示例#1
0
def convert_pts_s_th(pts):
    N = len(pts)
    s_i = np.zeros(N - 1)
    th_i = np.zeros(N - 1)
    for i in range(N - 1):
        s_i[i] = lib.get_distance(pts[i], pts[i + 1])
        th_i[i] = lib.get_bearing(pts[i], pts[i + 1])

    return s_i, th_i
示例#2
0
    def __call__(self, s, a, s_p, r, dev):
        if r == -1:
            return r
        else:
            pt_i, pt_ii, d_i, d_ii = find_closest_pt(s_p[0:2], self.wpts)
            d = lib.get_distance(pt_i, pt_ii)
            d_c = get_tiangle_h(d_i, d_ii, d) / self.dis_scale

            th_ref = lib.get_bearing(pt_i, pt_ii)
            th = s_p[2]
            d_th = abs(lib.sub_angles_complex(th_ref, th))
            v_scale = s_p[3] / self.max_v

            new_r = self.mh * np.cos(d_th) * v_scale - self.md * d_c

            return new_r + r
示例#3
0
def MinCurvatureTrajectory(pts, nvecs, ws):
    """
    This function uses optimisation to minimise the curvature of the path
    """
    w_min = -ws[:, 0] * 0.9
    w_max = ws[:, 1] * 0.9
    th_ns = [lib.get_bearing([0, 0], nvecs[i, 0:2]) for i in range(len(nvecs))]

    N = len(pts)

    n_f_a = ca.MX.sym('n_f', N)
    n_f = ca.MX.sym('n_f', N - 1)
    th_f = ca.MX.sym('n_f', N - 1)

    x0_f = ca.MX.sym('x0_f', N - 1)
    x1_f = ca.MX.sym('x1_f', N - 1)
    y0_f = ca.MX.sym('y0_f', N - 1)
    y1_f = ca.MX.sym('y1_f', N - 1)
    th1_f = ca.MX.sym('y1_f', N - 1)
    th2_f = ca.MX.sym('y1_f', N - 1)
    th1_f1 = ca.MX.sym('y1_f', N - 2)
    th2_f1 = ca.MX.sym('y1_f', N - 2)

    o_x_s = ca.Function('o_x', [n_f], [pts[:-1, 0] + nvecs[:-1, 0] * n_f])
    o_y_s = ca.Function('o_y', [n_f], [pts[:-1, 1] + nvecs[:-1, 1] * n_f])
    o_x_e = ca.Function('o_x', [n_f], [pts[1:, 0] + nvecs[1:, 0] * n_f])
    o_y_e = ca.Function('o_y', [n_f], [pts[1:, 1] + nvecs[1:, 1] * n_f])

    dis = ca.Function('dis', [x0_f, x1_f, y0_f, y1_f],
                      [ca.sqrt((x1_f - x0_f)**2 + (y1_f - y0_f)**2)])

    track_length = ca.Function('length', [n_f_a], [
        dis(o_x_s(n_f_a[:-1]), o_x_e(n_f_a[1:]), o_y_s(n_f_a[:-1]),
            o_y_e(n_f_a[1:]))
    ])

    real = ca.Function(
        'real', [th1_f, th2_f],
        [ca.cos(th1_f) * ca.cos(th2_f) + ca.sin(th1_f) * ca.sin(th2_f)])
    im = ca.Function(
        'im', [th1_f, th2_f],
        [-ca.cos(th1_f) * ca.sin(th2_f) + ca.sin(th1_f) * ca.cos(th2_f)])

    sub_cmplx = ca.Function('a_cpx', [th1_f, th2_f],
                            [ca.atan2(im(th1_f, th2_f), real(th1_f, th2_f))])

    get_th_n = ca.Function(
        'gth', [th_f],
        [sub_cmplx(ca.pi * np.ones(N - 1), sub_cmplx(th_f, th_ns[:-1]))])
    d_n = ca.Function('d_n', [n_f_a, th_f],
                      [track_length(n_f_a) / ca.tan(get_th_n(th_f))])

    # objective
    real1 = ca.Function(
        'real1', [th1_f1, th2_f1],
        [ca.cos(th1_f1) * ca.cos(th2_f1) + ca.sin(th1_f1) * ca.sin(th2_f1)])
    im1 = ca.Function(
        'im1', [th1_f1, th2_f1],
        [-ca.cos(th1_f1) * ca.sin(th2_f1) + ca.sin(th1_f1) * ca.cos(th2_f1)])

    sub_cmplx1 = ca.Function(
        'a_cpx1', [th1_f1, th2_f1],
        [ca.atan2(im1(th1_f1, th2_f1), real1(th1_f1, th2_f1))])

    # define symbols
    n = ca.MX.sym('n', N)
    th = ca.MX.sym('th', N - 1)

    nlp = {\
    'x': ca.vertcat(n, th),
    'f': ca.sumsqr(sub_cmplx1(th[1:], th[:-1])),
    # 'f': ca.sumsqr(track_length(n)),
    'g': ca.vertcat(
                # dynamic constraints
                n[1:] - (n[:-1] + d_n(n, th)),

                # boundary constraints
                n[0], #th[0],
                n[-1], #th[-1],
            ) \

    }

    # S = ca.nlpsol('S', 'ipopt', nlp, {'ipopt':{'print_level':5}})
    S = ca.nlpsol('S', 'ipopt', nlp, {'ipopt': {'print_level': 0}})

    ones = np.ones(N)
    n0 = ones * 0

    th0 = []
    for i in range(N - 1):
        th_00 = lib.get_bearing(pts[i, 0:2], pts[i + 1, 0:2])
        th0.append(th_00)

    th0 = np.array(th0)

    x0 = ca.vertcat(n0, th0)

    lbx = list(w_min) + [-np.pi] * (N - 1)
    ubx = list(w_max) + [np.pi] * (N - 1)

    r = S(x0=x0, lbg=0, ubg=0, lbx=lbx, ubx=ubx)

    x_opt = r['x']

    n_set = np.array(x_opt[:N])
    # thetas = np.array(x_opt[1*N:2*(N-1)])

    return n_set