def log_parameter_and_gradient_statistics(self, # pylint: disable=invalid-name
                                              model: Model,
                                              batch_grad_norm: float) -> None:
        """
        Send the mean and std of all parameters and gradients to tensorboard, as well
        as logging the average gradient norm.
        """
        if self._should_log_parameter_statistics:
            # Log parameter values to Tensorboard
            for name, param in model.named_parameters():
                self.add_train_scalar("parameter_mean/" + name, param.data.mean())
                if param.data.numel() > 1:
                    self.add_train_scalar("parameter_std/" + name, param.data.std())
                if param.grad is not None:
                    if param.grad.is_sparse:
                        # pylint: disable=protected-access
                        grad_data = param.grad.data._values()
                    else:
                        grad_data = param.grad.data

                    # skip empty gradients
                    if torch.prod(torch.tensor(grad_data.shape)).item() > 0: # pylint: disable=not-callable
                        self.add_train_scalar("gradient_mean/" + name, grad_data.mean())
                        if grad_data.numel() > 1:
                            self.add_train_scalar("gradient_std/" + name, grad_data.std())
                    else:
                        # no gradient for a parameter with sparse gradients
                        logger.info("No gradient for %s, skipping tensorboard logging.", name)
            # norm of gradients
            if batch_grad_norm is not None:
                self.add_train_scalar("gradient_norm", batch_grad_norm)
示例#2
0
    def from_params(cls,
                    model: Model,
                    serialization_dir: str,
                    iterator: DataIterator,
                    train_data: Iterable[Instance],
                    validation_data: Optional[Iterable[Instance]],
                    params: Params,
                    validation_iterator: DataIterator = None) -> 'GANTrainer':

        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        shuffle = params.pop_bool("shuffle", True)
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = params.pop_int("cuda_device", -1)
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)

        if cuda_device >= 0:
            model = model.cuda(cuda_device)
        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))

        if lr_scheduler_params:
            scheduler = LearningRateScheduler.from_params(
                optimizer, lr_scheduler_params)
        else:
            scheduler = None

        num_serialized_models_to_keep = params.pop_int(
            "num_serialized_models_to_keep", 20)
        keep_serialized_model_every_num_seconds = params.pop_int(
            "keep_serialized_model_every_num_seconds", None)
        model_save_interval = params.pop_float("model_save_interval", None)
        summary_interval = params.pop_int("summary_interval", 100)
        histogram_interval = params.pop_int("histogram_interval", None)

        params.assert_empty(cls.__name__)
        return cls(model,
                   optimizer,
                   iterator,
                   train_data,
                   validation_data,
                   patience=patience,
                   validation_metric=validation_metric,
                   validation_iterator=validation_iterator,
                   shuffle=shuffle,
                   num_epochs=num_epochs,
                   serialization_dir=serialization_dir,
                   cuda_device=cuda_device,
                   grad_norm=grad_norm,
                   grad_clipping=grad_clipping,
                   learning_rate_scheduler=scheduler,
                   num_serialized_models_to_keep=num_serialized_models_to_keep,
                   keep_serialized_model_every_num_seconds=
                   keep_serialized_model_every_num_seconds,
                   model_save_interval=model_save_interval,
                   summary_interval=summary_interval,
                   histogram_interval=histogram_interval)
 def log_histograms(self, model: Model, histogram_parameters: Set[str]) -> None:
     """
     Send histograms of parameters to tensorboard.
     """
     for name, param in model.named_parameters():
         if name in histogram_parameters:
             self.add_train_histogram("parameter_histogram/" + name, param)
示例#4
0
 def log_gradient_updates(self, model: Model, param_updates: Dict[str, torch.Tensor]) -> None:
     for name, param in model.named_parameters():
         update_norm = torch.norm(param_updates[name].view(-1))
         param_norm = torch.norm(param.view(-1)).cpu()
         self.add_train_scalar(
             "gradient_update/" + name,
             update_norm / (param_norm + nn_util.tiny_value_of_dtype(param_norm.dtype)),
         )
示例#5
0
    def from_params(cls, params: Params,
                    model: Model) -> 'UpdateMovingAverage':  # type: ignore
        # pylint: disable=arguments-differ
        moving_average_params = params.pop("moving_average")
        model_parameters = [[name, param]
                            for name, param in model.named_parameters()
                            if param.requires_grad]
        moving_average = MovingAverage.from_params(
            params=moving_average_params, parameters=model_parameters)

        return UpdateMovingAverage(moving_average)
    def from_params(cls, params: Params,
                    model: Model) -> "UpdateMovingAverage":  # type: ignore

        moving_average_params = params.pop("moving_average")
        model_parameters = [[name, param]
                            for name, param in model.named_parameters()
                            if param.requires_grad]
        moving_average = MovingAverage.from_params(
            params=moving_average_params, parameters=model_parameters)

        return UpdateMovingAverage(moving_average)
示例#7
0
 def log_histograms(self, model: Model) -> None:
     """
     Send histograms of parameters to tensorboard.
     """
     if not self._histogram_parameters:
         # Avoiding calling this every batch.  If we ever use two separate models with a single
         # writer, this is wrong, but I doubt that will ever happen.
         self._histogram_parameters = set(
             model.get_parameters_for_histogram_tensorboard_logging())
     for name, param in model.named_parameters():
         if name in self._histogram_parameters:
             self.add_train_histogram("parameter_histogram/" + name, param)
示例#8
0
    def from_params(cls,
                    model: Model,
                    serialization_dir: str,
                    iterator: DataIterator,
                    train_data: Iterable[Instance],
                    validation_data: Optional[Iterable[Instance]],
                    params: Params,
                    validation_iterator: DataIterator = None) -> 'Trainer':

        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = params.pop_int("cuda_device", -1)
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)

        if cuda_device >= 0:
            model = model.cuda(cuda_device)
        parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))

        if lr_scheduler_params:
            scheduler = LearningRateScheduler.from_params(optimizer, lr_scheduler_params)
        else:
            scheduler = None

        num_serialized_models_to_keep = params.pop_int("num_serialized_models_to_keep", 20)
        keep_serialized_model_every_num_seconds = params.pop_int(
                "keep_serialized_model_every_num_seconds", None)
        model_save_interval = params.pop_float("model_save_interval", None)
        summary_interval = params.pop_int("summary_interval", 100)
        histogram_interval = params.pop_int("histogram_interval", None)

        params.assert_empty(cls.__name__)
        return Trainer(model, optimizer, iterator,
                       train_data, validation_data,
                       patience=patience,
                       validation_metric=validation_metric,
                       validation_iterator=validation_iterator,
                       num_epochs=num_epochs,
                       serialization_dir=serialization_dir,
                       cuda_device=cuda_device,
                       grad_norm=grad_norm,
                       grad_clipping=grad_clipping,
                       learning_rate_scheduler=scheduler,
                       num_serialized_models_to_keep=num_serialized_models_to_keep,
                       keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds,
                       model_save_interval=model_save_interval,
                       summary_interval=summary_interval,
                       histogram_interval=histogram_interval)
 def log_learning_rates(self, model: Model, optimizer: torch.optim.Optimizer):
     """
     Send current parameter specific learning rates to tensorboard
     """
     if self._should_log_learning_rate:
         # optimizer stores lr info keyed by parameter tensor
         # we want to log with parameter name
         names = {param: name for name, param in model.named_parameters()}
         for group in optimizer.param_groups:
             if "lr" not in group:
                 continue
             rate = group["lr"]
             for param in group["params"]:
                 # check whether params has requires grad or not
                 effective_rate = rate * float(param.requires_grad)
                 self.add_train_scalar("learning_rate/" + names[param], effective_rate)
def build_trainer(
    model: Model,
    serialization_dir: str,
    train_loader: DataLoader,
    dev_loader: DataLoader,
) -> Trainer:
    parameters = [(n, p) for n, p in model.named_parameters()
                  if p.requires_grad]
    optimizer = AdamOptimizer(parameters)  # type: ignore
    trainer = GradientDescentTrainer(
        model=model,
        serialization_dir=serialization_dir,
        data_loader=train_loader,
        validation_data_loader=dev_loader,
        num_epochs=5,
        optimizer=optimizer,
    )
    return trainer
示例#11
0
    def get_args(cls, model: Model, base_dir: str, iterator: DataIterator,
                 train_data: Iterable[Instance],
                 validation_data: Optional[Iterable[Instance]],
                 segmenter: Optional[BasePredictionClass],
                 params: Params) -> Dict[str, Any]:
        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = params.pop_int("cuda_device", -1)
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)
        num_serialized_models_to_keep = params.pop(
            "num_serialized_models_to_keep", None)

        if cuda_device >= 0:
            model = model.cuda(cuda_device)
        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))

        if lr_scheduler_params:
            scheduler = LearningRateScheduler.from_params(
                optimizer, lr_scheduler_params)
        else:
            scheduler = None
        params.assert_empty(cls.__name__)
        kwargs = {}
        kwargs['model'] = model
        kwargs['optimizer'] = optimizer
        kwargs['iterator'] = iterator
        kwargs['train_dataset'] = train_data
        kwargs['validation_dataset'] = validation_data
        kwargs['segmenter'] = segmenter
        kwargs['patience'] = patience
        kwargs['validation_metric'] = validation_metric
        kwargs['num_epochs'] = num_epochs
        kwargs['base_dir'] = base_dir
        kwargs['cuda_device'] = cuda_device
        kwargs['grad_norm'] = grad_norm
        kwargs['grad_clipping'] = grad_clipping
        kwargs['learning_rate_scheduler'] = scheduler
        kwargs['num_serialized_models_to_keep'] = num_serialized_models_to_keep
        return kwargs
示例#12
0
    def log_momentum(self, model: Model, optimizer: torch.optim.Optimizer):
        """
        Send current parameter specific learning rates to tensorboard
        """
        if self._should_log_momentum:
            # optimizer stores lr info keyed by parameter tensor
            # we want to log with parameter name
            names = {param: name for name, param in model.named_parameters()}
            for group in optimizer.param_groups:

                if 'momentum' not in group and 'betas' not in group:
                    continue
                rate = group['momentum'] if 'momentum' in group else group[
                    'betas'][0]
                for param in group['params']:
                    # check whether params has requires grad or not
                    effective_rate = rate * float(param.requires_grad)
                    self.add_train_scalar("momentum/" + names[param],
                                          effective_rate)
示例#13
0
    def from_params(cls, model: Model, serialization_dir: str,
                    iterator: DataIterator, train_data: Iterable[Instance],
                    validation_data: Optional[Iterable[Instance]],
                    params: Params) -> 'Trainer':

        patience = params.pop_int("patience", 2)
        validation_metric = params.pop("validation_metric", "-loss")
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = params.pop_int("cuda_device", -1)
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)

        if cuda_device >= 0:
            model = model.cuda(cuda_device)
        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))

        if lr_scheduler_params:
            scheduler = LearningRateScheduler.from_params(
                optimizer, lr_scheduler_params)
        else:
            scheduler = None

        params.assert_empty(cls.__name__)
        return Trainer(model,
                       optimizer,
                       iterator,
                       train_data,
                       validation_data,
                       patience=patience,
                       validation_metric=validation_metric,
                       num_epochs=num_epochs,
                       serialization_dir=serialization_dir,
                       cuda_device=cuda_device,
                       grad_norm=grad_norm,
                       grad_clipping=grad_clipping,
                       learning_rate_scheduler=scheduler)
示例#14
0
    def from_partial_objects(
            cls,
            model: Model,
            serialization_dir: str,
            data_loader: DataLoader,
            validation_data_loader: DataLoader = None,
            local_rank: int = 0,
            patience: int = None,
            validation_metric: Union[str, List[str]] = "-loss",
            num_epochs: int = 20,
            cuda_device: Optional[Union[int, torch.device]] = None,
            grad_norm: float = None,
            grad_clipping: float = None,
            distributed: bool = False,
            world_size: int = 1,
            num_gradient_accumulation_steps: int = 1,
            use_amp: bool = False,
            no_grad: List[str] = None,
            optimizer: Lazy[Optimizer] = Lazy(Optimizer.default),
            learning_rate_scheduler: Lazy[LearningRateScheduler] = None,
            momentum_scheduler: Lazy[MomentumScheduler] = None,
            moving_average: Lazy[MovingAverage] = None,
            checkpointer: Lazy[Checkpointer] = Lazy(Checkpointer),
            callbacks: List[Lazy[TrainerCallback]] = None,
            enable_default_callbacks: bool = True,
            run_sanity_checks: bool = True,
    ) -> "Trainer":
        """
        This method exists so that we can have a documented method to construct this class using
        `FromParams`. If you are not using `FromParams` or config files, you can safely ignore this
        method.

        The reason we can't just use `__init__` with `FromParams` here is because there are
        sequential dependencies to this class's arguments.  Anything that has a `Lazy[]` type
        annotation needs something from one of the non-`Lazy` arguments.  The `Optimizer` needs to
        have the parameters from the `Model` before it's constructed, and the `Schedulers` need to
        have the `Optimizer`. Because of this, the typical way we construct things `FromParams`
        doesn't work, so we use `Lazy` to allow for constructing the objects sequentially.

        If you're not using `FromParams`, you can just construct these arguments in the right order
        yourself in your code and call the constructor directly.
        """
        if cuda_device is None:
            from torch import cuda

            if cuda.device_count() > 0:
                cuda_device = 0
            else:
                cuda_device = -1

        check_for_gpu(cuda_device)
        if cuda_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(cuda_device)

        if no_grad:
            for name, parameter in model.named_parameters():
                if any(re.search(regex, name) for regex in no_grad):
                    parameter.requires_grad_(False)

        parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
        optimizer_ = optimizer.construct(model_parameters=parameters)

        common_util.log_frozen_and_tunable_parameter_names(model)

        batches_per_epoch: Optional[int]
        try:
            batches_per_epoch = len(data_loader)
            batches_per_epoch = math.ceil(batches_per_epoch / num_gradient_accumulation_steps)
        except TypeError:
            batches_per_epoch = None

        moving_average_ = (
            None if moving_average is None else moving_average.construct(parameters=parameters)
        )
        learning_rate_scheduler_ = (
            None
            if learning_rate_scheduler is None
            else learning_rate_scheduler.construct(
                optimizer=optimizer_, num_epochs=num_epochs, num_steps_per_epoch=batches_per_epoch
            )
        )
        momentum_scheduler_ = (
            None
            if momentum_scheduler is None
            else momentum_scheduler.construct(optimizer=optimizer_)
        )
        checkpointer_ = checkpointer.construct(serialization_dir=serialization_dir)

        callbacks_: List[TrainerCallback] = []
        for callback_ in callbacks or []:
            callbacks_.append(callback_.construct(serialization_dir=serialization_dir))

        return cls(
            model,
            optimizer_,
            data_loader,
            patience=patience,
            validation_metric=validation_metric,
            validation_data_loader=validation_data_loader,
            num_epochs=num_epochs,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            grad_norm=grad_norm,
            grad_clipping=grad_clipping,
            learning_rate_scheduler=learning_rate_scheduler_,
            momentum_scheduler=momentum_scheduler_,
            checkpointer=checkpointer_,
            moving_average=moving_average_,
            callbacks=callbacks_,
            distributed=distributed,
            local_rank=local_rank,
            world_size=world_size,
            num_gradient_accumulation_steps=num_gradient_accumulation_steps,
            use_amp=use_amp,
            enable_default_callbacks=enable_default_callbacks,
            run_sanity_checks=run_sanity_checks,
        )
示例#15
0
    def from_partial_objects(
        cls,
        model: Model,
        serialization_dir: str,
        iterator: DataIterator,
        train_data: Iterable[Instance],
        validation_iterator: DataIterator = None,
        validation_data: Iterable[Instance] = None,
        local_rank: int = 0,
        patience: int = None,
        validation_metric: str = "-loss",
        shuffle: bool = True,
        num_epochs: int = 20,
        cuda_device: int = -1,
        grad_norm: float = None,
        grad_clipping: float = None,
        model_save_interval: float = None,
        summary_interval: int = 100,
        histogram_interval: int = None,
        should_log_parameter_statistics: bool = True,
        should_log_learning_rate: bool = False,
        log_batch_size_period: int = None,
        distributed: bool = None,
        world_size: int = 1,
        num_gradient_accumulation_steps: int = 1,
        no_grad: List[str] = None,
        optimizer: Lazy[Optimizer] = None,
        learning_rate_scheduler: Lazy[LearningRateScheduler] = None,
        momentum_scheduler: Lazy[MomentumScheduler] = None,
        moving_average: Lazy[MovingAverage] = None,
        checkpointer: Lazy[Checkpointer] = None,
    ) -> "Trainer":
        """
        This method exists so that we can have a documented method to construct this class using
        `FromParams`. If you are not using `FromParams` or config files, you can safely ignore this
        method.

        The reason we can't just use `__init__` with `FromParams` here is because there are
        sequential dependencies to this class's arguments.  Anything that has a `Lazy[]` type
        annotation needs something from one of the non-`Lazy` arguments.  The `Optimizer` needs to
        have the parameters from the `Model` before it's constructed, and the `Schedulers` need to
        have the `Optimizer`. Because of this, the typical way we construct things `FromParams`
        doesn't work, so we use `Lazy` to allow for constructing the objects sequentially.

        If you're not using `FromParams`, you can just construct these arguments in the right order
        yourself in your code and call the constructor directly.
        """

        check_for_gpu(cuda_device)
        if cuda_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(cuda_device)

        if no_grad:
            for name, parameter in model.named_parameters():
                if any(re.search(regex, name) for regex in no_grad):
                    parameter.requires_grad_(False)

        common_util.log_frozen_and_tunable_parameter_names(model)

        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer_ = optimizer.construct(model_parameters=parameters)
        if not optimizer_:
            optimizer_ = Optimizer.default(parameters)

        batches_per_epoch = iterator.get_num_batches(train_data)
        if batches_per_epoch == 1:  # get_num_batches returns 1 when it can't determine the answer
            batches_per_epoch = None
        moving_average_ = moving_average.construct(parameters=parameters)
        learning_rate_scheduler_ = learning_rate_scheduler.construct(
            optimizer=optimizer_,
            num_epochs=num_epochs,
            num_steps_per_epoch=batches_per_epoch)
        momentum_scheduler_ = momentum_scheduler.construct(
            optimizer=optimizer_)

        checkpointer_ = checkpointer.construct() or Checkpointer(
            serialization_dir)
        return cls(
            model,
            optimizer_,
            iterator,
            train_data,
            validation_data,
            patience=patience,
            validation_metric=validation_metric,
            validation_iterator=validation_iterator,
            shuffle=shuffle,
            num_epochs=num_epochs,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            grad_norm=grad_norm,
            grad_clipping=grad_clipping,
            learning_rate_scheduler=learning_rate_scheduler_,
            momentum_scheduler=momentum_scheduler_,
            checkpointer=checkpointer_,
            model_save_interval=model_save_interval,
            summary_interval=summary_interval,
            histogram_interval=histogram_interval,
            should_log_parameter_statistics=should_log_parameter_statistics,
            should_log_learning_rate=should_log_learning_rate,
            log_batch_size_period=log_batch_size_period,
            moving_average=moving_average_,
            distributed=distributed,
            local_rank=local_rank,
            world_size=world_size,
            num_gradient_accumulation_steps=num_gradient_accumulation_steps,
        )
示例#16
0
def fine_tune_model(model: Model,
                    params: Params,
                    serialization_dir: str,
                    extend_vocab: bool = False,
                    file_friendly_logging: bool = False,
                    batch_weight_key: str = "") -> Model:
    """
    Fine tunes the given model, using a set of parameters that is largely identical to those used
    for :func:`~allennlp.commands.train.train_model`, except that the ``model`` section is ignored,
    if it is present (as we are already given a ``Model`` here).

    The main difference between the logic done here and the logic done in ``train_model`` is that
    here we do not worry about vocabulary construction or creating the model object.  Everything
    else is the same.

    Parameters
    ----------
    archive : ``Archive``
        A saved model archive that is the result of running the ``train`` command.
    train_data_path : ``str``
        Path to the training data to use for fine-tuning.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    validation_data_path : ``str``, optional
        Path to the validation data to use while fine-tuning.
    extend_vocab: ``bool``, optional (default=False)
        If ``True``, we use the new instances to extend your vocabulary.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    """
    prepare_environment(params)
    if os.path.exists(serialization_dir) and os.listdir(serialization_dir):
        raise ConfigurationError(
            f"Serialization directory ({serialization_dir}) "
            f"already exists and is not empty.")

    os.makedirs(serialization_dir, exist_ok=True)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    if params.pop('model', None):
        logger.warning(
            "You passed parameters for the model in your configuration file, but we "
            "are ignoring them, using instead the model parameters in the archive."
        )

    vocabulary_params = params.pop('vocabulary', {})
    if vocabulary_params.get('directory_path', None):
        logger.warning(
            "You passed `directory_path` in parameters for the vocabulary in "
            "your configuration file, but it will be ignored. ")

    all_datasets = datasets_from_params(params)
    vocab = model.vocab

    if extend_vocab:
        datasets_for_vocab_creation = set(
            params.pop("datasets_for_vocab_creation", all_datasets))

        for dataset in datasets_for_vocab_creation:
            if dataset not in all_datasets:
                raise ConfigurationError(
                    f"invalid 'dataset_for_vocab_creation' {dataset}")

        logger.info("Extending model vocabulary using %s data.",
                    ", ".join(datasets_for_vocab_creation))
        vocab.extend_from_instances(
            vocabulary_params,
            (instance for key, dataset in all_datasets.items()
             for instance in dataset if key in datasets_for_vocab_creation))

    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(model.vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(
            validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer_type = trainer_params.pop("type", "default")
    if trainer_type == "default":
        trainer = Trainer.from_params(model=model,
                                      serialization_dir=serialization_dir,
                                      iterator=iterator,
                                      train_data=train_data,
                                      validation_data=validation_data,
                                      params=trainer_params,
                                      validation_iterator=validation_iterator)
    else:
        raise ConfigurationError(
            "currently fine-tune only works with the default Trainer")

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)

    params.assert_empty('base train command')
    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Fine-tuning interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Evaluate
    if test_data and evaluate_on_test:
        logger.info(
            "The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            model,
            test_data,
            validation_iterator or iterator,
            cuda_device=trainer._cuda_devices[0],  # pylint: disable=protected-access,
            batch_weight_key=batch_weight_key)

        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"),
              "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
示例#17
0
def fine_tune_model(model: Model,
                    params: Params,
                    serialization_dir: str,
                    file_friendly_logging: bool = False) -> Model:
    """
    Fine tunes the given model, using a set of parameters that is largely identical to those used
    for :func:`~allennlp.commands.train.train_model`, except that the ``model`` section is ignored,
    if it is present (as we are already given a ``Model`` here).

    The main difference between the logic done here and the logic done in ``train_model`` is that
    here we do not worry about vocabulary construction or creating the model object.  Everything
    else is the same.

    Parameters
    ----------
    archive : ``Archive``
        A saved model archive that is the result of running the ``train`` command.
    train_data_path : ``str``
        Path to the training data to use for fine-tuning.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    validation_data_path : ``str``, optional
        Path to the validation data to use while fine-tuning.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    """
    prepare_environment(params)
    os.makedirs(serialization_dir)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    if params.pop('model', None):
        logger.warning("You passed parameters for the model in your configuration file, but we "
                       "are ignoring them, using instead the model parameters in the archive.")

    vocabulary_params = params.pop('vocabulary', {})
    if vocabulary_params.get('directory_path', None):
        logger.warning("You passed `directory_path` in parameters for the vocabulary in "
                       "your configuration file, but it will be ignored. "
                       "Vocabulary from the saved model will be extended with current data.")

    all_datasets = datasets_from_params(params)

    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("Extending model vocabulary using %s data.", ", ".join(datasets_for_vocab_creation))
    vocab = model.vocab
    vocab.extend_from_instances(vocabulary_params,
                                (instance for key, dataset in all_datasets.items()
                                 for instance in dataset
                                 if key in datasets_for_vocab_creation))
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer = Trainer.from_params(model,
                                  serialization_dir,
                                  iterator,
                                  train_data,
                                  validation_data,
                                  trainer_params)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')
    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info("Fine-tuning interrupted by the user. Attempting to create "
                         "a model archive using the current best epoch weights.")
            archive_model(serialization_dir, files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    if test_data and evaluate_on_test:
        test_metrics = evaluate(model, test_data, iterator, cuda_device=trainer._cuda_devices[0])  # pylint: disable=protected-access
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info("To evaluate on the test set after training, pass the "
                    "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"), "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
示例#18
0
def fine_tune_model(model: Model,
                    params: Params,
                    serialization_dir: str,
                    extend_vocab: bool = False,
                    file_friendly_logging: bool = False,
                    batch_weight_key: str = "",
                    embedding_sources_mapping: Dict[str, str] = None,
                    in_fold = None,
                    num_folds = None,
                    ewc_weight=None) -> Model:
    """
    Fine tunes the given model, using a set of parameters that is largely identical to those used
    for :func:`~allennlp.commands.train.train_model`, except that the ``model`` section is ignored,
    if it is present (as we are already given a ``Model`` here).

    The main difference between the logic done here and the logic done in ``train_model`` is that
    here we do not worry about vocabulary construction or creating the model object.  Everything
    else is the same.

    Parameters
    ----------
    model : ``Model``
        A model to fine tune.
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment
    serialization_dir : ``str``
        The directory in which to save results and logs.
    extend_vocab: ``bool``, optional (default=False)
        If ``True``, we use the new instances to extend your vocabulary.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    batch_weight_key : ``str``, optional (default="")
        If non-empty, name of metric used to weight the loss on a per-batch basis.
    embedding_sources_mapping: ``Dict[str, str]``, optional (default=None)
        mapping from model paths to the pretrained embedding filepaths
        used during fine-tuning.
    """
    prepare_environment(params)
    if os.path.exists(serialization_dir) and os.listdir(serialization_dir):
        raise ConfigurationError(f"Serialization directory ({serialization_dir}) "
                                 f"already exists and is not empty.")

    os.makedirs(serialization_dir, exist_ok=True)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    if params.pop('model', None):
        logger.warning("You passed parameters for the model in your configuration file, but we "
                       "are ignoring them, using instead the model parameters in the archive.")

    vocabulary_params = params.pop('vocabulary', {})
    if vocabulary_params.get('directory_path', None):
        logger.warning("You passed `directory_path` in parameters for the vocabulary in "
                       "your configuration file, but it will be ignored. ")

    all_datasets = datasets_from_params(params)
    vocab = model.vocab

    if extend_vocab:
        datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

        for dataset in datasets_for_vocab_creation:
            if dataset not in all_datasets:
                raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

        logger.info("Extending model vocabulary using %s data.", ", ".join(datasets_for_vocab_creation))
        vocab.extend_from_instances(vocabulary_params,
                                    (instance for key, dataset in all_datasets.items()
                                     for instance in dataset
                                     if key in datasets_for_vocab_creation))

        model.extend_embedder_vocab(embedding_sources_mapping)

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
                parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    dl_params = params.pop("data_loader")
    if test_data is not None:
        rand = random.Random(1234)
        test_data.index_with(vocab)
        shuffled_test = copy(test_data.instances)
        rand.shuffle(shuffled_test)
        extra_test = shuffled_test[:2000]

        keys = deepcopy(dl_params.as_dict())
        keys.update({"dataset": AllennlpDataset(extra_test, vocab)})
        extra_test_loader = DataLoader.from_params(params.pop("test_data_loader", keys))

        keys = deepcopy(dl_params.as_dict())
        keys.update({"dataset": test_data})
        test_loader = DataLoader.from_params(params.pop("test_data_loader", keys))

    master_model = model
    global_metrics = {}
    training_metrics = []
    final_metrics = {}
    master_trainer = trainer_params.as_dict()

    if num_folds is not None:

        rand = random.Random(1234)

        fold_train = []
        fold_test = []

        fold_train_loader = []
        fold_test_loader = []

        shuffled_instances = copy(train_data.instances)
        rand.shuffle(shuffled_instances)



        kfold = KFold(n_splits=num_folds, random_state=None, shuffle=False)
        computed_folds = list(kfold.split(shuffled_instances))

        for fold in range(num_folds):
            train_indexes, test_indexes = computed_folds[fold]
            new_train = [shuffled_instances[i] for i in train_indexes]
            new_test = [shuffled_instances[i] for i in test_indexes]
            fold_train.append(AllennlpDataset(new_train, vocab=vocab))
            fold_test.append(AllennlpDataset(new_test, vocab=vocab))

            keys = deepcopy(dl_params.as_dict())
            keys.update({"dataset": fold_test[-1]})
            fold_test_loader.append(DataLoader.from_params(params.pop("fold_test_data_loader",keys)))

            keys = deepcopy(dl_params.as_dict())
            keys.update({"dataset": fold_train[-1]})
            fold_train_loader.append(DataLoader.from_params(params.pop("fold_train_data_loader", keys)))

        for fold in ([in_fold] if in_fold is not None else range(num_folds)):
            fold_model = deepcopy(master_model)
            eval_epoch_callback = EvalEpochCallback(fold, fold_test_loader[fold], test_loader, global_metrics)
            callbacks = [eval_epoch_callback]
            if ewc_weight is not None:
                ewc = EWC(extra_test_loader)

                def ewc_forward(*args, **kwargs) -> Dict[str, torch.Tensor]:
                    ewc_loss = 0
                    if ewc.model.training:
                        ewc_loss = ewc.penalty(ewc.model)
                    ret = ewc.model.old_forward(*args, **kwargs)
                    ret["loss"] += ewc_weight * ewc_loss
                    return ret

                fold_model.old_forward = fold_model.forward
                fold_model.forward = ewc_forward
                callbacks.append(CallLossCallback(ewc))

            trainer = Trainer.from_params(model=fold_model,
                                          serialization_dir=serialization_dir,
                                          data_loader=fold_train_loader[fold],
                                          train_data=train_data,
                                          validation_data=None,
                                          params=Params(deepcopy(master_trainer)),
                                          validation_data_loader=None,
                                          epoch_callbacks=callbacks)

            training_metrics.append(trainer.train())
            del fold_model
            del trainer
            del eval_epoch_callback

            state = glob(serialization_dir+"/*.th")
            for file in state:
                logger.info("deleting state - {}".format(file))
                os.unlink(file)
    else:
        callbacks = []
        if ewc_weight is not None:
            ewc = EWC(extra_test_loader)

            def ewc_forward(*args, **kwargs) -> Dict[str, torch.Tensor]:
                ewc_loss = 0
                if ewc.model.training:
                    ewc_loss = ewc.penalty(ewc.model)
                ret = ewc.model.old_forward(*args, **kwargs)
                ret["loss"] += ewc_weight * ewc_loss
                return ret

            model.old_forward = model.forward
            model.forward = ewc_forward
            callbacks.append(CallLossCallback(ewc))

        keys = deepcopy(dl_params.as_dict())
        keys.update({"dataset": train_data})
        train_data.index_with(vocab)
        train_data_loader = DataLoader.from_params(params.pop("train_loader",keys))

        if validation_data is not None:
            validation_data.index_with(vocab)
            keys = deepcopy(dl_params.as_dict())
            keys.update({"dataset": validation_data})

            validation_data_loader = DataLoader.from_params(params.pop("validation_loader", keys))
        else:
            validation_data_loader = None

        if "finetune" in dir(model):
            model.finetune()
            logger.info("Fine tuning model")
        trainer = Trainer.from_params(model=model,
                                      serialization_dir=serialization_dir,
                                      data_loader=train_data_loader,
                                      train_data=train_data,
                                      validation_data=None,
                                      params=Params(deepcopy(master_trainer)),
                                      validation_data_loader=validation_data_loader,
                                      epoch_callbacks=callbacks)

        training_metrics = trainer.train()
        archive_model(serialization_dir)

    final_metrics["fine_tune"] = global_metrics
    final_metrics["training"] = training_metrics

    metrics_json = json.dumps(final_metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"), "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)
    return model
示例#19
0
    def from_partial_objects(
        cls,
        model: Model,
        serialization_dir: str,
        iterator: DataIterator,
        train_data: Iterable[Instance],
        validation_iterator: DataIterator = None,
        validation_data: Iterable[Instance] = None,
        callbacks: List[Lazy[Callback]] = None,
        local_rank: int = 0,
        patience: int = None,
        validation_metric: str = "-loss",
        shuffle: bool = True,
        num_epochs: int = 20,
        cuda_device: int = -1,
        distributed: bool = False,
        world_size: int = 1,
        optimizer: Lazy[Optimizer] = None,
    ) -> "CallbackTrainer":

        check_for_gpu(cuda_device)
        if cuda_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(cuda_device)

        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer_ = optimizer.construct(model_parameters=parameters)

        if not callbacks:
            callbacks = []
        else:
            constructed_callbacks = []
            for callback in callbacks:
                # We only need to pass here the things that weren't already passed to
                # CallbackTrainer.from_partial_objects; FromParams will automatically pass those
                # things through to the callback constructor.
                callback_ = callback.construct(optimizer=optimizer,
                                               instances=train_data)
                constructed_callbacks.append(callback_)

        if distributed:
            rank = cuda_device
        else:
            rank = 0

        return cls(
            model,
            train_data,
            iterator,
            optimizer_,
            num_epochs=num_epochs,
            shuffle=shuffle,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            callbacks=constructed_callbacks,
            distributed=distributed,
            rank=rank,
            world_size=world_size,
        )
示例#20
0
    def from_partial_objects(
        cls,
        model: Model,
        serialization_dir: str,
        data_loader: DataLoader,
        validation_data_loader: DataLoader = None,
        local_rank: int = 0,
        patience: int = None,
        validation_metric: str = "-loss",
        num_epochs: int = 20,
        cuda_device: int = -1,
        grad_norm: float = None,
        grad_clipping: float = None,
        distributed: bool = None,
        world_size: int = 1,
        num_gradient_accumulation_steps: int = 1,
        opt_level: Optional[str] = None,
        no_grad: List[str] = None,
        optimizer: Lazy[Optimizer] = None,
        learning_rate_scheduler: Lazy[LearningRateScheduler] = None,
        momentum_scheduler: Lazy[MomentumScheduler] = None,
        tensorboard_writer: Lazy[TensorboardWriter] = None,
        moving_average: Lazy[MovingAverage] = None,
        checkpointer: Lazy[Checkpointer] = None,
        batch_callbacks: List[BatchCallback] = None,
        epoch_callbacks: List[EpochCallback] = None,
    ) -> "Trainer":
        """
        This method exists so that we can have a documented method to construct this class using
        `FromParams`. If you are not using `FromParams` or config files, you can safely ignore this
        method.

        The reason we can't just use `__init__` with `FromParams` here is because there are
        sequential dependencies to this class's arguments.  Anything that has a `Lazy[]` type
        annotation needs something from one of the non-`Lazy` arguments.  The `Optimizer` needs to
        have the parameters from the `Model` before it's constructed, and the `Schedulers` need to
        have the `Optimizer`. Because of this, the typical way we construct things `FromParams`
        doesn't work, so we use `Lazy` to allow for constructing the objects sequentially.

        If you're not using `FromParams`, you can just construct these arguments in the right order
        yourself in your code and call the constructor directly.
        """

        check_for_gpu(cuda_device)
        if cuda_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(cuda_device)

        if no_grad:
            for name, parameter in model.named_parameters():
                if any(re.search(regex, name) for regex in no_grad):
                    parameter.requires_grad_(False)

        common_util.log_frozen_and_tunable_parameter_names(model)

        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer_ = optimizer.construct(model_parameters=parameters)
        if not optimizer_:
            optimizer_ = Optimizer.default(parameters)

        try:
            batches_per_epoch = len(data_loader)
        except TypeError:
            # If the dataset is lazy, it won't have a length.
            batches_per_epoch = None

        moving_average_ = moving_average.construct(parameters=parameters)
        learning_rate_scheduler_ = learning_rate_scheduler.construct(
            optimizer=optimizer_,
            num_epochs=num_epochs,
            num_steps_per_epoch=batches_per_epoch)
        momentum_scheduler_ = momentum_scheduler.construct(
            optimizer=optimizer_)

        checkpointer_ = checkpointer.construct() or Checkpointer(
            serialization_dir)
        tensorboard_writer_ = tensorboard_writer.construct(
        ) or TensorboardWriter(serialization_dir)

        return cls(
            model,
            optimizer_,
            data_loader,
            patience=patience,
            validation_metric=validation_metric,
            validation_data_loader=validation_data_loader,
            num_epochs=num_epochs,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            grad_norm=grad_norm,
            grad_clipping=grad_clipping,
            learning_rate_scheduler=learning_rate_scheduler_,
            momentum_scheduler=momentum_scheduler_,
            tensorboard_writer=tensorboard_writer_,
            checkpointer=checkpointer_,
            moving_average=moving_average_,
            batch_callbacks=batch_callbacks,
            epoch_callbacks=epoch_callbacks,
            distributed=distributed,
            local_rank=local_rank,
            world_size=world_size,
            num_gradient_accumulation_steps=num_gradient_accumulation_steps,
            opt_level=opt_level,
        )
    def from_params(
        cls,
        params: Params,
        serialization_dir: str,
        recover: bool = False,
        model: Model = None,
        embedding_sources_mapping: Dict[str, str] = None,
        extend_vocab: bool = False,
    ) -> "MetaTrainerPieces":
        all_datasets = training_util.datasets_from_params(params)

        vocabulary_params = params.pop("vocabulary", {})

        if model:
            if params.pop("model", None):
                logger.warning(
                    "You passed parameters for the model in your configuration file, but we "
                    "are ignoring them, using instead the loaded model parameters."
                )

            # TODO(mattg): This should be updated now that directory_path no longer exists.
            if vocabulary_params.get("directory_path", None):
                logger.warning(
                    "You passed `directory_path` in parameters for the vocabulary in "
                    "your configuration file, but it will be ignored because we already "
                    "have a model with a vocabulary.")

            vocab = model.vocab
        else:
            vocab = None

        vocabulary_path = os.path.join(serialization_dir, "vocabulary")

        if not vocab or extend_vocab:
            vocab = MetaTrainerPieces.create_or_extend_vocab(
                datasets=all_datasets,
                params=params,
                recover=recover,
                vocab=vocab,
                vocabulary_params=vocabulary_params,
                vocabulary_path=vocabulary_path,
            )

            if not model:
                model = Model.from_params(vocab=vocab,
                                          params=params.pop("model"))

            # If vocab extension is ON for training, embedding extension should also be
            # done. If vocab and embeddings are already in sync, it would be a no-op.
            model.extend_embedder_vocab(embedding_sources_mapping)

        # Initializing the model can have side effect of expanding the vocabulary
        # Save the vocab only in the master. In the degenerate non-distributed
        # case, we're trivially the master.
        if is_master():
            vocab.save_to_files(vocabulary_path)

        iterator = DataIterator.from_params(params.pop("iterator"))
        iterator.index_with(model.vocab)
        validation_iterator_params = params.pop("validation_iterator", None)
        if validation_iterator_params:
            validation_iterator = DataIterator.from_params(
                validation_iterator_params)
            validation_iterator.index_with(model.vocab)
        else:
            validation_iterator = None

        train_datas = all_datasets["train"]
        validation_datas = all_datasets.get("validation")
        test_datas = all_datasets.get("test")

        trainer_params = params.pop("trainer")
        no_grad_regexes = trainer_params.pop("no_grad", ())
        for name, parameter in model.named_parameters():
            if any(re.search(regex, name) for regex in no_grad_regexes):
                parameter.requires_grad_(False)

        log_frozen_and_tunable_parameter_names(model)

        return cls(
            model=model,
            iterator=iterator,
            train_datasets=train_datas,
            validation_datasets=validation_datas,
            test_datasets=test_datas,
            validation_iterator=validation_iterator,
            params=trainer_params,
        )
示例#22
0
    def from_params(
            cls,  # type: ignore
            model: Model,
            serialization_dir: str,
            files_to_archive: Dict[str, str],
            iterator: DataIterator,
            train_data: Iterable[Instance],
            validation_data: Optional[Iterable[Instance]],
            params: Params,
            validation_iterator: DataIterator = None) -> 'TrainerFP16':
        # pylint: disable=arguments-differ
        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        shuffle = params.pop_bool("shuffle", True)
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = parse_cuda_device(params.pop("cuda_device", -1))
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)
        momentum_scheduler_params = params.pop("momentum_scheduler", None)
        fp16 = params.pop_bool("fp16", False)
        dynamic_loss_scale = params.pop_bool("dynamic_loss_scale", True)
        validate_first = params.pop_bool("validate_first", False)

        if isinstance(cuda_device, list):
            model_device = cuda_device[0]
        else:
            model_device = cuda_device
        if fp16:
            model.half()
        if model_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(model_device)

        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]

        # If fp16, need to wrap the optimizer
        try:
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))
        if fp16:
            # The FP16_Optimizer we use depends on whether the optimizer is FusedAdam or a regular pytorch optimizer
            if isinstance(optimizer, FusedAdam):
                from apex.optimizers import FP16_Optimizer
            else:
                from apex.fp16_utils import FP16_Optimizer
            optimizer = FP16_Optimizer(optimizer,
                                       dynamic_loss_scale=dynamic_loss_scale)

        if "moving_average" in params:
            moving_average = MovingAverage.from_params(
                params.pop("moving_average"), parameters=parameters)
        else:
            moving_average = None

        if lr_scheduler_params:
            lr_scheduler = LearningRateScheduler.from_params(
                optimizer, lr_scheduler_params)
        else:
            lr_scheduler = None
        if momentum_scheduler_params:
            momentum_scheduler = MomentumScheduler.from_params(
                optimizer, momentum_scheduler_params)
        else:
            momentum_scheduler = None

        if 'checkpointer' in params:
            if 'keep_serialized_model_every_num_seconds' in params or \
                    'num_serialized_models_to_keep' in params:
                raise ConfigurationError(
                    "Checkpointer may be initialized either from the 'checkpointer' key or from the "
                    "keys 'num_serialized_models_to_keep' and 'keep_serialized_model_every_num_seconds'"
                    " but the passed config uses both methods.")
            checkpointer = Checkpointer.from_params(params.pop("checkpointer"))
        else:
            num_serialized_models_to_keep = params.pop_int(
                "num_serialized_models_to_keep", 20)
            keep_serialized_model_every_num_seconds = params.pop_int(
                "keep_serialized_model_every_num_seconds", None)
            checkpointer = Checkpointer(
                serialization_dir=serialization_dir,
                num_serialized_models_to_keep=num_serialized_models_to_keep,
                keep_serialized_model_every_num_seconds=
                keep_serialized_model_every_num_seconds)
        model_save_interval = params.pop_float("model_save_interval", None)
        summary_interval = params.pop_int("summary_interval", 100)
        histogram_interval = params.pop_int("histogram_interval", None)
        should_log_parameter_statistics = params.pop_bool(
            "should_log_parameter_statistics", True)
        should_log_learning_rate = params.pop_bool("should_log_learning_rate",
                                                   False)
        statistics_interval = params.pop_int("statistics_interval", 5000)
        log_batch_size_period = params.pop_int("log_batch_size_period", None)

        params.assert_empty(cls.__name__)
        return cls(
            model,
            optimizer,
            iterator,
            train_data,
            validation_data,
            patience=patience,
            validation_metric=validation_metric,
            validation_iterator=validation_iterator,
            shuffle=shuffle,
            num_epochs=num_epochs,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            grad_norm=grad_norm,
            grad_clipping=grad_clipping,
            learning_rate_scheduler=lr_scheduler,
            momentum_scheduler=momentum_scheduler,
            checkpointer=checkpointer,
            model_save_interval=model_save_interval,
            summary_interval=summary_interval,
            statistics_interval=statistics_interval,
            histogram_interval=histogram_interval,
            should_log_parameter_statistics=should_log_parameter_statistics,
            should_log_learning_rate=should_log_learning_rate,
            log_batch_size_period=log_batch_size_period,
            moving_average=moving_average,
            fp16=fp16,
            validate_first=validate_first,
            files_to_archive=files_to_archive)
    def __init__(
        self,
        model: Model,
        optimizer,
        iterator: DataIterator,
        train_dataset: Iterable[Instance],
        validation_dataset: Optional[Iterable[Instance]] = None,
        patience: Optional[int] = None,
        validation_metric: str = "-loss",
        validation_iterator: DataIterator = None,
        shuffle: bool = True,
        num_epochs: int = 20,
        serialization_dir: Optional[str] = None,
        num_serialized_models_to_keep: int = 20,
        keep_serialized_model_every_num_seconds: int = None,
        checkpointer: Checkpointer = None,
        model_save_interval: float = None,
        cuda_device: Union[int, List] = -1,
        grad_norm: Optional[float] = None,
        grad_clipping: Optional[float] = None,
        learning_rate_scheduler=None,
        momentum_scheduler=None,
        summary_interval: int = 100,
        histogram_interval: int = None,
        should_log_parameter_statistics: bool = True,
        should_log_learning_rate: bool = False,
        log_batch_size_period: Optional[int] = None,
        moving_average=None,
    ) -> None:
        """
        A trainer for doing supervised learning. It just takes a labeled dataset
        and a ``DataIterator``, and uses the supplied ``Optimizer`` to learn the weights
        for your model over some fixed number of epochs. You can also pass in a validation
        dataset and enable early stopping. There are many other bells and whistles as well.

        Parameters
        ----------
        model : ``Model``, required.
            An AllenNLP model to be optimized. Pytorch Modules can also be optimized if
            their ``forward`` method returns a dictionary with a "loss" key, containing a
            scalar tensor representing the loss function to be optimized.

            If you are training your model using GPUs, your model should already be
            on the correct device. (If you use `Trainer.from_params` this will be
            handled for you.)
        optimizer : ``torch.nn.Optimizer``, required.
            An instance of a Pytorch Optimizer, instantiated with the parameters of the
            model to be optimized.
        iterator : ``DataIterator``, required.
            A method for iterating over a ``Dataset``, yielding padded indexed batches.
        train_dataset : ``Dataset``, required.
            A ``Dataset`` to train on. The dataset should have already been indexed.
        validation_dataset : ``Dataset``, optional, (default = None).
            A ``Dataset`` to evaluate on. The dataset should have already been indexed.
        patience : Optional[int] > 0, optional (default=None)
            Number of epochs to be patient before early stopping: the training is stopped
            after ``patience`` epochs with no improvement. If given, it must be ``> 0``.
            If None, early stopping is disabled.
        validation_metric : str, optional (default="loss")
            Validation metric to measure for whether to stop training using patience
            and whether to serialize an ``is_best`` model each epoch. The metric name
            must be prepended with either "+" or "-", which specifies whether the metric
            is an increasing or decreasing function.
        validation_iterator : ``DataIterator``, optional (default=None)
            An iterator to use for the validation set.  If ``None``, then
            use the training `iterator`.
        shuffle: ``bool``, optional (default=True)
            Whether to shuffle the instances in the iterator or not.
        num_epochs : int, optional (default = 20)
            Number of training epochs.
        serialization_dir : str, optional (default=None)
            Path to directory for saving and loading model files. Models will not be saved if
            this parameter is not passed.
        num_serialized_models_to_keep : ``int``, optional (default=20)
            Number of previous model checkpoints to retain.  Default is to keep 20 checkpoints.
            A value of None or -1 means all checkpoints will be kept.
        keep_serialized_model_every_num_seconds : ``int``, optional (default=None)
            If num_serialized_models_to_keep is not None, then occasionally it's useful to
            save models at a given interval in addition to the last num_serialized_models_to_keep.
            To do so, specify keep_serialized_model_every_num_seconds as the number of seconds
            between permanently saved checkpoints.  Note that this option is only used if
            num_serialized_models_to_keep is not None, otherwise all checkpoints are kept.
        checkpointer : ``Checkpointer``, optional (default=None)
            An instance of class Checkpointer to use instead of the default. If a checkpointer is specified,
            the arguments num_serialized_models_to_keep and keep_serialized_model_every_num_seconds should
            not be specified. The caller is responsible for initializing the checkpointer so that it is
            consistent with serialization_dir.
        model_save_interval : ``float``, optional (default=None)
            If provided, then serialize models every ``model_save_interval``
            seconds within single epochs.  In all cases, models are also saved
            at the end of every epoch if ``serialization_dir`` is provided.
        cuda_device : ``Union[int, List[int]]``, optional (default = -1)
            An integer or list of integers specifying the CUDA device(s) to use. If -1, the CPU is used.
        grad_norm : ``float``, optional, (default = None).
            If provided, gradient norms will be rescaled to have a maximum of this value.
        grad_clipping : ``float``, optional (default = ``None``).
            If provided, gradients will be clipped `during the backward pass` to have an (absolute)
            maximum of this value.  If you are getting ``NaNs`` in your gradients during training
            that are not solved by using ``grad_norm``, you may need this.
        learning_rate_scheduler : ``LearningRateScheduler``, optional (default = None)
            If specified, the learning rate will be decayed with respect to
            this schedule at the end of each epoch (or batch, if the scheduler implements
            the ``step_batch`` method). If you use :class:`torch.optim.lr_scheduler.ReduceLROnPlateau`,
            this will use the ``validation_metric`` provided to determine if learning has plateaued.
            To support updating the learning rate on every batch, this can optionally implement
            ``step_batch(batch_num_total)`` which updates the learning rate given the batch number.
        momentum_scheduler : ``MomentumScheduler``, optional (default = None)
            If specified, the momentum will be updated at the end of each batch or epoch
            according to the schedule.
        summary_interval: ``int``, optional, (default = 100)
            Number of batches between logging scalars to tensorboard
        histogram_interval : ``int``, optional, (default = ``None``)
            If not None, then log histograms to tensorboard every ``histogram_interval`` batches.
            When this parameter is specified, the following additional logging is enabled:
                * Histograms of model parameters
                * The ratio of parameter update norm to parameter norm
                * Histogram of layer activations
            We log histograms of the parameters returned by
            ``model.get_parameters_for_histogram_tensorboard_logging``.
            The layer activations are logged for any modules in the ``Model`` that have
            the attribute ``should_log_activations`` set to ``True``.  Logging
            histograms requires a number of GPU-CPU copies during training and is typically
            slow, so we recommend logging histograms relatively infrequently.
            Note: only Modules that return tensors, tuples of tensors or dicts
            with tensors as values currently support activation logging.
        should_log_parameter_statistics : ``bool``, optional, (default = True)
            Whether to send parameter statistics (mean and standard deviation
            of parameters and gradients) to tensorboard.
        should_log_learning_rate : ``bool``, optional, (default = False)
            Whether to send parameter specific learning rate to tensorboard.
        log_batch_size_period : ``int``, optional, (default = ``None``)
            If defined, how often to log the average batch size.
        moving_average: ``MovingAverage``, optional, (default = None)
            If provided, we will maintain moving averages for all parameters. During training, we
            employ a shadow variable for each parameter, which maintains the moving average. During
            evaluation, we backup the original parameters and assign the moving averages to corresponding
            parameters. Be careful that when saving the checkpoint, we will save the moving averages of
            parameters. This is necessary because we want the saved model to perform as well as the validated
            model if we load it later. But this may cause problems if you restart the training from checkpoint.
        """
        super().__init__(serialization_dir, cuda_device)

        # I am not calling move_to_gpu here, because if the model is
        # not already on the GPU then the optimizer is going to be wrong.
        self.model = model

        self.iterator = iterator
        self._validation_iterator = validation_iterator
        self.shuffle = shuffle

        optimiser_params = optimizer
        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]

        from copy import deepcopy

        self.optimizer = Optimizer.from_params(parameters,
                                               deepcopy(optimiser_params))
        self.optimizer_lang1 = Optimizer.from_params(
            parameters, deepcopy(optimiser_params))
        self.optimizer_lang2 = Optimizer.from_params(
            parameters, deepcopy(optimiser_params))
        self.optimizer_cm = Optimizer.from_params(parameters,
                                                  deepcopy(optimiser_params))

        self.train_data = train_dataset
        self._validation_data = validation_dataset

        if patience is None:  # no early stopping
            if validation_dataset:
                logger.warning(
                    "You provided a validation dataset but patience was set to None, "
                    "meaning that early stopping is disabled")
        elif (not isinstance(patience, int)) or patience <= 0:
            raise ConfigurationError(
                '{} is an invalid value for "patience": it must be a positive integer '
                "or None (if you want to disable early stopping)".format(
                    patience))

        # For tracking is_best_so_far and should_stop_early
        self._metric_tracker = MetricTracker(patience, validation_metric)
        # Get rid of + or -
        self._validation_metric = validation_metric[1:]

        self._num_epochs = num_epochs

        if checkpointer is not None:
            # We can't easily check if these parameters were passed in, so check against their default values.
            # We don't check against serialization_dir since it is also used by the parent class.
            if (num_serialized_models_to_keep != 20
                    or keep_serialized_model_every_num_seconds is not None):
                raise ConfigurationError(
                    "When passing a custom Checkpointer, you may not also pass in separate checkpointer "
                    "args 'num_serialized_models_to_keep' or 'keep_serialized_model_every_num_seconds'."
                )
            self._checkpointer = checkpointer
        else:
            self._checkpointer = Checkpointer(
                serialization_dir,
                keep_serialized_model_every_num_seconds,
                num_serialized_models_to_keep,
            )

        self._model_save_interval = model_save_interval

        self._grad_norm = grad_norm
        self._grad_clipping = grad_clipping

        if learning_rate_scheduler:
            self._learning_rate_scheduler = LearningRateScheduler.from_params(
                self.optimizer, deepcopy(learning_rate_scheduler))
            self._learning_rate_scheduler_lang1 = LearningRateScheduler.from_params(
                self.optimizer_lang1, deepcopy(learning_rate_scheduler))
            self._learning_rate_scheduler_lang2 = LearningRateScheduler.from_params(
                self.optimizer_lang2, deepcopy(learning_rate_scheduler))
            self._learning_rate_scheduler_cm = LearningRateScheduler.from_params(
                self.optimizer_cm, deepcopy(learning_rate_scheduler))
        else:
            self._learning_rate_scheduler, self._learning_rate_scheduler_lang1, self._learning_rate_scheduler_lang2, self._learning_rate_scheduler_cm = None, None, None, None

        if momentum_scheduler:
            self._momentum_scheduler = MomentumScheduler.from_params(
                self.optimizer, deepcopy(momentum_scheduler))
            self._momentum_scheduler_lang1 = MomentumScheduler.from_params(
                self.optimizer_lang1, deepcopy(momentum_scheduler))
            self._momentum_scheduler_lang2 = MomentumScheduler.from_params(
                self.optimizer_lang2, deepcopy(momentum_scheduler))
            self._momentum_scheduler_cm = MomentumScheduler.from_params(
                self.optimizer_lang3, deepcopy(momentum_scheduler))
        else:
            self._momentum_scheduler, self._momentum_scheduler_lang1, self._momentum_scheduler_lang2, self._momentum_scheduler_cm = None, None, None, None

        # WE HAVE NOT USED IT YET
        self._moving_average, self.moving_average_lang1, self.moving_average_lang2, self.moving_average_cm = None, None, None, None

        # We keep the total batch number as an instance variable because it
        # is used inside a closure for the hook which logs activations in
        # ``_enable_activation_logging``.
        self._batch_num_total = 0

        self._tensorboard = TensorboardWriter(
            get_batch_num_total=lambda: self._batch_num_total,
            serialization_dir=serialization_dir,
            summary_interval=summary_interval,
            histogram_interval=histogram_interval,
            should_log_parameter_statistics=should_log_parameter_statistics,
            should_log_learning_rate=should_log_learning_rate,
        )

        self._log_batch_size_period = log_batch_size_period

        self._last_log = 0.0  # time of last logging

        # Enable activation logging.
        if histogram_interval is not None:
            self._tensorboard.enable_activation_logging(self.model)
示例#24
0
    def from_params(cls,  # type: ignore
                    model: Model,
                    serialization_dir: str,
                    iterator: DataIterator,
                    train_data: Iterable[Instance],
                    validation_data: Optional[Iterable[Instance]],
                    params: Params,
                    validation_iterator: DataIterator = None) -> 'Trainer':
        # pylint: disable=arguments-differ
        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        shuffle = params.pop_bool("shuffle", True)
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = parse_cuda_device(params.pop("cuda_device", -1))
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)
        momentum_scheduler_params = params.pop("momentum_scheduler", None)

        if isinstance(cuda_device, list):
            model_device = cuda_device[0]
        else:
            model_device = cuda_device
        if model_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(model_device)

        parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))
        if "moving_average" in params:
            moving_average = MovingAverage.from_params(params.pop("moving_average"), parameters=parameters)
        else:
            moving_average = None

        if lr_scheduler_params:
            lr_scheduler = LearningRateScheduler.from_params(optimizer, lr_scheduler_params)
        else:
            lr_scheduler = None
        if momentum_scheduler_params:
            momentum_scheduler = MomentumScheduler.from_params(optimizer, momentum_scheduler_params)
        else:
            momentum_scheduler = None

        if 'checkpointer' in params:
            if 'keep_serialized_model_every_num_seconds' in params or \
                    'num_serialized_models_to_keep' in params:
                raise ConfigurationError(
                        "Checkpointer may be initialized either from the 'checkpointer' key or from the "
                        "keys 'num_serialized_models_to_keep' and 'keep_serialized_model_every_num_seconds'"
                        " but the passed config uses both methods.")
            checkpointer = Checkpointer.from_params(params.pop("checkpointer"))
        else:
            num_serialized_models_to_keep = params.pop_int("num_serialized_models_to_keep", 20)
            keep_serialized_model_every_num_seconds = params.pop_int(
                    "keep_serialized_model_every_num_seconds", None)
            checkpointer = Checkpointer(
                    serialization_dir=serialization_dir,
                    num_serialized_models_to_keep=num_serialized_models_to_keep,
                    keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds)
        model_save_interval = params.pop_float("model_save_interval", None)
        summary_interval = params.pop_int("summary_interval", 100)
        histogram_interval = params.pop_int("histogram_interval", None)
        should_log_parameter_statistics = params.pop_bool("should_log_parameter_statistics", True)
        should_log_learning_rate = params.pop_bool("should_log_learning_rate", False)
        log_batch_size_period = params.pop_int("log_batch_size_period", None)

        params.assert_empty(cls.__name__)
        return cls(model, optimizer, iterator,
                   train_data, validation_data,
                   patience=patience,
                   validation_metric=validation_metric,
                   validation_iterator=validation_iterator,
                   shuffle=shuffle,
                   num_epochs=num_epochs,
                   serialization_dir=serialization_dir,
                   cuda_device=cuda_device,
                   grad_norm=grad_norm,
                   grad_clipping=grad_clipping,
                   learning_rate_scheduler=lr_scheduler,
                   momentum_scheduler=momentum_scheduler,
                   checkpointer=checkpointer,
                   model_save_interval=model_save_interval,
                   summary_interval=summary_interval,
                   histogram_interval=histogram_interval,
                   should_log_parameter_statistics=should_log_parameter_statistics,
                   should_log_learning_rate=should_log_learning_rate,
                   log_batch_size_period=log_batch_size_period,
                   moving_average=moving_average)
示例#25
0
    def from_params(
            cls,  # type: ignore
            model: Model,
            serialization_dir: str,
            iterator: DataIterator,
            train_data: Iterable[Instance],
            validation_data: Optional[Iterable[Instance]],
            params: Params,
            validation_iterator: DataIterator = None) -> 'Trainer':
        # pylint: disable=arguments-differ
        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        shuffle = params.pop_bool("shuffle", True)
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = parse_cuda_device(params.pop("cuda_device", -1))
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)
        momentum_scheduler_params = params.pop("momentum_scheduler", None)

        if isinstance(cuda_device, list):
            model_device = cuda_device[0]
        else:
            model_device = cuda_device
        if model_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(model_device)

        parameters = [[n, p] for n, p in model.named_parameters()
                      if p.requires_grad]
        optimizer_params = params.pop("optimizer")
        wd = params.pop("weight_decay", 0.0)

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

        if not isinstance(optimizer_params, str):
            parameter_groups = [[[
                n for n, p in parameters if not any(nd in n for nd in no_decay)
            ], {
                'weight_decay': wd
            }],
                                [[
                                    n for n, p in parameters
                                    if any(nd in n for nd in no_decay)
                                ], {
                                    'weight_decay': 0.0
                                }]]

            optimizer_params["parameter_groups"] = parameter_groups

        optimizer = Optimizer.from_params(parameters, optimizer_params)

        if "moving_average" in params:
            moving_average = MovingAverage.from_params(
                params.pop("moving_average"), parameters=parameters)
        else:
            moving_average = None

        if lr_scheduler_params:
            learning_rate_scheduler = LearningRateScheduler.from_params(
                optimizer, lr_scheduler_params)
        else:
            learning_rate_scheduler = None

        if momentum_scheduler_params:
            momentum_scheduler = MomentumScheduler.from_params(
                optimizer, momentum_scheduler_params)
        else:
            momentum_scheduler = None

        num_serialized_models_to_keep = params.pop_int(
            "num_serialized_models_to_keep", 20)
        keep_serialized_model_every_num_seconds = params.pop_int(
            "keep_serialized_model_every_num_seconds", None)
        model_save_interval = params.pop_float("model_save_interval", None)
        summary_interval = params.pop_int("summary_interval", 100)
        histogram_interval = params.pop_int("histogram_interval", None)
        should_log_parameter_statistics = params.pop_bool(
            "should_log_parameter_statistics", True)
        should_log_learning_rate = params.pop_bool("should_log_learning_rate",
                                                   False)
        should_log_momentum = params.pop_bool("should_log_momentum", False)
        log_batch_size_period = params.pop_int("log_batch_size_period", None)

        params.assert_empty(cls.__name__)
        return cls(
            model,
            optimizer,
            iterator,
            train_data,
            validation_data,
            patience=patience,
            validation_metric=validation_metric,
            validation_iterator=validation_iterator,
            shuffle=shuffle,
            num_epochs=num_epochs,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            grad_norm=grad_norm,
            grad_clipping=grad_clipping,
            learning_rate_scheduler=learning_rate_scheduler,
            momentum_scheduler=momentum_scheduler,
            num_serialized_models_to_keep=num_serialized_models_to_keep,
            keep_serialized_model_every_num_seconds=
            keep_serialized_model_every_num_seconds,
            model_save_interval=model_save_interval,
            summary_interval=summary_interval,
            histogram_interval=histogram_interval,
            should_log_parameter_statistics=should_log_parameter_statistics,
            should_log_learning_rate=should_log_learning_rate,
            should_log_momentum=should_log_momentum,
            log_batch_size_period=log_batch_size_period,
            moving_average=moving_average)