def _move_by_vehicle_poses(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: raise Warning("simSetVehiclePose() is meant for ComputerVision mode") # NOTE check https://github.com/microsoft/AirSim/pull/2324 for position, orientation in args.viewpoints: pose = airsim.Pose(airsim.Vector3r(*position), airsim.Quaternionr(*orientation)) client.simSetVehiclePose(pose, ignore_collision=True) client.hoverAsync().join() time.sleep(2)
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: if args.reset: client.reset() client.simFlushPersistentMarkers() plot_pose(client, TEST_POSE) plot_xyz_axis(client, X, Y, Z, origin=O) with airsimy.pose_at_simulation_pause(client) as pose: plot_pose(client, pose) client.simPlotArrows([pose.position], [LOOK_AT_TARGET], Rgba.White, is_persistent=True) # NOTE use x' = (LOOK_AT_TARGET - p) as the new x-axis (i.e. front vector), # and project the current up/down vector (z-axis in AirSim) into the plane # that is normal to x' at point p. This way we can get the remaining right # vector by computing cross(down, front). x_prime = LOOK_AT_TARGET - pose.position _, _, z_axis = AirSimNedTransform.local_axes_frame(pose) z_prime = airsimy.vector_projected_onto_plane(z_axis, plane_normal=x_prime) # NOTE don't forget to normalize! Not doing so will break the orientation below. x_prime /= x_prime.get_length() z_prime /= z_prime.get_length() y_prime = z_prime.cross(x_prime) plot_xyz_axis( client, x_prime * 1.25, y_prime * 1.25, z_prime * 1.25, origin=pose.position, colors=CMY, thickness=1.5, ) # Now, find the orientation that corresponds to the x'-y'-z' axis frame: new_pose = Pose( pose.position, airsimy.quaternion_that_rotates_axes_frame( source_xyz_axes=(X, Y, Z), target_xyz_axes=(x_prime, y_prime, z_prime), ), ) plot_pose(client, new_pose ) # NOTE this should be the same as the plot_xyz_axis above! if args.set: client.simSetVehiclePose(new_pose, ignore_collision=True)
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: if args.z is not None and args.z > 0: print("Warning: AirSim uses NED coordinates, meaning +z is down") print(" (to fly upwards use negative z values)\n") state = client.getMultirotorState() start_pos = { 'NED': get_NED_coords(client, state), 'UE4': get_UE4_coords(client, state) } # obs.: UE4's PlayerStart coordinates correspond to ~(0, 0, 0) in AirSim's NED system coords_format = "({:.2f} {:.2f} {:.2f})" print("Starting position (NED): {}".format(coords_format).format( *start_pos['NED'])) if args.verbose: print("Starting position (UE4): {}".format(coords_format).format( *start_pos['UE4'])) if args.relative: if args.z is None: args.z = 0 xyz = tuple( sum(axis) for axis in zip(start_pos['NED'], (args.x, args.y, args.z))) else: if args.z is None: args.z = start_pos['NED'][2] # keep the same altitude xyz = (args.x, args.y, args.z) if state.landed_state == airsim.LandedState.Landed: print(f"\nlanded_state = {state.landed_state} (Landed)") print("[ff] Taking off... ", end="", flush=True) client.takeoffAsync().join() print("done.") else: # NOTE .exe environments seem to always return Landed print(f"\nlanded_state = {state.landed_state} (Flying)") client.hoverAsync().join() if args.teleport: print("[ff] Teleporting to {}... ".format(coords_format).format(*xyz), end="", flush=True) pose = airsim.Pose() pose.position = airsim.Vector3r(*xyz) client.simSetVehiclePose(pose, ignore_collision=True) time.sleep(4) # wait a few seconds after teleporting else: print("[ff] Moving to {}... ".format(coords_format).format(*xyz), end="", flush=True) client.moveToPositionAsync(*xyz, args.velocity).join() print("done.") print(f"[ff] Hovering for {args.wait_sec} seconds... ", end="", flush=True) client.hoverAsync().join() time.sleep(args.wait_sec) print("done.\n") state = client.getMultirotorState() print("[ff] Ending position (NED): {}".format(coords_format).format( *get_NED_coords(client, state))) if args.verbose: print("[ff] Ending position (UE4): {}".format(coords_format).format( *get_UE4_coords(client, state)))
def teleport(client: airsim.MultirotorClient, to: Pose, ignore_collision: bool = True) -> None: # HACK see https://github.com/Microsoft/AirSim/issues/1618#issuecomment-689152817 client.simSetVehiclePose(to, ignore_collision) client.moveToPositionAsync(*ff.to_xyz_tuple(to.position), velocity=1)
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: initial_pose = client.simGetVehiclePose() if args.verbose: ff.print_pose(initial_pose, airsim.to_eularian_angles) ff.log(client.simGetCameraInfo(camera_name=CAPTURE_CAMERA)) if args.flush or (args.capture_dir and not args.debug): client.simFlushPersistentMarkers() camera_poses = [] for camera in args.trajectory: position = convert_uavmvs_to_airsim_position( camera.position, translation=args.offset, scaling=args.scale ) orientation = quaternion_orientation_from_eye_to_look_at(position, LOOK_AT_TARGET) camera_poses.append(Pose(position, orientation)) if args.debug: camera_positions = [pose.position for pose in camera_poses] client.simPlotPoints(camera_positions, Rgba.Blue, is_persistent=True) client.simPlotLineStrip(camera_positions, Rgba.Cyan, thickness=2.5, is_persistent=True) airsim_record = [] def do_stuff_at_uavmvs_viewpoint(i, pose): nonlocal client, camera_poses, airsim_record log_string = f"({i}/{len(camera_poses)})" p, q = pose.position, pose.orientation if args.debug: log_string += f" position = {to_xyz_str(p)}" client.simPlotTransforms([pose], scale=100, is_persistent=True) # client.simPlotArrows([p], [LOOK_AT_TARGET], Rgba.White, thickness=3.0, duration=10) elif args.capture_dir: path = f"{args.prefix}pose{args.suffix}_{i:0{len(str(len(camera_poses)))}}.png" path = os.path.join(args.capture_dir, path) airsim.write_png(path, AirSimImage.get_mono(client, CAPTURE_CAMERA)) log_string += f' saved image to "{path}"' record_line = AirSimRecord.make_line_string(p, q, time_stamp=str(i), image_file=path) airsim_record.append(record_line) ff.log(log_string) if IS_CV_MODE: for i, camera_pose in enumerate(camera_poses): client.simSetVehiclePose(camera_pose, ignore_collision=True) do_stuff_at_uavmvs_viewpoint(i, camera_pose) time.sleep(CV_SLEEP_SEC) else: client.moveToZAsync(z=-10, velocity=VELOCITY).join() # XXX avoid colliding on take off client.hoverAsync().join() mean_position_error = 0.0 for i, camera_pose in enumerate(camera_poses): client.moveToPositionAsync( *to_xyz_tuple(camera_pose.position), velocity=VELOCITY, drivetrain=DrivetrainType.MaxDegreeOfFreedom, yaw_mode=YawMode(is_rate=False, yaw_or_rate=YAW_N), ).join() with pose_at_simulation_pause(client) as real_pose: # NOTE when we pre-compute the viewpoint's camera orientation, we use the # expected drone position, which (should be close, but) is not the actual # drone position. Hence, we could experiment with using fake orientation: # quaternion_orientation_from_eye_to_look_at(real_pose.position, LOOK_AT_TARGET) fake_pose = Pose(real_pose.position, camera_pose.orientation) client.simSetVehiclePose(fake_pose, ignore_collision=True) client.simContinueForFrames(1) # NOTE ensures pose change do_stuff_at_uavmvs_viewpoint(i, fake_pose) client.simSetVehiclePose(real_pose, ignore_collision=True) position_error = real_pose.position.distance_to(camera_pose.position) mean_position_error += position_error ff.log_debug(f"{position_error = }") mean_position_error /= len(camera_poses) ff.log_debug(f"{mean_position_error = }") if airsim_record: print_to_file = args.record_path is not None file = open(args.record_path, "w") if print_to_file else None print(AirSimRecord.make_header_string(), file=(file if print_to_file else sys.stdout)) for line in airsim_record: print(line, file=(file if print_to_file else sys.stdout)) if print_to_file: file.close() ff.log_info(f'Saved AirSim record to "{args.record_path}"')