示例#1
0
    def testListToLatex(self):
        lst = ["one", "two", "three"]

        self.assertEquals(Latex.listToRow(lst), "one & two & three\\\\")

        lst = []

        self.assertEquals(Latex.listToRow(lst), "")
示例#2
0
def summary(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix, gridResultsSuffix="GridResults"):
    """
    Print the errors for all results plus a summary. 
    """
    numMethods = (1+(cvScalings.shape[0]+1))
    numDatasets = len(datasetNames)
    overallErrors = numpy.zeros((numDatasets, len(sampleMethods), sampleSizes.shape[0], foldsSet.shape[0], numMethods))
    overallStdWins = numpy.zeros((len(sampleMethods), len(sampleSizes), foldsSet.shape[0], numMethods+1, 3), numpy.int)
    overallErrorsPerSampMethod = numpy.zeros((numDatasets, len(sampleMethods), len(sampleSizes), numMethods), numpy.float)
    
    table1 = ""
    table2 = ""
    table3 = ""

    for i in range(len(datasetNames)):
        table3Error = numpy.zeros((2, len(sampleMethods)))   
        table3Stds = numpy.zeros((2, len(sampleMethods)))   
        
        for j in range(len(sampleMethods)):
            print("="*50 + "\n" + datasetNames[i] + "-" + sampleMethods[j] + "\n" + "="*50 )
            
            outfileName = outputDir + datasetNames[i] + sampleMethods[j] + fileNameSuffix + ".npz"
            try: 
                
                data = numpy.load(outfileName)
    
                errors = data["arr_0"]
                params = data["arr_1"]
                meanErrorGrids = data["arr_2"]
                stdErrorGrids = data["arr_3"]
                meanApproxGrids = data["arr_4"]
                stdApproxGrids = data["arr_5"]      
                
                #Load ideal results 
                outfileName = outputDir + datasetNames[i]  + gridResultsSuffix + ".npz"
                data = numpy.load(outfileName)
                idealErrors = data["arr_0"]
                
                errorTable, meanErrors, stdErrors = getLatexTable(errors, cvScalings, idealErrors)
    
                wins = getWins(errors)
                idealWins = getIdealWins(errors, idealErrors)
                excessError = numpy.zeros(errors.shape)
    
                for k in range(errors.shape[1]):
                    excessError[:, k, :, :] = errors[:, k, :, :] - numpy.tile(errors[:, k, :, 0, numpy.newaxis], (1, 1, numMethods))
    
                meanExcessError = numpy.mean(excessError, 0)
                stdExcessError = numpy.std(excessError, 0)
                excessErrorTable, meanExcessErrors, stdExcessErrors = getLatexTable(excessError, cvScalings, idealErrors)
    
                overallErrorsPerSampMethod[i, j, :, :] = numpy.mean(meanErrors, 1)
                overallErrors[i, j, :, :, :] = meanExcessError
                overallStdWins[j, :, :, 0:-1, :] += wins
                overallStdWins[j, :, :, -1, :] += idealWins
                print(errorTable)
                #print("Min error is: " + str(numpy.min(meanErrors)))
                #print("Max error is: " + str(numpy.max(meanErrors)))
                #print("Mean error is: " + str(numpy.mean(meanErrors)) + "\n")
                
                #This is a table with V=10, alpha=1 and CV sampling 
                
                sliceFoldIndex = 0  
                
                print(meanErrors[0, 1, 0])
                numSliceMethods = 3
                table1Error = numpy.zeros(len(sampleSizes)*numSliceMethods)
                table1Std = numpy.zeros(len(sampleSizes)*numSliceMethods)
                for  k in range(len(sampleSizes)):
                    table1Error[k*numSliceMethods] = meanErrors[k, sliceFoldIndex, 0]
                    table1Error[k*numSliceMethods+1] = meanErrors[k, sliceFoldIndex, 1]
                    table1Error[k*numSliceMethods+2] = meanErrors[k, sliceFoldIndex, 4]

                    table1Std[k*numSliceMethods] = stdErrors[k, sliceFoldIndex, 0]
                    table1Std[k*numSliceMethods+1] = stdErrors[k, sliceFoldIndex, 1]
                    table1Std[k*numSliceMethods+2] = stdErrors[k, sliceFoldIndex, 4]
                    
                if j == 0: 
                    table1 += datasetNames[i] + " & " + Latex.array2DToRows(numpy.array([table1Error]), numpy.array([table1Std])) + "\n"
                
                
                          
                
                #See how alpha varies with V=10, CV sampling 
                table2Error = numpy.zeros(range(numMethods-2))
                table2Std = numpy.zeros(range(numMethods-2))
                for s in range(len(sampleSizes)): 
                    table2Error = meanErrors[s, sliceFoldIndex, 2:]
                    table2Std = stdErrors[s, sliceFoldIndex, 2:]
                
                    if j == 0: 
                        table2 += datasetNames[i] + " $m=" + str(sampleSizes[s]) + "$ & " + Latex.array2DToRows(numpy.array([table2Error]), numpy.array([table2Std])) + "\n"
    
                """
                #See how each sample method effects CV and pen alpha=1
                fourFoldIndex = 4  
                hundredMIndex = 1            
                
                table3Error[0, j] = meanErrors[hundredMIndex, fourFoldIndex, 0]
                table3Error[1, j] = meanErrors[hundredMIndex, fourFoldIndex, 3]
                table3Stds[0, j] = stdErrors[hundredMIndex, fourFoldIndex, 0]
                table3Stds[1, j] = stdErrors[hundredMIndex, fourFoldIndex, 3]
                """
            except IOError: 
                print("Failed to open file: " + outfileName)

        table3 +=  Latex.addRowNames([datasetNames[i] + " Std ", datasetNames[i] + " PenVF "], Latex.array2DToRows(table3Error, table3Stds))            
            
        datasetMeanErrors = Latex.listToRow(sampleMethods) + "\n"

        for j in range(len(sampleSizes)):
            datasetMeanErrors += Latex.array2DToRows(overallErrorsPerSampMethod[i, :, j, :].T) + "\n"

        datasetMeanErrors = Latex.addRowNames(getRowNames(cvScalings), datasetMeanErrors)
        print(datasetMeanErrors)
     
    print("="*50 + "\n" + "Sliced Tables" + "\n" + "="*50)   
    
    print(table1 + "\n")
    print(table2 + "\n")
    print(table3)
     
    print("="*50 + "\n" + "Overall" + "\n" + "="*50)

    overallMeanErrors = numpy.mean(overallErrors, 0)
    overallStdErrors = numpy.std(overallErrors, 0)

    for i in range(len(sampleMethods)):
        print("-"*20 + sampleMethods[i] + "-"*20)
        overallErrorTable = Latex.array1DToRow(foldsSet) + "\\\\ \n"
        overallWinsTable = Latex.array1DToRow(foldsSet) + " & Total & "  +Latex.array1DToRow(foldsSet) + " & Total \\\\ \n"

        rowNames = getRowNames(cvScalings)

        for j in range(sampleSizes.shape[0]):
            overallErrorTable += Latex.array2DToRows(overallMeanErrors[i, j, :, :].T, overallStdErrors[i, j, :, :].T, bold=overallMeanErrors[i, j, :, :].T<0) + "\n"

            tiesWins = numpy.r_[overallStdWins[i, j, :, :, 0], overallStdWins[i, j, :, :, 1], overallStdWins[i, j, :, :, 2]]            
            
            overallWinsTable += Latex.array2DToRows(tiesWins.T) + "\n"

        overallErrorTable = Latex.addRowNames(rowNames, overallErrorTable)
        
        rowNames = getRowNames(cvScalings, True)
        overallWinsTable = Latex.addRowNames(rowNames, overallWinsTable)

        print(Latex.latexTable(overallWinsTable, "Wins for " + sampleMethods[i], True))
        print(Latex.latexTable(overallErrorTable.replace("0.", "."), "Excess errors for " + sampleMethods[i], True))
        #print(overallWinsTable)
        #print(overallErrorTable)

    #Now print the mean errors for all datasets
    datasetMeanErrors = Latex.listToRow(sampleMethods) + "\n"
    overallErrorsPerSampMethod = numpy.mean(overallErrorsPerSampMethod[:, :, :, :], 0)

    for j in range(len(sampleSizes)):
        datasetMeanErrors += Latex.array2DToRows(overallErrorsPerSampMethod[:, j, :].T) + "\n"

    datasetMeanErrors = Latex.addRowNames(getRowNames(cvScalings), datasetMeanErrors)
    print(datasetMeanErrors)
def plotVectorStats():
    #Finally, compute some vector stats at various points in the graph
    logging.info("Computing vector stats")
    global plotInd
    resultsFileName = resultsDir + "InfectGrowthVectorStats.pkl"

    if saveResults:
        statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2, True)
        Util.savePickle(statsDictList, resultsFileName, True)
    else:
        statsDictList = Util.loadPickle(resultsFileName)

        treeSizesDistArray = numpy.zeros((len(dayList2), 3000))
        treeDepthsDistArray = numpy.zeros((len(dayList2), 100))
        numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
        numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
        numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]

        for j in range(len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]

            degreeDist = statsDict["outDegreeDist"]
            degreeDist = degreeDist/float(numpy.sum(degreeDist))

            maxEigVector = statsDict["maxEigVector"]
            maxEigVector = numpy.flipud(numpy.sort(numpy.abs(maxEigVector)))
            maxEigVector = numpy.log(maxEigVector[maxEigVector>0])

            treeSizesDist = statsDict["treeSizesDist"]
            treeSizesDist = numpy.array(treeSizesDist, numpy.float64)/numpy.sum(treeSizesDist)
            treeSizesDistArray[j, 0:treeSizesDist.shape[0]] = treeSizesDist

            treeDepthsDist = statsDict["treeDepthsDist"]
            #treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)/numpy.sum(treeDepthsDist)
            treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)
            treeDepthsDistArray[j, 0:treeDepthsDist.shape[0]] = treeDepthsDist

            plotInd2 = plotInd

            plt.figure(plotInd2)
            plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            plt.ylim((0, 0.8))
            plt.legend()
            plt.savefig(figureDir + "DegreeDist" +  ".eps")
            plotInd2 += 1

            plt.figure(plotInd2)
            plt.scatter(numpy.arange(treeSizesDist.shape[0])[treeSizesDist!=0], numpy.log(treeSizesDist[treeSizesDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
            plt.xlabel("Size")
            plt.ylabel("log(probability)")
            plt.xlim((0, 125))
            plt.legend()
            plt.savefig(figureDir + "TreeSizeDist" +  ".eps")
            plotInd2 += 1

            plt.figure(plotInd2)
            plt.scatter(numpy.arange(treeDepthsDist.shape[0])[treeDepthsDist!=0], numpy.log(treeDepthsDist[treeDepthsDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
            plt.xlabel("Depth")
            plt.ylabel("log(probability)")
            plt.xlim((0, 15))
            plt.legend()
            plt.savefig(figureDir + "TreeDepthDist" +  ".eps")
            plotInd2 += 1

        dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2]
        precision = 4 

        treeSizesDistArray = treeSizesDistArray[:, 0:treeSizesDist.shape[0]]
        nonZeroCols = numpy.sum(treeSizesDistArray, 0)!=0
        print((Latex.array1DToRow(numpy.arange(treeSizesDistArray.shape[1])[nonZeroCols])))
        print((Latex.array2DToRows(treeSizesDistArray[:, nonZeroCols])))

        print("Tree depths")
        treeDepthsDistArray = treeDepthsDistArray[:, 0:treeDepthsDist.shape[0]]
        nonZeroCols = numpy.sum(treeDepthsDistArray, 0)!=0
        print((Latex.array1DToRow(numpy.arange(treeDepthsDistArray.shape[1])[nonZeroCols])))
        print((Latex.array2DToRows(treeDepthsDistArray[:, nonZeroCols])))

        print(numpy.sum(treeDepthsDistArray[:, 0:3], 1))

        print("Edges and verticies")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(numVerticesEdgesArray.T, precision))
def plotVectorStats():
    #Finally, compute some vector stats at various points in the graph
    logging.info("Computing vector stats")
    global plotInd
    resultsFileName = resultsDir + "ContactGrowthVectorStats.pkl"

    if saveResults:
        statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2)
        Util.savePickle(statsDictList, resultsFileName, False)
    else:
        statsDictList = Util.loadPickle(resultsFileName)

        #Load up configuration model results
        configStatsDictList = []
        resultsFileNameBase = resultsDir + "ConfigGraphVectorStats"

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsDictList.append(Util.loadPickle(resultsFileName))

        #Now need to take mean of 1st element of list
        meanConfigStatsDictList = configStatsDictList[0]
        for i in range(len(configStatsDictList[0])):
            for k in range(1, numConfigGraphs):
                for key in configStatsDictList[k][i].keys():
                    if configStatsDictList[k][i][key].shape[0] > meanConfigStatsDictList[i][key].shape[0]:
                        meanConfigStatsDictList[i][key] = numpy.r_[meanConfigStatsDictList[i][key], numpy.zeros(configStatsDictList[k][i][key].shape[0] - meanConfigStatsDictList[i][key].shape[0])]
                    elif configStatsDictList[k][i][key].shape[0] < meanConfigStatsDictList[i][key].shape[0]:
                        configStatsDictList[k][i][key] = numpy.r_[configStatsDictList[k][i][key], numpy.zeros(meanConfigStatsDictList[i][key].shape[0] - configStatsDictList[k][i][key].shape[0])]

                    meanConfigStatsDictList[i][key] += configStatsDictList[k][i][key]

            for key in configStatsDictList[0][i].keys():
                meanConfigStatsDictList[i][key] = meanConfigStatsDictList[i][key]/numConfigGraphs


        triangleDistArray = numpy.zeros((len(dayList2), 100))
        configTriangleDistArray = numpy.zeros((len(dayList2), 100))
        hopPlotArray = numpy.zeros((len(dayList2), 27))
        configHopPlotArray = numpy.zeros((len(dayList2), 30))
        componentsDistArray = numpy.zeros((len(dayList2), 3000))
        configComponentsDistArray = numpy.zeros((len(dayList2), 3000))
        numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
        numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
        numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]

        binWidths = numpy.arange(0, 0.50, 0.05)
        eigVectorDists = numpy.zeros((len(dayList2), binWidths.shape[0]-1), numpy.int)

        femaleSums = numpy.zeros(len(dayList2))
        maleSums = numpy.zeros(len(dayList2))
        heteroSums = numpy.zeros(len(dayList2))
        biSums = numpy.zeros(len(dayList2))

        contactSums = numpy.zeros(len(dayList2))
        nonContactSums = numpy.zeros(len(dayList2))
        donorSums = numpy.zeros(len(dayList2))
        randomTestSums = numpy.zeros(len(dayList2))
        stdSums = numpy.zeros(len(dayList2))
        prisonerSums = numpy.zeros(len(dayList2))
        recommendSums = numpy.zeros(len(dayList2))
        
        meanAges = numpy.zeros(len(dayList2))
        degrees = numpy.zeros((len(dayList2), 20))

        provinces = numpy.zeros((len(dayList2), 15))

        havanaSums = numpy.zeros(len(dayList2))
        villaClaraSums = numpy.zeros(len(dayList2))
        pinarSums = numpy.zeros(len(dayList2))
        holguinSums = numpy.zeros(len(dayList2))
        habanaSums = numpy.zeros(len(dayList2))
        sanctiSums = numpy.zeros(len(dayList2))

        meanDegrees = numpy.zeros(len(dayList2))
        stdDegrees = numpy.zeros(len(dayList2))

        #Note that death has a lot of missing values
        for j in range(len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]
            configStatsDict = meanConfigStatsDictList[j]

            degreeDist = statsDict["outDegreeDist"]
            degreeDist = degreeDist/float(numpy.sum(degreeDist))
            #Note that degree distribution for configuration graph will be identical 

            eigenDist = statsDict["eigenDist"]
            eigenDist = numpy.log(eigenDist[eigenDist>=10**-1])
            #configEigenDist = configStatsDict["eigenDist"]
            #configEigenDist = numpy.log(configEigenDist[configEigenDist>=10**-1])

            hopCount = statsDict["hopCount"]
            hopCount = numpy.log10(hopCount)
            hopPlotArray[j, 0:hopCount.shape[0]] = hopCount
            configHopCount = configStatsDict["hopCount"]
            configHopCount = numpy.log10(configHopCount)
            #configHopPlotArray[j, 0:configHopCount.shape[0]] = configHopCount

            triangleDist = statsDict["triangleDist"]
            #triangleDist = numpy.array(triangleDist, numpy.float64)/numpy.sum(triangleDist)
            triangleDist = numpy.array(triangleDist, numpy.float64)
            triangleDistArray[j, 0:triangleDist.shape[0]] = triangleDist
            configTriangleDist = configStatsDict["triangleDist"]
            configTriangleDist = numpy.array(configTriangleDist, numpy.float64)/numpy.sum(configTriangleDist)
            configTriangleDistArray[j, 0:configTriangleDist.shape[0]] = configTriangleDist

            maxEigVector = statsDict["maxEigVector"]
            eigenvectorInds = numpy.flipud(numpy.argsort(numpy.abs(maxEigVector)))
            top10eigenvectorInds = eigenvectorInds[0:numpy.round(eigenvectorInds.shape[0]/10.0)]
            maxEigVector = numpy.abs(maxEigVector[eigenvectorInds])
            #print(maxEigVector)
            eigVectorDists[j, :] = numpy.histogram(maxEigVector, binWidths)[0]

            componentsDist = statsDict["componentsDist"]
            componentsDist = numpy.array(componentsDist, numpy.float64)/numpy.sum(componentsDist)
            componentsDistArray[j, 0:componentsDist.shape[0]] = componentsDist
            configComponentsDist = configStatsDict["componentsDist"]
            configComponentsDist = numpy.array(configComponentsDist, numpy.float64)/numpy.sum(configComponentsDist)
            configComponentsDistArray[j, 0:configComponentsDist.shape[0]] = configComponentsDist

            plotInd2 = plotInd

            plt.figure(plotInd2)
            plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, plotStyles2[j], label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            plt.ylim((0, 0.5))
            plt.savefig(figureDir + "DegreeDist" +  ".eps")
            plt.legend()
            plotInd2 += 1

            """
            plt.figure(plotInd2)
            plt.plot(numpy.arange(eigenDist.shape[0]), eigenDist, label=dateStr)
            plt.xlabel("Eigenvalue rank")
            plt.ylabel("log(Eigenvalue)")
            plt.savefig(figureDir + "EigenDist" +  ".eps")
            plt.legend()
            plotInd2 += 1
            """

            #How does kleinberg do the hop plots 
            plt.figure(plotInd2)
            plt.plot(numpy.arange(hopCount.shape[0]), hopCount, plotStyles[j], label=dateStr)
            plt.xlabel("k")
            plt.ylabel("log10(pairs)")
            plt.ylim( (2.5, 7) )
            plt.legend(loc="lower right")
            plt.savefig(figureDir + "HopCount" + ".eps")
            plotInd2 += 1
            
            plt.figure(plotInd2)
            plt.plot(numpy.arange(maxEigVector.shape[0]), maxEigVector, plotStyles2[j], label=dateStr)
            plt.xlabel("Rank")
            plt.ylabel("log(eigenvector coefficient)")
            plt.savefig(figureDir + "MaxEigVector" +  ".eps")
            plt.legend()
            plotInd2 += 1

            #Compute some information the 10% most central vertices
            
            subgraphIndices = numpy.nonzero(detections <= dayList2[j])[0]
            subgraph = sGraph.subgraph(subgraphIndices)
            subgraphVertexArray = subgraph.getVertexList().getVertices()

            femaleSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, genderIndex]==1)
            maleSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, genderIndex]==0)
            heteroSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, orientationIndex]==0)
            biSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, orientationIndex]==1)

            contactSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, contactIndex])
            donorSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, donorIndex])
            randomTestSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, randomTestIndex])
            stdSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, stdIndex])
            prisonerSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, prisonerIndex])
            recommendSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, doctorIndex])

            meanAges[j] = numpy.mean(subgraphVertexArray[top10eigenvectorInds, detectionIndex] - subgraphVertexArray[top10eigenvectorInds, dobIndex])/daysInYear

            havanaSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, havanaIndex])
            villaClaraSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, villaClaraIndex])
            pinarSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, pinarIndex])
            holguinSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, holguinIndex])
            habanaSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, habanaIndex])
            sanctiSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, sanctiIndex])

            provinces[j, :] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, 22:37], 0)

            ddist = numpy.bincount(subgraph.outDegreeSequence()[top10eigenvectorInds])
            degrees[j, 0:ddist.shape[0]] = numpy.array(ddist, numpy.float)/numpy.sum(ddist)

            meanDegrees[j] = numpy.mean(subgraph.outDegreeSequence()[top10eigenvectorInds])
            stdDegrees[j] = numpy.std(subgraph.outDegreeSequence()[top10eigenvectorInds])


            plt.figure(plotInd2)
            plt.plot(numpy.arange(degrees[j, :].shape[0]), degrees[j, :], plotStyles2[j], label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            #plt.ylim((0, 0.5))
            plt.savefig(figureDir + "DegreeDistCentral" +  ".eps")
            plt.legend()
            plotInd2 += 1

        precision = 4
        dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2]

        print("Hop counts")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(hopPlotArray.T))

        print("\nHop counts for configuration graphs")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(configHopPlotArray.T))

        print("\n\nEdges and vertices")
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(numVerticesEdgesArray.T, precision)))

        print("\n\nEigenvector distribution")
        print((Latex.array1DToRow(binWidths[1:]) + "\\\\"))
        print((Latex.array2DToRows(eigVectorDists)))

        print("\n\nDistribution of component sizes")
        componentsDistArray = componentsDistArray[:, 0:componentsDist.shape[0]]
        nonZeroCols = numpy.sum(componentsDistArray, 0)!=0
        componentsDistArray = numpy.r_[numpy.array([numpy.arange(componentsDistArray.shape[1])[nonZeroCols]]), componentsDistArray[:, nonZeroCols]]
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(componentsDistArray.T, precision)))

        print("\n\nDistribution of component sizes in configuration graphs")
        configComponentsDistArray = configComponentsDistArray[:, 0:configComponentsDist.shape[0]]
        nonZeroCols = numpy.sum(configComponentsDistArray, 0)!=0
        configComponentsDistArray = numpy.r_[numpy.array([numpy.arange(configComponentsDistArray.shape[1])[nonZeroCols]]), configComponentsDistArray[:, nonZeroCols]]
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(configComponentsDistArray.T, precision)))

        print("\n\nDistribution of triangle participations")
        triangleDistArray = triangleDistArray[:, 0:triangleDist.shape[0]]
        nonZeroCols = numpy.sum(triangleDistArray, 0)!=0
        triangleDistArray = numpy.r_[numpy.array([numpy.arange(triangleDistArray.shape[1])[nonZeroCols]])/2, triangleDistArray[:, nonZeroCols]]
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(triangleDistArray.T, precision)))

        configTriangleDistArray = configTriangleDistArray[:, 0:configTriangleDist.shape[0]]
        nonZeroCols = numpy.sum(configTriangleDistArray, 0)!=0
        configTriangleDistArray = numpy.r_[numpy.array([numpy.arange(configTriangleDistArray.shape[1])[nonZeroCols]])/2, configTriangleDistArray[:, nonZeroCols]]
        configTriangleDistArray = numpy.c_[configTriangleDistArray, numpy.zeros((configTriangleDistArray.shape[0], triangleDistArray.shape[1]-configTriangleDistArray.shape[1]))]

        print("\n\nDistribution of central vertices")
        print((Latex.listToRow(dateStrList)))
        subgraphSizes = numpy.array(maleSums + femaleSums, numpy.float)
        print("Female & " + Latex.array1DToRow(femaleSums*100/subgraphSizes, 1) + "\\\\")
        print("Male & " + Latex.array1DToRow(maleSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Heterosexual & " + Latex.array1DToRow(heteroSums*100/subgraphSizes, 1) + "\\\\")
        print("Bisexual & " + Latex.array1DToRow(biSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Contact traced & " + Latex.array1DToRow(contactSums*100/subgraphSizes, 1) + "\\\\")
        print("Blood donor & " + Latex.array1DToRow(donorSums*100/subgraphSizes, 1) + "\\\\")
        print("RandomTest & " + Latex.array1DToRow(randomTestSums*100/subgraphSizes, 1) + "\\\\")
        print("STD & " + Latex.array1DToRow(stdSums*100/subgraphSizes, 1) + "\\\\")
        print("Prisoner & " + Latex.array1DToRow(prisonerSums*100/subgraphSizes, 1) + "\\\\")
        print("Doctor recommendation & " + Latex.array1DToRow(recommendSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Mean ages (years) & " + Latex.array1DToRow(meanAges, 2) + "\\\\")
        print("\hline")
        print("Holguin & " + Latex.array1DToRow(holguinSums*100/subgraphSizes, 1) + "\\\\")
        print("La Habana & " + Latex.array1DToRow(habanaSums*100/subgraphSizes, 1) + "\\\\")
        print("Havana City & " + Latex.array1DToRow(havanaSums*100/subgraphSizes, 1) + "\\\\")
        print("Pinar del Rio & " + Latex.array1DToRow(pinarSums*100/subgraphSizes, 1) + "\\\\")
        print("Sancti Spiritus & " + Latex.array1DToRow(sanctiSums*100/subgraphSizes, 1) + "\\\\")
        print("Villa Clara & " + Latex.array1DToRow(villaClaraSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Mean degrees & " + Latex.array1DToRow(meanDegrees, 2) + "\\\\")
        print("Std degrees & " + Latex.array1DToRow(stdDegrees, 2) + "\\\\")
        
        print("\n\nProvinces")
        print(Latex.array2DToRows(provinces))

        print("\n\nDegree distribution")
        print(Latex.array2DToRows(degrees))
def plotScalarStats():
    logging.info("Computing scalar stats")

    resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl"

    if saveResults:
        statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, slowStats)
        Util.savePickle(statsArray, resultsFileName, True)

        #Now compute statistics on the configuration graphs 
    else:
        statsArray = Util.loadPickle(resultsFileName)

        #Take the mean of the results over the configuration model graphs
        resultsFileNameBase = resultsDir + "ConfigGraphScalarStats"
        numGraphs = len(subgraphIndicesList)
        #configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))
        configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats()-2, numConfigGraphs))

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)

        configStatsArray = numpy.mean(configStatsArrays, 2)
        configStatsStd =  numpy.std(configStatsArrays, 2)
        global plotInd

        def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
            plt.hold(True)
            plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
            #errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
            errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
            plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
            plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=1, label="_nolegend_", ecolor="red")

            xmin, xmax = plt.xlim()
            plt.xlim((0, xmax))
            ymin, ymax = plt.ylim()
            plt.ylim((0, ymax))


        #Output all the results into plots
        plt.figure(plotInd)
        plt.hold(True)
        plotRealConfigError(graphStats.maxComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Max comp. vertices", "CM max comp. vertices")
        plotRealConfigError(graphStats.maxComponentEdgesIndex, plotStyleBW[1], plotStyles4[1], "Max comp. edges", "CM max comp. edges")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. vertices/edges")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "MaxComponentSizeGrowth.eps")
        plotInd += 1

        for k in range(len(dayList)):
            day = dayList[k]
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.maxComponentEdgesIndex]))
            #print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numComponentsIndex]))

        plt.figure(plotInd)
        plotRealConfigError(graphStats.numComponentsIndex, plotStyleBW[0], plotStyles4[0], "Size >= 1", "CM size >= 1")
        plotRealConfigError(graphStats.numNonSingletonComponentsIndex, plotStyleBW[1], plotStyles4[1], "Size >= 2", "CM size >= 2")
        plotRealConfigError(graphStats.numTriOrMoreComponentsIndex, plotStyleBW[2], plotStyles4[2], "Size >= 3", "CM size >= 3")

        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. components")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "NumComponentsGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.meanComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean component size")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MeanComponentSizeGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.diameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Max component diameter")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxComponentDiameterGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.effectiveDiameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Effective diameter")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxComponentEffDiameterGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.meanDegreeIndex, plotStyleBW[0], plotStyles4[0], "All vertices", "CM all vertices")
        plotRealConfigError(graphStats.maxCompMeanDegreeIndex, plotStyleBW[1], plotStyles4[1], "Max component", "CM max component")
        #plt.plot(absDayList, statsArray[:, graphStats.meanDegreeIndex], plotStyleBW[0], absDayList, statsArray[:, graphStats.maxCompMeanDegreeIndex], plotStyleBW[1], absDayList, configStatsArray[:, graphStats.meanDegreeIndex], plotStyles4[0], absDayList, configStatsArray[:, graphStats.maxCompMeanDegreeIndex], plotStyles4[1])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean degree")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MeanDegrees.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.densityIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model")
        #plt.plot(absDayList, statsArray[:, graphStats.densityIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.densityIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Density")
        plt.legend()
        plt.savefig(figureDir + "DensityGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plt.plot(absDayList, statsArray[:, graphStats.powerLawIndex], plotStyleBW[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Alpha")
        plt.savefig(figureDir + "PowerLawGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.geodesicDistanceIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model")
        #plt.plot(absDayList, statsArray[:, graphStats.geodesicDistanceIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.geodesicDistanceIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Geodesic distance")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "GeodesicGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.harmonicGeoDistanceIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model")
        #plt.plot(absDayList, statsArray[:, graphStats.harmonicGeoDistanceIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.harmonicGeoDistanceIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean harmonic geodesic distance")
        plt.legend(loc="upper right")
        plt.savefig(figureDir + "HarmonicGeodesicGrowth.eps")
        plotInd += 1

        #print(statsArray[:, graphStats.harmonicGeoDistanceIndex])

        plt.figure(plotInd)
        plotRealConfigError(graphStats.geodesicDistMaxCompIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "Config model")
        #plt.plot(absDayList, statsArray[:, graphStats.geodesicDistMaxCompIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.geodesicDistMaxCompIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Max component mean geodesic distance")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxCompGeodesicGrowth.eps")
        plotInd += 1

        #Find the number of edges in the infection graph
        resultsFileName = resultsDir + "InfectGrowthScalarStats.pkl"
        infectStatsArray = Util.loadPickle(resultsFileName)

        #Make sure we don't include 0 in the array
        vertexIndex = numpy.argmax(statsArray[:, graphStats.numVerticesIndex] > 0)
        edgeIndex = numpy.argmax(infectStatsArray[:, graphStats.numEdgesIndex] > 0)
        minIndex = numpy.maximum(vertexIndex, edgeIndex)

        plt.figure(plotInd)
        plt.plot(numpy.log(statsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(statsArray[minIndex:, graphStats.numEdgesIndex]), plotStyleBW[0])
        plt.plot(numpy.log(infectStatsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(infectStatsArray[minIndex:, graphStats.numEdgesIndex]), plotStyleBW[1])
        plt.plot(numpy.log(statsArray[minIndex:, graphStats.maxComponentSizeIndex]), numpy.log(statsArray[minIndex:, graphStats.maxComponentEdgesIndex]), plotStyleBW[2])
        plt.xlabel("log(|V|)")
        plt.ylabel("log(|E|)/log(|D|)")
        plt.legend(("Contact graph", "Infection graph", "Max component"), loc="upper left")
        plt.savefig(figureDir + "LogVerticesEdgesGrowth.eps")
        plotInd += 1

    results = statsArray[:, graphStats.effectiveDiameterIndex] 
    results = numpy.c_[results, configStatsArray[:, graphStats.effectiveDiameterIndex]]
    results = numpy.c_[results, statsArray[:, graphStats.geodesicDistMaxCompIndex]]
    results = numpy.c_[results, configStatsArray[:, graphStats.geodesicDistMaxCompIndex]]
    configStatsArray

    print("\n\n")
    print(Latex.listToRow(["Diameter", "CM Diameter", "Mean Geodesic", "CM Mean Geodesic"]))
    print("\\hline")
    for i in range(0, len(dayList), 4):
        day = dayList[i]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[i, :]) + "\\\\")
def plotVertexStats():
    #Calculate all vertex statistics
    logging.info("Computing vertex stats")
    
    #Indices
    numContactsIndex = fInds["numContacts"]
    numTestedIndex = fInds["numTested"]
    numPositiveIndex = fInds["numPositive"]

    #Properties of vertex values
    detectionAges = []
    deathAfterInfectAges = []
    deathAges = []
    homoMeans = []

    maleSums = []
    femaleSums = []
    heteroSums = []
    biSums = []

    contactMaleSums = []
    contactFemaleSums = []
    contactHeteroSums = []
    contactBiSums = []

    doctorMaleSums = []
    doctorFemaleSums = []
    doctorHeteroSums = []
    doctorBiSums = []

    contactSums = []
    nonContactSums = []
    donorSums = []
    randomTestSums = []
    stdSums = []
    prisonerSums = []
    recommendSums = []
    #This is: all detections - contact, donor, randomTest, str, recommend
    otherSums = []

    havanaSums = []
    villaClaraSums = []
    pinarSums = []
    holguinSums = []
    habanaSums = []
    sanctiSums = []

    numContactSums = []
    numTestedSums = []
    numPositiveSums = []

    #Total number of sexual contacts 
    numContactMaleSums = []
    numContactFemaleSums = []
    numContactHeteroSums = []
    numContactBiSums = []

    numTestedMaleSums = []
    numTestedFemaleSums = []
    numTestedHeteroSums = []
    numTestedBiSums = []

    numPositiveMaleSums = []
    numPositiveFemaleSums = []
    numPositiveHeteroSums = []
    numPositiveBiSums = []

    propPositiveMaleSums = []
    propPositiveFemaleSums = []
    propPositiveHeteroSums = []
    propPositiveBiSums = []

    numContactVertices = []
    numContactEdges = []
    numInfectEdges = []

    #Mean proportion of degree at end of epidemic 
    meanPropDegree = []
    finalDegreeSequence = numpy.array(sGraph.outDegreeSequence(), numpy.float) 

    degreeOneSums = []
    degreeTwoSums = []
    degreeThreePlusSums = []

    numProvinces = 15
    provinceArray = numpy.zeros((len(subgraphIndicesList), numProvinces))
    m = 0 

    for subgraphIndices in subgraphIndicesList: 
        subgraph = sGraph.subgraph(subgraphIndices)
        infectSubGraph = sGraphInfect.subgraph(subgraphIndices)

        subgraphVertexArray = subgraph.getVertexList().getVertices(range(subgraph.getNumVertices()))

        detectionAges.append(numpy.mean((subgraphVertexArray[:, detectionIndex] - subgraphVertexArray[:, dobIndex]))/daysInYear)
        deathAfterInfectAges.append((numpy.mean(subgraphVertexArray[:, deathIndex] - subgraphVertexArray[:, detectionIndex]))/daysInYear)
        deathAges.append(numpy.mean((subgraphVertexArray[:, deathIndex] - subgraphVertexArray[:, dobIndex]))/daysInYear)
        homoMeans.append(numpy.mean(subgraphVertexArray[:, orientationIndex]))

        nonContactSums.append(subgraphVertexArray.shape[0] - numpy.sum(subgraphVertexArray[:, contactIndex]))
        contactSums.append(numpy.sum(subgraphVertexArray[:, contactIndex]))
        donorSums.append(numpy.sum(subgraphVertexArray[:, donorIndex]))
        randomTestSums.append(numpy.sum(subgraphVertexArray[:, randomTestIndex]))
        stdSums.append(numpy.sum(subgraphVertexArray[:, stdIndex]))
        prisonerSums.append(numpy.sum(subgraphVertexArray[:, prisonerIndex]))
        recommendSums.append(numpy.sum(subgraphVertexArray[:, doctorIndex]))
        otherSums.append(subgraphVertexArray.shape[0] - numpy.sum(subgraphVertexArray[:, [contactIndex, donorIndex, randomTestIndex, stdIndex, doctorIndex]]))

        heteroSums.append(numpy.sum(subgraphVertexArray[:, orientationIndex]==0))
        biSums.append(numpy.sum(subgraphVertexArray[:, orientationIndex]==1))

        femaleSums.append(numpy.sum(subgraphVertexArray[:, genderIndex]==1))
        maleSums.append(numpy.sum(subgraphVertexArray[:, genderIndex]==0))

        contactHeteroSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==0, subgraphVertexArray[:, contactIndex])))
        contactBiSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==1, subgraphVertexArray[:, contactIndex])))
        contactFemaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==1, subgraphVertexArray[:, contactIndex])))
        contactMaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==0, subgraphVertexArray[:, contactIndex])))

        doctorHeteroSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==0, subgraphVertexArray[:, doctorIndex])))
        doctorBiSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==1, subgraphVertexArray[:, doctorIndex])))
        doctorFemaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==1, subgraphVertexArray[:, doctorIndex])))
        doctorMaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==0, subgraphVertexArray[:, doctorIndex])))

        havanaSums.append(numpy.sum(subgraphVertexArray[:, havanaIndex]==1))
        villaClaraSums.append(numpy.sum(subgraphVertexArray[:, villaClaraIndex]==1))
        pinarSums.append(numpy.sum(subgraphVertexArray[:, pinarIndex]==1))
        holguinSums.append(numpy.sum(subgraphVertexArray[:, holguinIndex]==1))
        habanaSums.append(numpy.sum(subgraphVertexArray[:, habanaIndex]==1))
        sanctiSums.append(numpy.sum(subgraphVertexArray[:, sanctiIndex]==1))

        numContactSums.append(numpy.mean(subgraphVertexArray[:, numContactsIndex]))
        numTestedSums.append(numpy.mean(subgraphVertexArray[:, numTestedIndex]))
        numPositiveSums.append(numpy.mean(subgraphVertexArray[:, numPositiveIndex]))

        numContactMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numContactsIndex]))
        numContactFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numContactsIndex]))
        numContactHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numContactsIndex]))
        numContactBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numContactsIndex]))

        numTestedMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numTestedIndex]))
        numTestedFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numTestedIndex]))
        numTestedHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numTestedIndex]))
        numTestedBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numTestedIndex]))

        numPositiveMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numPositiveIndex]))
        numPositiveFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numPositiveIndex]))
        numPositiveHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numPositiveIndex]))
        numPositiveBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numPositiveIndex]))

        propPositiveMaleSums.append(numPositiveMaleSums[m]/float(numTestedMaleSums[m]))
        propPositiveFemaleSums.append(numPositiveFemaleSums[m]/float(numTestedFemaleSums[m]))
        propPositiveHeteroSums.append(numPositiveHeteroSums[m]/float(numTestedHeteroSums[m]))
        propPositiveBiSums.append(numPositiveBiSums[m]/float(numTestedMaleSums[m]))

        numContactVertices.append(subgraph.getNumVertices())
        numContactEdges.append(subgraph.getNumEdges())
        numInfectEdges.append(infectSubGraph.getNumEdges())

        nonZeroInds = finalDegreeSequence[subgraphIndices]!=0
        propDegrees = numpy.mean(subgraph.outDegreeSequence()[nonZeroInds]/finalDegreeSequence[subgraphIndices][nonZeroInds])
        meanPropDegree.append(numpy.mean(propDegrees)) 

        degreeOneSums.append(numpy.sum(subgraph.outDegreeSequence()==1))
        degreeTwoSums.append(numpy.sum(subgraph.outDegreeSequence()==2))
        degreeThreePlusSums.append(numpy.sum(subgraph.outDegreeSequence()>=3))

        provinceArray[m, :] = numpy.sum(subgraphVertexArray[:, fInds["CA"]:fInds['VC']+1], 0)
        m += 1 

    #Save some of the results for the ABC work
    numStats = 2 
    vertexStatsArray = numpy.zeros((len(subgraphIndicesList), numStats))
    vertexStatsArray[:, 0] = numpy.array(biSums)
    vertexStatsArray[:, 1] = numpy.array(heteroSums)

    resultsFileName = resultsDir + "ContactGrowthVertexStats.pkl"
    Util.savePickle(vertexStatsArray, resultsFileName)

    global plotInd 

    plt.figure(plotInd)
    plt.plot(absDayList, detectionAges)
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detection Age (years)")
    plt.savefig(figureDir + "DetectionMeansGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, heteroSums, 'k-', absDayList, biSums, 'k--', absDayList, femaleSums, 'k-.', absDayList, maleSums, 'k:')
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left")
    plt.savefig(figureDir + "OrientationGenderGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, contactHeteroSums, 'k-', absDayList, contactBiSums, 'k--', absDayList, contactFemaleSums, 'k-.', absDayList, contactMaleSums, 'k:')
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Contact tracing detections")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left")
    plt.savefig(figureDir + "OrientationGenderContact.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, doctorHeteroSums, 'k-', absDayList, doctorBiSums, 'k--', absDayList, doctorFemaleSums, 'k-.', absDayList, doctorMaleSums, 'k:')
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Doctor recommendation detections")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left")
    plt.savefig(figureDir + "OrientationGenderDoctor.eps")
    plotInd += 1



    #Plot all the provinces 
    plt.figure(plotInd)
    plt.hold(True)
    for k in range(provinceArray.shape[1]):
        plt.plot(absDayList, provinceArray[:, k], label=str(k))
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(loc="upper left")
    plotInd += 1 

    #Plot of detection types
    plt.figure(plotInd)
    plt.plot(absDayList, contactSums, plotStyles2[0], absDayList, donorSums, plotStyles2[1], absDayList, randomTestSums, plotStyles2[2], absDayList, stdSums, plotStyles2[3], absDayList, otherSums, plotStyles2[4], absDayList, recommendSums, plotStyles2[5])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Contact tracing", "Blood donation", "Random test", "STD", "Other test", "Doctor recommendation"), loc="upper left")
    plt.savefig(figureDir + "DetectionGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numContactSums, plotStyleBW[0], absDayList, numTestedSums, plotStyleBW[1], absDayList, numPositiveSums, plotStyleBW[2])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Contacts")
    plt.legend(("No. contacts", "No. tested", "No. positive"), loc="center left")
    plt.savefig(figureDir + "ContactsGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numContactHeteroSums, plotStyleBW[0], absDayList, numContactBiSums, plotStyleBW[1], absDayList, numContactFemaleSums, plotStyleBW[2], absDayList, numContactMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Total contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "ContactsGrowthOrientGen.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numTestedHeteroSums, plotStyleBW[0], absDayList, numTestedBiSums, plotStyleBW[1], absDayList, numTestedFemaleSums, plotStyleBW[2], absDayList, numTestedMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Tested contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "TestedGrowthOrientGen.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numPositiveHeteroSums, plotStyleBW[0], absDayList, numPositiveBiSums, plotStyleBW[1], absDayList, numPositiveFemaleSums, plotStyleBW[2], absDayList, numPositiveMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Positive contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "PositiveGrowthOrientGen.eps")
    plotInd += 1

    #Proportion positive versus tested
    plt.figure(plotInd)
    plt.plot(absDayList, propPositiveHeteroSums, plotStyleBW[0], absDayList, propPositiveBiSums, plotStyleBW[1], absDayList, propPositiveFemaleSums, plotStyleBW[2], absDayList, propPositiveMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Proportion positive contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "PercentPositiveGrowthOrientGen.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.hold(True)
    plt.plot(absDayList, havanaSums, plotStyles2[0])
    plt.plot(absDayList, villaClaraSums, plotStyles2[1])
    plt.plot(absDayList, pinarSums, plotStyles2[2])
    plt.plot(absDayList, holguinSums, plotStyles2[3])
    plt.plot(absDayList, habanaSums, plotStyles2[4])
    plt.plot(absDayList, sanctiSums, plotStyles2[5])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Havana City", "Villa Clara", "Pinar del Rio", "Holguin", "La Habana", "Sancti Spiritus"), loc="upper left")
    plt.savefig(figureDir + "ProvinceGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numContactVertices, plotStyleBW[0], absDayList, numContactEdges, plotStyleBW[1], absDayList, numInfectEdges, plotStyleBW[2])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Vertices/edges")
    plt.legend(("Contact vertices", "Contact edges", "Infect edges"), loc="upper left")
    plt.savefig(figureDir + "VerticesEdges.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, meanPropDegree, plotStyleBW[0])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Proportion of final degree")
    plt.savefig(figureDir + "MeanPropDegree.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, degreeOneSums, plotStyleBW[0], absDayList, degreeTwoSums, plotStyleBW[1], absDayList, degreeThreePlusSums, plotStyleBW[2])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Degree = 1", "Degree = 2", "Degree >= 3"), loc="upper left")
    plotInd += 1

    #Print a table of interesting stats
    results = numpy.array([havanaSums])
    results = numpy.r_[results, numpy.array([villaClaraSums])]
    results = numpy.r_[results, numpy.array([pinarSums])]
    results = numpy.r_[results, numpy.array([holguinSums])]
    results = numpy.r_[results, numpy.array([habanaSums])]
    results = numpy.r_[results, numpy.array([sanctiSums])]

    print(Latex.listToRow(["Havana City", "Villa Clara", "Pinar del Rio", "Holguin", "La Habana", "Sancti Spiritus"]))
    print("\\hline")
    for i in range(0, len(dayList), 4):
        day = dayList[i]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[:, i].T) + "\\\\")

    results = numpy.array([heteroSums])
    results = numpy.r_[results, numpy.array([biSums])]
    results = numpy.r_[results, numpy.array([femaleSums])]
    results = numpy.r_[results, numpy.array([maleSums])]

    print("\n\n")
    print(Latex.listToRow(["Heterosexual", "MSM", "Female", "Male"]))
    print("\\hline")
    for i in range(0, len(dayList), 4):
        day = dayList[i]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[:, i].T) + "\\\\")
示例#7
0
        plt.plot(testROCs[m][0], testROCs[m][1], "r")
        plt.xlabel("False Positive Rate")
        plt.ylabel("True Positive Rate")
        plt.savefig(figureDir + labelName.replace(".", "_") + "-ROC.eps")
        
    plotInd += 1 


#The last column is the mean value
meanMeanAUCs = numpy.mean(meanAUCs, 1)
meanStdAUCs = numpy.mean(stdAUCs, 1)
meanAUCs = numpy.c_[meanAUCs, meanMeanAUCs]
stdAUCs = numpy.c_[stdAUCs, meanStdAUCs]

print("\n")
print(Latex.listToRow(labelNames))
print(Latex.addRowNames(rowNames, Latex.array2DsToRows(meanAUCs, stdAUCs, 2)))


#----------------- Results for RankBoost and RankSVM  ----------------------------------

algorithmNames = ["RankBoost", "RankSVM"]
numMethods = len(dataTypes)*len(algorithmNames)
rowNames = numpy.zeros(numMethods, "a20")
meanAUCs = numpy.zeros((numMethods, len(labelNames)))
stdAUCs = numpy.zeros((numMethods, len(labelNames)))

for m in range(len(algorithmNames)):
    algorithmName = algorithmNames[m]

    for i in range(len(labelNames)):
示例#8
0
        outputLists = graphRanker.vertexRankings(graph, relevantAuthorsInds)
             
        itemList = RankAggregator.generateItemList(outputLists)
        methodNames = graphRanker.getNames()
        
        if runLSI: 
            outputFilename = dataset.getOutputFieldDir(field) + "outputListsLSI.npz"
        else: 
            outputFilename = dataset.getOutputFieldDir(field) + "outputListsLDA.npz"
            
        Util.savePickle([outputLists, trainExpertMatchesInds, testExpertMatchesInds], outputFilename, debug=True)
        
        numMethods = len(outputLists)
        precisions = numpy.zeros((len(ns), numMethods))
        averagePrecisions = numpy.zeros(numMethods)
        
        for i, n in enumerate(ns):     
            for j in range(len(outputLists)): 
                precisions[i, j] = Evaluator.precisionFromIndLists(testExpertMatchesInds, outputLists[j][0:n]) 
            
        for j in range(len(outputLists)):                 
            averagePrecisions[j] = Evaluator.averagePrecisionFromLists(testExpertMatchesInds, outputLists[j][0:averagePrecisionN], averagePrecisionN) 
        
        precisions2 = numpy.c_[numpy.array(ns), precisions]
        
        logging.debug(Latex.listToRow(methodNames))
        logging.debug(Latex.array2DToRows(precisions2))
        logging.debug(Latex.array1DToRow(averagePrecisions))

logging.debug("All done!")
示例#9
0
                #logging.debug("Read file: " + fileName)
            except: 
                logging.debug("File not found : " + str(fileName))
                numMissingFiles += 1 
                
logging.debug("Number of missing files: " + str(numMissingFiles))
    
for i, dataName in enumerate(dataNames): 
    print("-"*10 + dataName + "-"*10)

    algorithms = [x.ljust(20) for x in algorithmsAbbr]
    currentTestAucsMean = testAucsMean[:, i, :].T
    maxAUCs = numpy.zeros(currentTestAucsMean.shape, numpy.bool)
    maxAUCs[numpy.argmax(currentTestAucsMean, 0), numpy.arange(currentTestAucsMean.shape[1])] = 1
    table = Latex.array2DToRows(testAucsMean[:, i, :].T, testAucsStd[:, i, :].T, precision=2, bold=maxAUCs)
    print(Latex.listToRow(hormoneNameIndicators))
    print(Latex.addRowNames(algorithms, table))
    

#Now looks at the features for the raw spectra 
algorithm = "L1SvmTreeRankForest" 
dataName = "raw"
numMissingFiles = 0 
numFeatures = 100

numIndicators = 6 
featureInds = numpy.zeros((numFeatures, numIndicators))

for i, (hormoneName, hormoneConc) in enumerate(helper.hormoneDict.items()):
    try: 
        fileName = resultsDir + "Weights" + algorithm + "-" + hormoneName + "-0" + "-" + dataName + ".npy"