def run(plotIt=True): cs, ncx, ncz, npad = 5.0, 25, 15, 15 hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = discretize.CylMesh([hx, 1, hz], "00C") active = mesh.vectorCCz < 0.0 layer = (mesh.vectorCCz < 0.0) & (mesh.vectorCCz >= -100.0) actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap sig_half = 2e-3 sig_air = 1e-8 sig_layer = 1e-3 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer mtrue = np.log(sigma[active]) rxOffset = 1e-3 rx = time_domain.Rx.PointMagneticFluxTimeDerivative( np.array([[rxOffset, 0.0, 30]]), np.logspace(-5, -3, 31), "z" ) src = time_domain.Src.MagDipole([rx], location=np.array([0.0, 0.0, 80])) survey = time_domain.Survey([src]) time_steps = [(1e-06, 20), (1e-05, 20), (0.0001, 20)] simulation = time_domain.Simulation3DElectricField( mesh, sigmaMap=mapping, survey=survey, time_steps=time_steps ) # d_true = simulation.dpred(mtrue) # create observed data rel_err = 0.05 data = simulation.make_synthetic_data(mtrue, relative_error=rel_err) dmisfit = data_misfit.L2DataMisfit(simulation=simulation, data=data) regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Tikhonov(regMesh, alpha_s=1e-2, alpha_x=1.0) opt = optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0) inv = inversion.BaseInversion(invProb, directiveList=[beta, betaest]) m0 = np.log(np.ones(mtrue.size) * sig_half) simulation.counter = opt.counter = utils.Counter() opt.remember("xc") mopt = inv.run(m0) if plotIt: fig, ax = plt.subplots(1, 2, figsize=(10, 6)) ax[0].loglog(rx.times, -invProb.dpred, "b.-") ax[0].loglog(rx.times, -data.dobs, "r.-") ax[0].legend(("Noisefree", "$d^{obs}$"), fontsize=16) ax[0].set_xlabel("Time (s)", fontsize=14) ax[0].set_ylabel("$B_z$ (T)", fontsize=16) ax[0].set_xlabel("Time (s)", fontsize=14) ax[0].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5) plt.semilogx(sigma[active], mesh.vectorCCz[active]) plt.semilogx(np.exp(mopt), mesh.vectorCCz[active]) ax[1].set_ylim(-600, 0) ax[1].set_xlim(1e-4, 1e-2) ax[1].set_xlabel("Conductivity (S/m)", fontsize=14) ax[1].set_ylabel("Depth (m)", fontsize=14) ax[1].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5) plt.legend(["$\sigma_{true}$", "$\sigma_{pred}$"])
# Set up the source list src_list = [ TDEM.Src.LineCurrent( receiver_list=rec_list, location=np.array([[*src[::2]], [*src[1::2]]]), ), ] # Create `Survey` survey = TDEM.Survey(src_list) # Define the `Simulation` prob = TDEM.Simulation3DElectricField( mesh, survey=survey, rhoMap=maps.IdentityMap(mesh), solver=Solver, time_steps=time_steps, ) ############################################################################### # Compute # """"""" spg_bg = prob.dpred(mres_bg) spg_tg = prob.dpred(mres_tg) ############################################################################### # (F) Plots # ---------
def run(plotIt=True, saveFig=False, cleanup=True): """ Run 1D inversions for a single sounding of the RESOLVE and SkyTEM bookpurnong data :param bool plotIt: show the plots? :param bool saveFig: save the figure :param bool cleanup: remove the downloaded results """ downloads, directory = download_and_unzip_data() resolve = h5py.File(os.path.sep.join([directory, "booky_resolve.hdf5"]), "r") skytem = h5py.File(os.path.sep.join([directory, "booky_skytem.hdf5"]), "r") river_path = resolve["river_path"].value # Choose a sounding location to invert xloc, yloc = 462100.0, 6196500.0 rxind_skytem = np.argmin( abs(skytem["xy"][:, 0] - xloc) + abs(skytem["xy"][:, 1] - yloc)) rxind_resolve = np.argmin( abs(resolve["xy"][:, 0] - xloc) + abs(resolve["xy"][:, 1] - yloc)) # Plot both resolve and skytem data on 2D plane fig = plt.figure(figsize=(13, 6)) title = ["RESOLVE In-phase 400 Hz", "SkyTEM High moment 156 $\mu$s"] ax1 = plt.subplot(121) ax2 = plt.subplot(122) axs = [ax1, ax2] out_re = utils.plot2Ddata( resolve["xy"], resolve["data"][:, 0], ncontour=100, contourOpts={"cmap": "viridis"}, ax=ax1, ) vmin, vmax = out_re[0].get_clim() cb_re = plt.colorbar(out_re[0], ticks=np.linspace(vmin, vmax, 3), ax=ax1, fraction=0.046, pad=0.04) temp_skytem = skytem["data"][:, 5].copy() temp_skytem[skytem["data"][:, 5] > 7e-10] = 7e-10 out_sky = utils.plot2Ddata( skytem["xy"][:, :2], temp_skytem, ncontour=100, contourOpts={ "cmap": "viridis", "vmax": 7e-10 }, ax=ax2, ) vmin, vmax = out_sky[0].get_clim() cb_sky = plt.colorbar( out_sky[0], ticks=np.linspace(vmin, vmax * 0.99, 3), ax=ax2, format="%.1e", fraction=0.046, pad=0.04, ) cb_re.set_label("Bz (ppm)") cb_sky.set_label("dB$_z$ / dt (V/A-m$^4$)") for i, ax in enumerate(axs): xticks = [460000, 463000] yticks = [6195000, 6198000, 6201000] ax.set_xticks(xticks) ax.set_yticks(yticks) ax.plot(xloc, yloc, "wo") ax.plot(river_path[:, 0], river_path[:, 1], "k", lw=0.5) ax.set_aspect("equal") if i == 1: ax.plot(skytem["xy"][:, 0], skytem["xy"][:, 1], "k.", alpha=0.02, ms=1) ax.set_yticklabels([str(" ") for f in yticks]) else: ax.plot(resolve["xy"][:, 0], resolve["xy"][:, 1], "k.", alpha=0.02, ms=1) ax.set_yticklabels([str(f) for f in yticks]) ax.set_ylabel("Northing (m)") ax.set_xlabel("Easting (m)") ax.set_title(title[i]) ax.axis("equal") # plt.tight_layout() if saveFig is True: fig.savefig("resolve_skytem_data.png", dpi=600) # ------------------ Mesh ------------------ # # Step1: Set 2D cylindrical mesh cs, ncx, ncz, npad = 1.0, 10.0, 10.0, 20 hx = [(cs, ncx), (cs, npad, 1.3)] npad = 12 temp = np.logspace(np.log10(1.0), np.log10(12.0), 19) temp_pad = temp[-1] * 1.3**np.arange(npad) hz = np.r_[temp_pad[::-1], temp[::-1], temp, temp_pad] mesh = discretize.CylMesh([hx, 1, hz], "00C") active = mesh.vectorCCz < 0.0 # Step2: Set a SurjectVertical1D mapping # Note: this sets our inversion model as 1D log conductivity # below subsurface active = mesh.vectorCCz < 0.0 actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap sig_half = 1e-1 sig_air = 1e-8 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half # Initial and reference model m0 = np.log(sigma[active]) # ------------------ RESOLVE Forward Simulation ------------------ # # Step3: Invert Resolve data # Bird height from the surface b_height_resolve = resolve["src_elevation"].value src_height_resolve = b_height_resolve[rxind_resolve] # Set Rx (In-phase and Quadrature) rxOffset = 7.86 bzr = FDEM.Rx.PointMagneticFluxDensitySecondary( np.array([[rxOffset, 0.0, src_height_resolve]]), orientation="z", component="real", ) bzi = FDEM.Rx.PointMagneticFluxDensity( np.array([[rxOffset, 0.0, src_height_resolve]]), orientation="z", component="imag", ) # Set Source (In-phase and Quadrature) frequency_cp = resolve["frequency_cp"].value freqs = frequency_cp.copy() srcLoc = np.array([0.0, 0.0, src_height_resolve]) srcList = [ FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z") for freq in freqs ] # Set FDEM survey (In-phase and Quadrature) survey = FDEM.Survey(srcList) prb = FDEM.Simulation3DMagneticFluxDensity(mesh, sigmaMap=mapping, Solver=Solver) prb.survey = survey # ------------------ RESOLVE Inversion ------------------ # # Primary field bp = -mu_0 / (4 * np.pi * rxOffset**3) # Observed data cpi_inds = [0, 2, 6, 8, 10] cpq_inds = [1, 3, 7, 9, 11] dobs_re = (np.c_[resolve["data"][rxind_resolve, :][cpi_inds], resolve["data"][rxind_resolve, :][cpq_inds], ].flatten() * bp * 1e-6) # Uncertainty relative = np.repeat(np.r_[np.ones(3) * 0.1, np.ones(2) * 0.15], 2) floor = 20 * abs(bp) * 1e-6 std = abs(dobs_re) * relative + floor # Data Misfit data_resolve = data.Data(dobs=dobs_re, survey=survey, standard_deviation=std) dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data_resolve) # Regularization regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh, mapping=maps.IdentityMap(regMesh)) # Optimization opt = optimization.InexactGaussNewton(maxIter=5) # statement of the inverse problem invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Inversion directives and parameters target = directives.TargetMisfit() # stop when we hit target misfit invProb.beta = 2.0 inv = inversion.BaseInversion(invProb, directiveList=[target]) reg.alpha_s = 1e-3 reg.alpha_x = 1.0 reg.mref = m0.copy() opt.LSshorten = 0.5 opt.remember("xc") # run the inversion mopt_re = inv.run(m0) dpred_re = invProb.dpred # ------------------ SkyTEM Forward Simulation ------------------ # # Step4: Invert SkyTEM data # Bird height from the surface b_height_skytem = skytem["src_elevation"].value src_height = b_height_skytem[rxind_skytem] srcLoc = np.array([0.0, 0.0, src_height]) # Radius of the source loop area = skytem["area"].value radius = np.sqrt(area / np.pi) rxLoc = np.array([[radius, 0.0, src_height]]) # Parameters for current waveform t0 = skytem["t0"].value times = skytem["times"].value waveform_skytem = skytem["waveform"].value offTime = t0 times_off = times - t0 # Note: we are Using theoretical VTEM waveform, # but effectively fits SkyTEM waveform peakTime = 1.0000000e-02 a = 3.0 dbdt_z = TDEM.Rx.PointMagneticFluxTimeDerivative( locations=rxLoc, times=times_off[:-3] + offTime, orientation="z") # vertical db_dt rxList = [dbdt_z] # list of receivers srcList = [ TDEM.Src.CircularLoop( rxList, loc=srcLoc, radius=radius, orientation="z", waveform=TDEM.Src.VTEMWaveform(offTime=offTime, peakTime=peakTime, a=3.0), ) ] # solve the problem at these times timeSteps = [ (peakTime / 5, 5), ((offTime - peakTime) / 5, 5), (1e-5, 5), (5e-5, 5), (1e-4, 10), (5e-4, 15), ] prob = TDEM.Simulation3DElectricField(mesh, time_steps=timeSteps, sigmaMap=mapping, Solver=Solver) survey = TDEM.Survey(srcList) prob.survey = survey src = srcList[0] rx = src.receiver_list[0] wave = [] for time in prob.times: wave.append(src.waveform.eval(time)) wave = np.hstack(wave) out = prob.dpred(m0) # plot the waveform fig = plt.figure(figsize=(5, 3)) times_off = times - t0 plt.plot(waveform_skytem[:, 0], waveform_skytem[:, 1], "k.") plt.plot(prob.times, wave, "k-", lw=2) plt.legend(("SkyTEM waveform", "Waveform (fit)"), fontsize=10) for t in rx.times: plt.plot(np.ones(2) * t, np.r_[-0.03, 0.03], "k-") plt.ylim(-0.1, 1.1) plt.grid(True) plt.xlabel("Time (s)") plt.ylabel("Normalized current") if saveFig: fig.savefig("skytem_waveform", dpi=200) # Observed data dobs_sky = skytem["data"][rxind_skytem, :-3] * area # ------------------ SkyTEM Inversion ------------------ # # Uncertainty relative = 0.12 floor = 7.5e-12 std = abs(dobs_sky) * relative + floor # Data Misfit data_sky = data.Data(dobs=-dobs_sky, survey=survey, standard_deviation=std) dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data_sky) # Regularization regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh, mapping=maps.IdentityMap(regMesh)) # Optimization opt = optimization.InexactGaussNewton(maxIter=5) # statement of the inverse problem invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Directives and Inversion Parameters target = directives.TargetMisfit() invProb.beta = 20.0 inv = inversion.BaseInversion(invProb, directiveList=[target]) reg.alpha_s = 1e-1 reg.alpha_x = 1.0 opt.LSshorten = 0.5 opt.remember("xc") reg.mref = mopt_re # Use RESOLVE model as a reference model # run the inversion mopt_sky = inv.run(m0) dpred_sky = invProb.dpred # Plot the figure from the paper plt.figure(figsize=(12, 8)) fs = 13 # fontsize matplotlib.rcParams["font.size"] = fs ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2) ax1 = plt.subplot2grid((2, 2), (0, 1)) ax2 = plt.subplot2grid((2, 2), (1, 1)) # Recovered Models sigma_re = np.repeat(np.exp(mopt_re), 2, axis=0) sigma_sky = np.repeat(np.exp(mopt_sky), 2, axis=0) z = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0) z = np.r_[mesh.vectorCCz[active][0], z, mesh.vectorCCz[active][-1]] ax0.semilogx(sigma_re, z, "k", lw=2, label="RESOLVE") ax0.semilogx(sigma_sky, z, "b", lw=2, label="SkyTEM") ax0.set_ylim(-50, 0) # ax0.set_xlim(5e-4, 1e2) ax0.grid(True) ax0.set_ylabel("Depth (m)") ax0.set_xlabel("Conducivity (S/m)") ax0.legend(loc=3) ax0.set_title("(a) Recovered Models") # RESOLVE Data ax1.loglog(frequency_cp, dobs_re.reshape((5, 2))[:, 0] / bp * 1e6, "k-", label="Obs (real)") ax1.loglog( frequency_cp, dobs_re.reshape((5, 2))[:, 1] / bp * 1e6, "k--", label="Obs (imag)", ) ax1.loglog( frequency_cp, dpred_re.reshape((5, 2))[:, 0] / bp * 1e6, "k+", ms=10, markeredgewidth=2.0, label="Pred (real)", ) ax1.loglog( frequency_cp, dpred_re.reshape((5, 2))[:, 1] / bp * 1e6, "ko", ms=6, markeredgecolor="k", markeredgewidth=0.5, label="Pred (imag)", ) ax1.set_title("(b) RESOLVE") ax1.set_xlabel("Frequency (Hz)") ax1.set_ylabel("Bz (ppm)") ax1.grid(True) ax1.legend(loc=3, fontsize=11) # SkyTEM data ax2.loglog(times_off[3:] * 1e6, dobs_sky / area, "b-", label="Obs") ax2.loglog( times_off[3:] * 1e6, -dpred_sky / area, "bo", ms=4, markeredgecolor="k", markeredgewidth=0.5, label="Pred", ) ax2.set_xlim(times_off.min() * 1e6 * 1.2, times_off.max() * 1e6 * 1.1) ax2.set_xlabel("Time ($\mu s$)") ax2.set_ylabel("dBz / dt (V/A-m$^4$)") ax2.set_title("(c) SkyTEM High-moment") ax2.grid(True) ax2.legend(loc=3) a3 = plt.axes([0.86, 0.33, 0.1, 0.09], facecolor=[0.8, 0.8, 0.8, 0.6]) a3.plot(prob.times * 1e6, wave, "k-") a3.plot(rx.times * 1e6, np.zeros_like(rx.times), "k|", markeredgewidth=1, markersize=12) a3.set_xlim([prob.times.min() * 1e6 * 0.75, prob.times.max() * 1e6 * 1.1]) a3.set_title("(d) Waveform", fontsize=11) a3.set_xticks([prob.times.min() * 1e6, t0 * 1e6, prob.times.max() * 1e6]) a3.set_yticks([]) # a3.set_xticklabels(['0', '2e4']) a3.set_xticklabels(["-1e4", "0", "1e4"]) plt.tight_layout() if saveFig: plt.savefig("booky1D_time_freq.png", dpi=600) if plotIt: plt.show() resolve.close() skytem.close() if cleanup: print(os.path.split(directory)[:-1]) os.remove( os.path.sep.join(directory.split()[:-1] + ["._bookpurnong_inversion"])) os.remove(downloads) shutil.rmtree(directory)
# Set up the source list src_list = [ TDEM.Src.LineCurrent( rxList=rec_list, loc=np.array([[*src[::2]], [*src[1::2]]]), ), ] # Create `Survey` survey = TDEM.Survey(src_list) # Define the `Simulation` prob = TDEM.Simulation3DElectricField( mesh, survey=survey, rhoMap=maps.IdentityMap(mesh), Solver=pymatsolver.Pardiso, timeSteps=time_steps, ) ############################################################################### # Compute # """"""" spg_bg = prob.dpred(mres_bg) spg_tg = prob.dpred(mres_tg) ############################################################################### # (F) Plots # ---------