示例#1
0
    def load_center_pts(self):
        track_data = []
        filename = 'maps/' + self.map_name + '_std.csv'

        try:
            with open(filename, 'r') as csvfile:
                csvFile = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC)

                for lines in csvFile:
                    track_data.append(lines)
        except FileNotFoundError:
            raise FileNotFoundError("No map file center pts")

        track = np.array(track_data)
        print(f"Track Loaded: {filename} in reward")

        N = len(track)
        self.wpts = track[:, 0:2]
        ss = np.array([
            lib.get_distance(self.wpts[i], self.wpts[i + 1])
            for i in range(N - 1)
        ])
        ss = np.cumsum(ss)
        self.ss = np.insert(ss, 0, 0)

        self.total_s = self.ss[-1]

        self.diffs = self.wpts[1:, :] - self.wpts[:-1, :]
        self.l2s = self.diffs[:, 0]**2 + self.diffs[:, 1]**2
示例#2
0
def convert_pts_s_th(pts):
    N = len(pts)
    s_i = np.zeros(N - 1)
    th_i = np.zeros(N - 1)
    for i in range(N - 1):
        s_i[i] = lib.get_distance(pts[i], pts[i + 1])
        th_i[i] = lib.get_bearing(pts[i], pts[i + 1])

    return s_i, th_i
示例#3
0
    def __call__(self, s, a, s_p, r, dev):
        if r == -1:
            return r
        else:
            pt_i, pt_ii, d_i, d_ii = find_closest_pt(s_p[0:2], self.wpts)
            d = lib.get_distance(pt_i, pt_ii)
            d_c = get_tiangle_h(d_i, d_ii, d) / self.dis_scale

            th_ref = lib.get_bearing(pt_i, pt_ii)
            th = s_p[2]
            d_th = abs(lib.sub_angles_complex(th_ref, th))
            v_scale = s_p[3] / self.max_v

            new_r = self.mh * np.cos(d_th) * v_scale - self.md * d_c

            return new_r + r
示例#4
0
def find_closest_pt(pt, wpts):
    """
    Returns the two closes points in order along wpts
    """
    dists = [lib.get_distance(pt, wpt) for wpt in wpts]
    min_i = np.argmin(dists)
    d_i = dists[min_i]
    if min_i == len(dists) - 1:
        min_i -= 1
    if dists[max(min_i - 1, 0)] > dists[min_i + 1]:
        p_i = wpts[min_i]
        p_ii = wpts[min_i + 1]
        d_i = dists[min_i]
        d_ii = dists[min_i + 1]
    else:
        p_i = wpts[min_i - 1]
        p_ii = wpts[min_i]
        d_i = dists[min_i - 1]
        d_ii = dists[min_i]

    return p_i, p_ii, d_i, d_ii
示例#5
0
    def check_done_reward_track_train(self):
        self.reward = 0  # normal
        if self.env_map.check_scan_location([self.car.x, self.car.y]):
            self.done = True
            self.reward = -1
            self.done_reason = f"Crash obstacle: [{self.car.x:.2f}, {self.car.y:.2f}]"
        # horizontal_force = self.car.mass * self.car.th_dot * self.car.velocity
        # self.y_forces.append(horizontal_force)
        # if horizontal_force > self.car.max_friction_force:
        # self.done = True
        # self.reward = -1
        # self.done_reason = f"Friction limit reached: {horizontal_force} > {self.car.max_friction_force}"
        if self.steps > 500:
            self.done = True
            self.done_reason = f"Max steps"

        car = [self.car.x, self.car.y]
        if lib.get_distance(car, self.env_map.start) < 0.6 and self.steps > 50:
            self.done = True
            self.reward = 1
            self.done_reason = f"Lap complete"

        return self.done
示例#6
0
def distance_potential(s, s_p, end, beta=0.2, scale=0.5):
    prev_dist = lib.get_distance(s[0:2], end)
    cur_dist = lib.get_distance(s_p[0:2], end)
    d_dis = (prev_dist - cur_dist) / scale

    return d_dis * beta