for j in range(config.thumb_stack):

            if (i + j) < len(ff_list):

                tmp_file_name = ff_list[i + j]

                    
                # Read the FF file
                ff = FFfile.read(dir_path, tmp_file_name)

                # Skip the FF if it is corruped
                if ff is None:
                    continue

                img = ff.maxpixel

                # Resize the image
                img = cv2.resize(img, (bin_w, bin_h))

                # Stack the image
                img_stack = stackIfLighter(img_stack, img)

            else:
                break


        # Save the timestamp of the first image in the stack
        timestamps.append(FFfile.filenameToDatetime(ff_list[i]))

        # Save the stacked image
        stacked_imgs.append(img_stack)

        # cv2.imshow('test', img_stack)
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()



    ##########################################################################################################

    ### ADD THUMBS TO ONE MOSAIC IMAGE ###
    ##########################################################################################################

    header_height = 20
    timestamp_height = 10

    # Calculate the number of rows for the thumbnail image
    n_rows = int(np.ceil(float(len(ff_list))/config.thumb_stack/config.thumb_n_width))

    # Calculate the size of the mosaic
    mosaic_w = int(config.thumb_n_width*bin_w)
    mosaic_h = int((bin_h + timestamp_height)*n_rows + header_height)

    mosaic_img = np.zeros((mosaic_h, mosaic_w), dtype=np.uint8)

    # Write header text
    header_text = 'Station: ' + str(config.stationID) + ' Night: ' + os.path.basename(dir_path) \
        + ' Type: ' + mosaic_type
    cv2.putText(mosaic_img, header_text, (0, header_height//2), \
                    cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1)

    for row in range(n_rows):

        for col in range(config.thumb_n_width):

            # Calculate image index
            indx = row*config.thumb_n_width + col

            if indx < len(stacked_imgs):

                # Calculate position of the text
                text_x = col*bin_w
                text_y = row*bin_h + (row + 1)*timestamp_height - 1 + header_height

                # Add timestamp text
                cv2.putText(mosaic_img, timestamps[indx].strftime('%H:%M:%S'), (text_x, text_y), \
                    cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)

                # Add the image to the mosaic
                img_pos_x = col*bin_w
                img_pos_y = row*bin_h + (row + 1)*timestamp_height + header_height

                mosaic_img[img_pos_y : img_pos_y + bin_h, img_pos_x : img_pos_x + bin_w] = stacked_imgs[indx]


            else:
                break

    ##########################################################################################################

    thumb_name = "{:s}_{:s}_{:s}_thumbs.jpg".format(str(config.stationID), os.path.basename(dir_path), \
        mosaic_type)

    # Save the mosaic
    cv2.imwrite(os.path.join(dir_path, thumb_name), mosaic_img, [int(cv2.IMWRITE_JPEG_QUALITY), 80])


    return thumb_name
示例#10
0
def view(dir_path, ff_path, fr_path, config, save_frames=False):
    """ Shows the detected fireball stored in the FR file. 
    
    Arguments:
        dir_path: [str] Current directory.
        ff: [str] path to the FF bin file
        fr: [str] path to the FR bin file
        config: [conf object] configuration structure

    """
    
    name = fr_path
    fr = FRbin.read(dir_path, fr_path)

    print('------------------------')
    print('Showing file:', fr_path)


    if ff_path is None:
        #background = np.zeros((config.height, config.width), np.uint8)

        # Get the maximum extent of meteor frames
        y_size = max([max(np.array(fr.yc[i]) + np.array(fr.size[i])//2) for i in range(fr.lines)])
        x_size = max([max(np.array(fr.xc[i]) + np.array(fr.size[i])//2) for i in range(fr.lines)])

        # Make the image square
        img_size = max(y_size, x_size)

        background = np.zeros((img_size, img_size), np.uint8)

    else:
        background = FFfile.read(dir_path, ff_path).maxpixel
    
    print("Number of lines:", fr.lines)
    
    first_image = True
    wait_time = 2*int(1000.0/config.fps)

    pause_flag = False

    for current_line in range(fr.lines):

        print('Frame,  Y ,  X , size')

        for z in range(fr.frameNum[current_line]):

            # Get the center position of the detection on the current frame
            yc = fr.yc[current_line][z]
            xc = fr.xc[current_line][z]

            # Get the frame number
            t = fr.t[current_line][z]

            # Get the size of the window
            size = fr.size[current_line][z]
            
            print("  {:3d}, {:3d}, {:3d}, {:d}".format(t, yc, xc, size))

            img = np.copy(background)
            
            # Paste the frames onto the big image
            y_img = np.arange(yc - size//2, yc + size//2)
            x_img = np.arange(xc - size//2,  xc + size//2)

            Y_img, X_img = np.meshgrid(y_img, x_img)

            y_frame = np.arange(len(y_img))
            x_frame = np.arange(len(x_img))

            Y_frame, X_frame = np.meshgrid(y_frame, x_frame)                

            img[Y_img, X_img] = fr.frames[current_line][z][Y_frame, X_frame]


            # Save frame to disk
            if save_frames:
                frame_file_name = fr_path.replace('.bin', '') + "_line_{:02d}_frame_{:03d}.png".format(current_line, t)
                cv2.imwrite(os.path.join(dir_path, frame_file_name), img)


            # Show the frame
            cv2.imshow(name, img)

            # If this is the first image, move it to the upper left corner
            if first_image:
                cv2.moveWindow(name, 0, 0)
                first_image = False


            if pause_flag:
                wait_time = 0
            else:
                wait_time = 2*int(1000.0/config.fps)

            # Space key: pause display. 
            # 1: previous file. 
            # 2: next line. 
            # q: Quit.
            key = cv2.waitKey(wait_time) & 0xFF

            if key == ord("1"): 
                cv2.destroyWindow(name)
                return -1

            elif key == ord("2"): 
                break

            elif key == ord(" "): 
                
                # Pause/unpause video
                pause_flag = not pause_flag

            elif key == ord("q") : 
                os._exit(0)
                

    
    cv2.destroyWindow(name)
示例#11
0
# RPi Meteor Station
# Copyright (C) 2015  Dario Zubovic
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import cv2
import sys, os
from RMS.Formats import FFfile

if __name__ == "__main__":
    ff = FFfile.read(sys.argv[1], sys.argv[2])

    cv2.imwrite(sys.argv[2] + "_max.png", ff.maxpixel)
    cv2.imwrite(sys.argv[2] + "_frame.png", ff.maxframe)
    cv2.imwrite(sys.argv[2] + "_avg.png", ff.avepixel)
    cv2.imwrite(sys.argv[2] + "_stddev.png", ff.stdpixel)
示例#12
0

def plot(points, y_dim, x_dim):
    fig = plt.figure()

    ax = fig.add_subplot(111, projection='3d')
    plt.title(name)

    y = points[:, 0]
    x = points[:, 1]
    z = points[:, 2]

    # Plot points in 3D
    ax.scatter(x, y, z)

    # Set axes limits
    ax.set_zlim(0, 255)
    plt.xlim([0, x_dim])
    plt.ylim([0, y_dim])

    ax.set_ylabel("Y")
    ax.set_xlabel("X")
    ax.set_zlabel("Time")

    plt.show()


if __name__ == "__main__":
    ff = FFfile.read(sys.argv[1], sys.argv[2], array=True)

    view(ff)
示例#13
0
# Import old morph
from RMS.OLD import MorphologicalOperations as morph

# Cython init
import pyximport
pyximport.install(setup_args={'include_dirs': [np.get_include()]})
from RMS.Routines.MorphCy import morphApply

# Run tests

# Extract file and directory
head, ff_name = os.path.split(sys.argv[1])
ff_path = os.path.abspath(head) + os.sep

# Load the FF bin file
ff = FFfile.read(ff_path, ff_name)

img_thresh = thresholdImg(ff, 1.8, 9)

show('thresh', img_thresh)

# Convert img to integer
img = img_thresh.astype(np.uint8)

# Old morph
img_old = np.copy(img)

t1 = time.clock()
img_old = morph.clean(img_old)
img_old = morph.bridge(img_old)
img_old = morph.close(img_old)
示例#14
0
def view(dir_path, ff_path, fr_path, config):
    """ Shows the detected fireball stored in the FR file. 
    
    Arguments:
        dir_path: [str] Current directory.
        ff: [str] path to the FF bin file
        fr: [str] path to the FR bin file
        config: [conf object] configuration structure

    """
    
    name = fr_path
    fr = FRbin.read(dir_path, fr_path)


    if ff_path is None:
        #background = np.zeros((config.height, config.width), np.uint8)

        # Get the maximum extent of the meteor frames
        y_size = max(max(np.array(fr.yc[i]) + np.array(fr.size[i])//2) for i in range(fr.lines))
        x_size = max(max(np.array(fr.xc[i]) + np.array(fr.size[i])//2) for i in range(fr.lines))

        # Make the image square
        img_size = max(y_size, x_size)

        background = np.zeros((img_size, img_size), np.uint8)

    else:
        background = FFfile.read(dir_path, ff_path).maxpixel
    
    print("Number of lines:", fr.lines)
    
    first_image = True

    for i in range(fr.lines):

        print('Frame,  Y ,  X , size')

        for z in range(fr.frameNum[i]):

            # Get the center position of the detection on the current frame
            yc = fr.yc[i][z]
            xc = fr.xc[i][z]

            # Get the frame number
            t = fr.t[i][z]

            # Get the size of the window
            size = fr.size[i][z]
            
            print("  {:3d}, {:3d}, {:3d}, {:d}".format(t, yc, xc, size))
            
            
            y2 = 0

            # Assign the detection pixels to the background image
            for y in range(yc - size//2, yc + size//2):

                x2 = 0

                for x in range(xc - size//2,  xc + size//2):

                    background[y, x] = fr.frames[i][z][y2, x2]
                    x2 += 1

                y2 += 1
            
            cv2.imshow(name, background)

            # If this is the first image, move it to the upper left corner
            if first_image:
                cv2.moveWindow(name, 0, 0)
                first_image = False

            cv2.waitKey(2*int(1000.0/config.fps))
    
    cv2.destroyWindow(name)
示例#15
0
def view(dir_path,
         ff_path,
         fr_path,
         config,
         save_frames=False,
         extract_format='png',
         hide=False):
    """ Shows the detected fireball stored in the FR file. 
    
    Arguments:
        dir_path: [str] Current directory.
        ff: [str] path to the FF bin file
        fr: [str] path to the FR bin file
        config: [conf object] configuration structure

    Keyword arguments:
        save_frames: [bool] Save FR frames to disk. False by defualt.
        extract_format: [str] Format of saved images. png by default.
        hide: [bool] Don't show frames on the screen.

    """

    if extract_format is None:
        extract_format = 'png'

    name = fr_path
    fr = FRbin.read(dir_path, fr_path)

    print('------------------------')
    print('Showing file:', fr_path)

    if ff_path is None:
        #background = np.zeros((config.height, config.width), np.uint8)

        # Get the maximum extent of meteor frames
        y_size = max([
            max(np.array(fr.yc[i]) + np.array(fr.size[i]) // 2)
            for i in range(fr.lines)
        ])
        x_size = max([
            max(np.array(fr.xc[i]) + np.array(fr.size[i]) // 2)
            for i in range(fr.lines)
        ])

        # Make the image square
        img_size = max(y_size, x_size)

        background = np.zeros((img_size, img_size), np.uint8)

    else:
        background = FFfile.read(dir_path, ff_path).maxpixel

    print("Number of lines:", fr.lines)

    first_image = True
    wait_time = 2 * int(1000.0 / config.fps)

    pause_flag = False

    for current_line in range(fr.lines):

        print('Frame,  Y ,  X , size')

        for z in range(fr.frameNum[current_line]):

            # Get the center position of the detection on the current frame
            yc = fr.yc[current_line][z]
            xc = fr.xc[current_line][z]

            # Get the frame number
            t = fr.t[current_line][z]

            # Get the size of the window
            size = fr.size[current_line][z]

            print("  {:3d}, {:3d}, {:3d}, {:d}".format(t, yc, xc, size))

            img = np.copy(background)

            # Paste the frames onto the big image
            y_img = np.arange(yc - size // 2, yc + size // 2)
            x_img = np.arange(xc - size // 2, xc + size // 2)

            Y_img, X_img = np.meshgrid(y_img, x_img)

            y_frame = np.arange(len(y_img))
            x_frame = np.arange(len(x_img))

            Y_frame, X_frame = np.meshgrid(y_frame, x_frame)

            img[Y_img, X_img] = fr.frames[current_line][z][Y_frame, X_frame]

            # Save frame to disk
            if save_frames:
                frame_file_name = fr_path.replace('.bin', '') \
                    + "_line_{:02d}_frame_{:03d}.{:s}".format(current_line, t, extract_format)
                cv2.imwrite(os.path.join(dir_path, frame_file_name), img)

            if not hide:

                # Show the frame
                cv2.imshow(name, img)

                # If this is the first image, move it to the upper left corner
                if first_image:
                    cv2.moveWindow(name, 0, 0)
                    first_image = False

                if pause_flag:
                    wait_time = 0
                else:
                    wait_time = 2 * int(1000.0 / config.fps)

                # Space key: pause display.
                # 1: previous file.
                # 2: next line.
                # q: Quit.
                key = cv2.waitKey(wait_time) & 0xFF

                if key == ord("1"):
                    cv2.destroyWindow(name)
                    return -1

                elif key == ord("2"):
                    break

                elif key == ord(" "):

                    # Pause/unpause video
                    pause_flag = not pause_flag

                elif key == ord("q"):
                    os._exit(0)

    if not hide:
        cv2.destroyWindow(name)
示例#16
0
def generateThumbnails(dir_path,
                       config,
                       mosaic_type,
                       file_list=None,
                       no_stack=False):
    """ Generates a mosaic of thumbnails from all FF files in the given folder and saves it as a JPG image.
    
    Arguments:
        dir_path: [str] Path of the night directory.
        config: [Conf object] Configuration.
        mosaic_type: [str] Type of the mosaic (e.g. "Captured" or "Detected")

    Keyword arguments:
        file_list: [list] A list of file names (without full path) which will be searched for FF files. This
            is used when generating separate thumbnails for captured and detected files.

    Return:
        file_name: [str] Name of the thumbnail file.
        no_stack: [bool] Don't stack the images using the config.thumb_stack option. A max of 1000 images
            are supported with this option. If there are more, stacks will be done according to the 
            config.thumb_stack option.

    """

    if file_list is None:
        file_list = sorted(os.listdir(dir_path))

    # Make a list of all FF files in the night directory
    ff_list = []

    for file_name in file_list:
        if FFfile.validFFName(file_name):
            ff_list.append(file_name)

    # Calculate the dimensions of the binned image
    bin_w = int(config.width / config.thumb_bin)
    bin_h = int(config.height / config.thumb_bin)

    ### RESIZE AND STACK THUMBNAILS ###
    ##########################################################################################################

    timestamps = []
    stacked_imgs = []

    thumb_stack = config.thumb_stack

    # Check if no stacks should be done (max 1000 images for no stack)
    if no_stack and (len(ff_list) < 1000):
        thumb_stack = 1

    for i in range(0, len(ff_list), thumb_stack):

        img_stack = np.zeros((bin_h, bin_w))

        # Stack thumb_stack images using the 'if lighter' method
        for j in range(thumb_stack):

            if (i + j) < len(ff_list):

                tmp_file_name = ff_list[i + j]

                # Read the FF file
                ff = FFfile.read(dir_path, tmp_file_name)

                # Skip the FF if it is corruped
                if ff is None:
                    continue

                img = ff.maxpixel

                # Resize the image
                img = cv2.resize(img, (bin_w, bin_h))

                # Stack the image
                img_stack = stackIfLighter(img_stack, img)

            else:
                break

        # Save the timestamp of the first image in the stack
        timestamps.append(FFfile.filenameToDatetime(ff_list[i]))

        # Save the stacked image
        stacked_imgs.append(img_stack)

        # cv2.imshow('test', img_stack)
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()

    ##########################################################################################################

    ### ADD THUMBS TO ONE MOSAIC IMAGE ###
    ##########################################################################################################

    header_height = 20
    timestamp_height = 10

    # Calculate the number of rows for the thumbnail image
    n_rows = int(
        np.ceil(float(len(ff_list)) / thumb_stack / config.thumb_n_width))

    # Calculate the size of the mosaic
    mosaic_w = int(config.thumb_n_width * bin_w)
    mosaic_h = int((bin_h + timestamp_height) * n_rows + header_height)

    mosaic_img = np.zeros((mosaic_h, mosaic_w), dtype=np.uint8)

    # Write header text
    header_text = 'Station: ' + str(config.stationID) + ' Night: ' + os.path.basename(dir_path) \
        + ' Type: ' + mosaic_type
    cv2.putText(mosaic_img, header_text, (0, header_height//2), \
                    cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1)

    for row in range(n_rows):

        for col in range(config.thumb_n_width):

            # Calculate image index
            indx = row * config.thumb_n_width + col

            if indx < len(stacked_imgs):

                # Calculate position of the text
                text_x = col * bin_w
                text_y = row * bin_h + (
                    row + 1) * timestamp_height - 1 + header_height

                # Add timestamp text
                cv2.putText(mosaic_img, timestamps[indx].strftime('%H:%M:%S'), (text_x, text_y), \
                    cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)

                # Add the image to the mosaic
                img_pos_x = col * bin_w
                img_pos_y = row * bin_h + (
                    row + 1) * timestamp_height + header_height

                mosaic_img[img_pos_y:img_pos_y + bin_h,
                           img_pos_x:img_pos_x + bin_w] = stacked_imgs[indx]

            else:
                break

    ##########################################################################################################

    # Only add the station ID if the dir name already doesn't start with it
    dir_name = os.path.basename(os.path.abspath(dir_path))
    if dir_name.startswith(config.stationID):
        prefix = dir_name
    else:
        prefix = "{:s}_{:s}".format(config.stationID, dir_name)

    thumb_name = "{:s}_{:s}_thumbs.jpg".format(prefix, mosaic_type)

    # Save the mosaic
    if USING_IMAGEIO:
        # Use imageio to write the image
        imwrite(os.path.join(dir_path, thumb_name), mosaic_img, quality=80)
    else:
        # Use OpenCV to save the image
        imwrite(os.path.join(dir_path, thumb_name), mosaic_img,
                [int(cv2.IMWRITE_JPEG_QUALITY), 80])

    return thumb_name
示例#17
0
    # Extract the directory name from the given argument
    bin_dir = sys.argv[1]

    # Load config file
    config = cr.parse(".config")

    print('Directory:', bin_dir)

    for ff_name in os.listdir(bin_dir):
        if 'FF' in ff_name:

            print(ff_name)

            # Load compressed file
            compressed = FFfile.read(bin_dir,
                                     ff_name,
                                     array=True,
                                     full_filename=True).array

            # Show maxpixel
            ff = FFfile.read(bin_dir, ff_name, full_filename=True)
            plt.imshow(ff.maxpixel, cmap='gray')
            plt.show()

            plt.clf()
            plt.close()

            # Dummy frames from FF file
            frames = FFfile.reconstruct(ff)

            # Add avepixel to all reconstructed frames
            frames += ff.avepixel
示例#18
0
def extractStars(ff_dir,
                 ff_name,
                 config=None,
                 max_global_intensity=150,
                 border=10,
                 neighborhood_size=10,
                 intensity_threshold=5,
                 flat_struct=None,
                 dark=None,
                 mask=None):
    """ Extracts stars on a given FF bin by searching for local maxima and applying PSF fit for star 
        confirmation.

        Source of one part of the code: 
    http://stackoverflow.com/questions/9111711/get-coordinates-of-local-maxima-in-2d-array-above-certain-value
    
    Arguments:
        ff_dir: [str] Path to directory where FF files are.
        ff_name: [str] Name of the FF file.
        config: [config object] configuration object (loaded from the .config file)
        max_global_intensity: [int] maximum mean intensity of an image before it is discared as too bright
        border: [int] apply a mask on the detections by removing all that are too close to the given image 
            border (in pixels)
        neighborhood_size: [int] size of the neighbourhood for the maximum search (in pixels)
        intensity_threshold: [float] a threshold for cutting the detections which are too faint (0-255)
        flat_struct: [Flat struct] Structure containing the flat field. None by default.
        dark: [ndarray] Dark frame. None by default.
        mask: [ndarray] Mask image. None by default.

    Return:
        x2, y2, background, intensity, fwhm: [list of ndarrays]
            - x2: X axis coordinates of the star
            - y2: Y axis coordinates of the star
            - background: background intensity
            - intensity: intensity of the star
            - Gaussian Full width at half maximum (FWHM) of fitted stars
    """

    # This will be returned if there was an error
    error_return = [[], [], [], [], [], []]

    # Load parameters from config if given
    if config:
        max_global_intensity = config.max_global_intensity
        border = config.border
        neighborhood_size = config.neighborhood_size
        intensity_threshold = config.intensity_threshold

    # Load the FF bin file
    ff = FFfile.read(ff_dir, ff_name)

    # If the FF file could not be read, skip star extraction
    if ff is None:
        return error_return

    # Apply the dark frame
    if dark is not None:
        ff.avepixel = Image.applyDark(ff.avepixel, dark)

    # Apply the flat
    if flat_struct is not None:
        ff.avepixel = Image.applyFlat(ff.avepixel, flat_struct)

    # Mask the FF file
    if mask is not None:
        ff = MaskImage.applyMask(ff, mask, ff_flag=True)

    # Calculate image mean and stddev
    global_mean = np.mean(ff.avepixel)

    # Check if the image is too bright and skip the image
    if global_mean > max_global_intensity:
        return error_return

    data = ff.avepixel.astype(np.float32)

    # Apply a mean filter to the image to reduce noise
    data = ndimage.filters.convolve(data, weights=np.full((2, 2), 1.0 / 4))

    # Locate local maxima on the image
    data_max = filters.maximum_filter(data, neighborhood_size)
    maxima = (data == data_max)
    data_min = filters.minimum_filter(data, neighborhood_size)
    diff = ((data_max - data_min) > intensity_threshold)
    maxima[diff == 0] = 0

    # Apply a border mask
    border_mask = np.ones_like(maxima) * 255
    border_mask[:border, :] = 0
    border_mask[-border:, :] = 0
    border_mask[:, :border] = 0
    border_mask[:, -border:] = 0
    maxima = MaskImage.applyMask(maxima, border_mask, image=True)

    # Remove all detections close to the mask image
    if mask is not None:
        erosion_kernel = np.ones((5, 5), mask.img.dtype)
        mask_eroded = cv2.erode(mask.img, erosion_kernel, iterations=1)

        maxima = MaskImage.applyMask(maxima, mask_eroded, image=True)

    # Find and label the maxima
    labeled, num_objects = ndimage.label(maxima)

    # Skip the image if there are too many maxima to process
    if num_objects > config.max_stars:
        print('Too many candidate stars to process! {:d}/{:d}'.format(
            num_objects, config.max_stars))
        return error_return

    # Find centres of mass of each labeled objects
    xy = np.array(
        ndimage.center_of_mass(data, labeled, range(1, num_objects + 1)))

    # Remove all detection on the border
    #xy = xy[np.where((xy[:, 1] > border) & (xy[:,1] < ff.ncols - border) & (xy[:,0] > border) & (xy[:,0] < ff.nrows - border))]

    # Unpack star coordinates
    y, x = np.hsplit(xy, 2)

    # # Plot stars before the PSF fit
    # plotStars(ff, x, y)

    # Fit a PSF to each star
    x2, y2, amplitude, intensity, sigma_y_fitted, sigma_x_fitted = fitPSF(
        ff, global_mean, x, y, config)

    # x2, y2, amplitude, intensity = list(x), list(y), [], [] # Skip PSF fit

    # # Plot stars after PSF fit filtering
    # plotStars(ff, x2, y2)

    # Compute FWHM from one dimensional sigma
    sigma_x_fitted = np.array(sigma_x_fitted)
    sigma_y_fitted = np.array(sigma_y_fitted)
    sigma_fitted = np.sqrt(sigma_x_fitted**2 + sigma_y_fitted**2)
    fwhm = 2.355 * sigma_fitted

    return ff_name, x2, y2, amplitude, intensity, fwhm
示例#19
0
def sensorCharacterization(config, dir_path):
    """ Characterize the standard deviation of the background and the FWHM of stars on every image. """

    
    # Find the CALSTARS file in the given folder that has FWHM information
    found_good_calstars = False
    for cal_file in os.listdir(dir_path):
        if ('CALSTARS' in cal_file) and ('.txt' in cal_file) and (not found_good_calstars):

            # Load the calstars file
            calstars_list = CALSTARS.readCALSTARS(dir_path, cal_file)

            if len(calstars_list) > 0:

                # Check that at least one image has good FWHM measurements
                for ff_name, star_data in calstars_list:

                    if len(star_data) > 1:

                        star_data = np.array(star_data)

                        # Check if the calstars file have FWHM information
                        fwhm = star_data[:, 4]

                        # Check that FWHM values have been computed well
                        if np.all(fwhm > 1):

                            found_good_calstars = True

                            print('CALSTARS file: ' + cal_file + ' loaded!')

                            break


    # If the FWHM information is not present, run the star extraction
    if not found_good_calstars:

        print()
        print("No FWHM information found in existing CALSTARS files!")
        print()
        print("Rerunning star detection...")
        print()

        found_good_calstars = False

        # Run star extraction again, and now FWHM will be computed
        calstars_list = extractStarsAndSave(config, dir_path)

        if len(calstars_list) == 0:
            found_good_calstars = False


        # Check for a minimum of detected stars
        for ff_name, star_data in calstars_list:
            if len(star_data) >= config.ff_min_stars:
                found_good_calstars = True
                break
            
    # If no good calstars exist, stop computing the flux
    if not found_good_calstars:

        print("No stars were detected in the data!")

        return False



    # Dictionary which holds information about FWHM and standard deviation of the image background
    sensor_data = {}

    # Compute median FWHM per FF file
    for ff_name, star_data in calstars_list:

        # Check that the FF file exists in the data directory
        if ff_name not in os.listdir(dir_path):
            continue


        star_data = np.array(star_data)

        # Compute the median star FWHM
        fwhm_median = np.median(star_data[:, 4])


        # Load the FF file and compute the standard deviation of the background
        ff = FFfile.read(dir_path, ff_name)

        # Compute the median stddev of the background
        stddev_median = np.median(ff.stdpixel)


        # Store the values to the dictionary
        sensor_data[ff_name] = [fwhm_median, stddev_median]


        print("{:s}, {:5.2f}, {:5.2f}".format(ff_name, fwhm_median, stddev_median))


    return sensor_data
示例#20
0

        # # Show stars if there are only more then 10 of them
        # if len(x2) < 20:
        #     continue

        # # Load the FF bin file
        # ff = FFfile.read(ff_dir, ff_name)

        # plotStars(ff, x2, y2)


    for ff_name in extraction_list:
        
        # Load data about the image
        ff = FFfile.read(ff_dir, ff_name)

        # Break when an FF file was successfully loaded
        if ff is not None:
            break


    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \
        + os.path.basename(ff_dir) + '.txt'


    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, ff.camno, ff.nrows, ff.ncols)

    # Delete QueudPool backed up files