示例#1
0
文件: visual.py 项目: eolsze/eo-allen
def explore_vesselness_3d(im, sigma, th, roi=[-1]):
    # roi = [x0, y0, x1, y1]
    if roi[0] < 0:
        roi = [0, 0, im.shape[1], im.shape[2]]

    from aicssegmentation.core.vessel import vesselness3D

    response = vesselness3D(im, sigmas=sigma, tau=1, whiteonblack=True)
    bw = response > th

    out = img_seg_combine(im, bw, roi)
    return out
def segment_image(struct_img):

    VESSELNESS_SIGMA = 1.0
    VESSELNESS_THRESHOLD = 1e-3

    structure_img_smooth = edge_preserving_smoothing_3d(struct_img)

    response = vesselness3D(
        structure_img_smooth, sigmas=[VESSELNESS_SIGMA], tau=1, whiteonblack=True
    )

    return (response > VESSELNESS_THRESHOLD).astype(np.uint8)
示例#3
0
def Workflow_cardio_myl7(
    struct_img: np.ndarray,
    rescale_ratio: float = -1,
    output_type: str = "default",
    output_path: Union[str, Path] = None,
    fn: Union[str, Path] = None,
    output_func=None,
):
    """
    classic segmentation workflow wrapper for structure Cardio MYL7

    Parameter:
    -----------
    struct_img: np.ndarray
        the 3D image to be segmented
    rescale_ratio: float
        an optional parameter to allow rescale the image before running the
        segmentation functions, default is no rescaling
    output_type: str
        select how to handle output. Currently, four types are supported:
        1. default: the result will be saved at output_path whose filename is
            original name without extention + "_struct_segmentaiton.tiff"
        2. array: the segmentation result will be simply returned as a numpy array
        3. array_with_contour: segmentation result will be returned together with
            the contour of the segmentation
        4. customize: pass in an extra output_func to do a special save. All the
            intermediate results, names of these results, the output_path, and the
            original filename (without extension) will be passed in to output_func.
    """
    ##########################################################################
    # PARAMETERS:
    #   note that these parameters are supposed to be fixed for the structure
    #   and work well accross different datasets

    intensity_norm_param = [8, 15.5]
    vesselness_sigma = [1]
    vesselness_cutoff = 0.01
    minArea = 15
    ##########################################################################

    out_img_list = []
    out_name_list = []

    ###################
    # PRE_PROCESSING
    ###################
    # intenisty normalization (min/max)
    struct_img = intensity_normalization(struct_img,
                                         scaling_param=intensity_norm_param)

    out_img_list.append(struct_img.copy())
    out_name_list.append("im_norm")

    # rescale if needed
    if rescale_ratio > 0:
        struct_img = zoom(struct_img, (1, rescale_ratio, rescale_ratio),
                          order=2)

        struct_img = (struct_img - struct_img.min() +
                      1e-8) / (struct_img.max() - struct_img.min() + 1e-8)

    # smoothing with gaussian filter
    structure_img_smooth = edge_preserving_smoothing_3d(struct_img)

    out_img_list.append(structure_img_smooth.copy())
    out_name_list.append("im_smooth")

    ###################
    # core algorithm
    ###################

    # vesselness 3d
    response = vesselness3D(structure_img_smooth,
                            sigmas=vesselness_sigma,
                            tau=1,
                            whiteonblack=True)
    bw = response > vesselness_cutoff

    ###################
    # POST-PROCESSING
    ###################
    seg = remove_small_objects(bw > 0,
                               min_size=minArea,
                               connectivity=1,
                               in_place=False)

    # output
    seg = seg > 0
    seg = seg.astype(np.uint8)
    seg[seg > 0] = 255

    out_img_list.append(seg.copy())
    out_name_list.append("bw_final")

    if output_type == "default":
        # the default final output, simply save it to the output path
        save_segmentation(seg, False, Path(output_path), fn)
    elif output_type == "customize":
        # the hook for passing in a customized output function
        # use "out_img_list" and "out_name_list" in your hook to
        # customize your output functions
        output_func(out_img_list, out_name_list, Path(output_path), fn)
    elif output_type == "array":
        return seg
    elif output_type == "array_with_contour":
        return (seg, generate_segmentation_contour(seg))
    else:
        raise NotImplementedError("invalid output type: {output_type}")
示例#4
0
def Workflow_son(struct_img, rescale_ratio, output_type, output_path, fn, output_func=None):
    ##########################################################################
    # PARAMETERS:
    #   note that these parameters are supposed to be fixed for the structure
    #   and work well accross different datasets
    ##########################################################################

    intensity_norm_param = [2, 30]
    vesselness_sigma = [1.2]
    vesselness_cutoff = 0.15
    minArea = 15

    dot_2d_sigma = 1
    dot_3d_sigma = 1.15
    ##########################################################################

    ###################
    # PRE_PROCESSING
    ###################
    # intenisty normalization (min/max)
    struct_img = intensity_normalization(struct_img, scaling_param=intensity_norm_param)

    # smoothing with boundary preserving smoothing
    structure_img_smooth = edge_preserving_smoothing_3d(struct_img)

    ###################
    # core algorithm
    ###################
    response_f3 = vesselness3D(structure_img_smooth, sigmas=vesselness_sigma,  tau=1, whiteonblack=True)
    response_f3 = response_f3 > vesselness_cutoff

    response_s3_1 = dot_3d(structure_img_smooth, log_sigma=dot_3d_sigma)
    response_s3_3 = dot_3d(structure_img_smooth, log_sigma=3)

    bw_small_inverse = remove_small_objects(response_s3_1>0.03, min_size=150)
    bw_small = np.logical_xor(bw_small_inverse, response_s3_1>0.02)

    bw_medium = np.logical_or(bw_small, response_s3_1>0.07)
    bw_large = np.logical_or(response_s3_3>0.2, response_f3>0.25)
    bw = np.logical_or( np.logical_or(bw_small, bw_medium), bw_large)

    ###################
    # POST-PROCESSING
    ###################
    bw = remove_small_objects(bw>0, min_size=minArea, connectivity=1, in_place=False)
    for zz in range(bw.shape[0]):
        bw[zz,: , :] = remove_small_objects(bw[zz,:,:], min_size=3, connectivity=1, in_place=False)

    seg = remove_small_objects(bw>0, min_size=minArea, connectivity=1, in_place=False)

    seg = seg>0
    seg = seg.astype(np.uint8)
    seg[seg>0]=255

    if output_type == 'default': 
        # the default final output
        save_segmentation(seg, False, output_path, fn)
    elif output_type == 'array':
        return seg
    elif output_type == 'array_with_contour':
        return (seg, generate_segmentation_contour(seg))
    else:
        print('your can implement your output hook here, but not yet')
        quit()
示例#5
0
def Workflow_son(
    struct_img: np.ndarray,
    rescale_ratio: float = -1,
    output_type: str = "default",
    output_path: Union[str, Path] = None,
    fn: Union[str, Path] = None,
    output_func=None,
):
    """
    classic segmentation workflow wrapper for structure SON

    Parameter:
    -----------
    struct_img: np.ndarray
        the 3D image to be segmented
    rescale_ratio: float
        an optional parameter to allow rescale the image before running the
        segmentation functions, default is no rescaling
    output_type: str
        select how to handle output. Currently, four types are supported:
        1. default: the result will be saved at output_path whose filename is
            original name without extention + "_struct_segmentaiton.tiff"
        2. array: the segmentation result will be simply returned as a numpy array
        3. array_with_contour: segmentation result will be returned together with
            the contour of the segmentation
        4. customize: pass in an extra output_func to do a special save. All the
            intermediate results, names of these results, the output_path, and the
            original filename (without extension) will be passed in to output_func.
    """
    ##########################################################################
    # PARAMETERS:
    #   note that these parameters are supposed to be fixed for the structure
    #   and work well accross different datasets
    ##########################################################################

    intensity_norm_param = [2, 30]
    vesselness_sigma = [1.2]
    vesselness_cutoff = 0.15
    minArea = 15

    # dot_2d_sigma = 1
    dot_3d_sigma = 1.15
    ##########################################################################

    out_img_list = []
    out_name_list = []

    ###################
    # PRE_PROCESSING
    ###################
    # intenisty normalization (min/max)
    struct_img = intensity_normalization(struct_img,
                                         scaling_param=intensity_norm_param)

    out_img_list.append(struct_img.copy())
    out_name_list.append("im_norm")

    # smoothing with boundary preserving smoothing
    structure_img_smooth = edge_preserving_smoothing_3d(struct_img)

    out_img_list.append(structure_img_smooth.copy())
    out_name_list.append("im_smooth")

    ###################
    # core algorithm
    ###################
    response_f3 = vesselness3D(structure_img_smooth,
                               sigmas=vesselness_sigma,
                               tau=1,
                               whiteonblack=True)
    response_f3 = response_f3 > vesselness_cutoff

    response_s3_1 = dot_3d(structure_img_smooth, log_sigma=dot_3d_sigma)
    response_s3_3 = dot_3d(structure_img_smooth, log_sigma=3)

    bw_small_inverse = remove_small_objects(response_s3_1 > 0.03, min_size=150)
    bw_small = np.logical_xor(bw_small_inverse, response_s3_1 > 0.02)

    bw_medium = np.logical_or(bw_small, response_s3_1 > 0.07)
    bw_large = np.logical_or(response_s3_3 > 0.2, response_f3 > 0.25)
    bw = np.logical_or(np.logical_or(bw_small, bw_medium), bw_large)

    ###################
    # POST-PROCESSING
    ###################
    bw = remove_small_objects(bw > 0,
                              min_size=minArea,
                              connectivity=1,
                              in_place=False)
    for zz in range(bw.shape[0]):
        bw[zz, :, :] = remove_small_objects(bw[zz, :, :],
                                            min_size=3,
                                            connectivity=1,
                                            in_place=False)

    seg = remove_small_objects(bw > 0,
                               min_size=minArea,
                               connectivity=1,
                               in_place=False)

    seg = seg > 0
    seg = seg.astype(np.uint8)
    seg[seg > 0] = 255

    out_img_list.append(seg.copy())
    out_name_list.append("bw_final")

    if output_type == "default":
        # the default final output, simply save it to the output path
        save_segmentation(seg, False, Path(output_path), fn)
    elif output_type == "customize":
        # the hook for passing in a customized output function
        # use "out_img_list" and "out_name_list" in your hook to
        # customize your output functions
        output_func(out_img_list, out_name_list, Path(output_path), fn)
    elif output_type == "array":
        return seg
    elif output_type == "array_with_contour":
        return (seg, generate_segmentation_contour(seg))
    else:
        raise NotImplementedError("invalid output type: {output_type}")