plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.savefig(figureDir + labelName.replace(".", "_") + "-ROC.eps") plotInd += 1 #The last column is the mean value meanMeanAUCs = numpy.mean(meanAUCs, 1) meanStdAUCs = numpy.mean(stdAUCs, 1) meanAUCs = numpy.c_[meanAUCs, meanMeanAUCs] stdAUCs = numpy.c_[stdAUCs, meanStdAUCs] print("\n") print(Latex.listToRow(labelNames)) print(Latex.addRowNames(rowNames, Latex.array2DsToRows(meanAUCs, stdAUCs, 2))) #----------------- Results for RankBoost and RankSVM ---------------------------------- algorithmNames = ["RankBoost", "RankSVM"] numMethods = len(dataTypes)*len(algorithmNames) rowNames = numpy.zeros(numMethods, "a20") meanAUCs = numpy.zeros((numMethods, len(labelNames))) stdAUCs = numpy.zeros((numMethods, len(labelNames))) for m in range(len(algorithmNames)): algorithmName = algorithmNames[m] for i in range(len(labelNames)): labelName = labelNames[i]
meanTotalInfo = numpy.mean(totalInfo, 0)/numVertices stdTotalInfo = numpy.std(totalInfo, 0)/numVertices meanAverageHops = numpy.mean(averageHops) stdAverageHops = numpy.std(averageHops) meanTotalInfo = meanTotalInfo.ravel() stdTotalInfo = stdTotalInfo.ravel() meanTotalInfo = meanTotalInfo[1:maxIters]-meanTotalInfo[0:maxIters-1] stdTotalInfo = stdTotalInfo[0:maxIters-1]+stdTotalInfo[1:maxIters] if infoProb == 0.5: pyplot.plot(meanTotalInfo.ravel(), label= "p="+str(p)+",k="+str(k)) print((str(p) + " & " + str(k) + " & " + str(infoProb) + " & %.3f" % meanAverageHops), end=' ') print(("(%.3f) & " % stdAverageHops), end=' ') print(("%.3f (%.3f) & " % (meanReceiversToSenders, stdReceiversToSenders)), end=' ') print((Latex.array2DsToRows(meanTotalInfo.ravel()[0:maxIters], stdTotalInfo.ravel()[0:maxIters]) + "\\\\")) except IOError: print(("File not found : " + outputFileName)) pyplot.xlabel('Total information') pyplot.ylabel('Iteration') pyplot.legend(loc=10, ncol=3, shadow=True) #pyplot.show() print("") print("") graphType = "ErdosRenyi" ps = [0.001, 0.002, 0.003, 0.004]