def cell_description(self, gid): tree = arbor.segment_tree() tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1) labels = arbor.label_dict({ 'soma': '(tag 1)', 'center': '(location 0 0.5)' }) decor = arbor.decor() decor.set_property(Vm=-40) decor.paint('(all)', arbor.density('hh')) decor.place('"center"', arbor.spike_detector(-10), "detector") decor.place('"center"', arbor.synapse('expsyn'), "synapse") mech = arbor.mechanism('expsyn_stdp') mech.set("max_weight", 1.) syn = arbor.synapse(mech) decor.place('"center"', syn, "stpd_synapse") cell = arbor.cable_cell(tree, labels, decor) return cell
def __init__(self): A.recipe.__init__(self) st = A.segment_tree() st.append(A.mnpos, (0, 0, 0, 10), (1, 0, 0, 10), 1) dec = A.decor() dec.place('(location 0 0.08)', A.synapse("expsyn"), "syn0") dec.place('(location 0 0.09)', A.synapse("exp2syn"), "syn1") dec.place('(location 0 0.1)', A.iclamp(20.), "iclamp") dec.paint('(all)', A.density("hh")) self.cell = A.cable_cell(st, A.label_dict(), dec) self.props = A.neuron_cable_properties() self.props.catalogue = A.default_catalogue()
def make_cable_cell(gid): # (1) Build a segment tree tree = arbor.segment_tree() # Soma (tag=1) with radius 6 μm, modelled as cylinder of length 2*radius s = tree.append(arbor.mnpos, arbor.mpoint(-12, 0, 0, 6), arbor.mpoint(0, 0, 0, 6), tag=1) # Single dendrite (tag=3) of length 50 μm and radius 2 μm attached to soma. b0 = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(50, 0, 0, 2), tag=3) # Attach two dendrites (tag=3) of length 50 μm to the end of the first dendrite. # Radius tapers from 2 to 0.5 μm over the length of the dendrite. b1 = tree.append(b0, arbor.mpoint(50, 0, 0, 2), arbor.mpoint(50 + 50 / sqrt(2), 50 / sqrt(2), 0, 0.5), tag=3) # Constant radius of 1 μm over the length of the dendrite. b2 = tree.append(b0, arbor.mpoint(50, 0, 0, 1), arbor.mpoint(50 + 50 / sqrt(2), -50 / sqrt(2), 0, 1), tag=3) # Associate labels to tags labels = arbor.label_dict() labels['soma'] = '(tag 1)' labels['dend'] = '(tag 3)' # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite). labels['synapse_site'] = '(location 1 0.5)' # Mark the root of the tree. labels['root'] = '(root)' # (3) Create a decor and a cable_cell decor = arbor.decor() # Put hh dynamics on soma, and passive properties on the dendrites. decor.paint('"soma"', arbor.density('hh')) decor.paint('"dend"', arbor.density('pas')) # (4) Attach a single synapse. decor.place('"synapse_site"', arbor.synapse('expsyn'), 'syn') # Attach a spike detector with threshold of -10 mV. decor.place('"root"', arbor.spike_detector(-10), 'detector') cell = arbor.cable_cell(tree, labels, decor) return cell
def make_cable_cell(gid): # Build a segment tree tree = arbor.segment_tree() # Soma with radius 5 μm and length 2 * radius = 10 μm, (tag = 1) s = tree.append(arbor.mnpos, arbor.mpoint(-10, 0, 0, 5), arbor.mpoint(0, 0, 0, 5), tag=1) # Single dendrite with radius 2 μm and length 40 μm, (tag = 2) b = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(40, 0, 0, 2), tag=2) # Label dictionary for cell components labels = arbor.label_dict() labels['soma'] = '(tag 1)' labels['dend'] = '(tag 2)' # Mark location for synapse site at midpoint of dendrite (branch 0 = soma + dendrite) labels['synapse_site'] = '(location 0 0.6)' # Gap junction site at connection point of soma and dendrite labels['gj_site'] = '(location 0 0.2)' # Label root of the tree labels['root'] = '(root)' # Paint dynamics onto the cell, hh on soma and passive properties on dendrite decor = arbor.decor() decor.paint('"soma"', arbor.density("hh")) decor.paint('"dend"', arbor.density("pas")) # Attach one synapse and gap junction each on their labeled sites decor.place('"synapse_site"', arbor.synapse('expsyn'), 'syn') decor.place('"gj_site"', arbor.junction('gj'), 'gj') # Attach spike detector to cell root decor.place('"root"', arbor.spike_detector(-10), 'detector') cell = arbor.cable_cell(tree, labels, decor) return cell
def create_arbor_cell(self, cell, gid, pop_id, index): if cell.arbor_cell == "cable_cell": default_tree = arbor.segment_tree() radius = (evaluate(cell.parameters["radius"], self.nl_network.parameters) if "radius" in cell.parameters else 3) default_tree.append( arbor.mnpos, arbor.mpoint(-1 * radius, 0, 0, radius), arbor.mpoint(radius, 0, 0, radius), tag=1, ) labels = arbor.label_dict({ "soma": "(tag 1)", "center": "(location 0 0.5)" }) labels["root"] = "(root)" decor = arbor.decor() v_init = (evaluate(cell.parameters["v_init"], self.nl_network.parameters) if "v_init" in cell.parameters else -70) decor.set_property(Vm=v_init) decor.paint('"soma"', arbor.density(cell.parameters["mechanism"])) decor.place('"center"', arbor.spike_detector(0), "detector") for ip in self.input_info: if self.input_info[ip][0] == pop_id: print_v("Stim: %s (%s) being placed on %s" % (ip, self.input_info[ip], pop_id)) for il in self.input_lists[ip]: cellId, segId, fract, weight = il if cellId == index: if self.input_info[ip][ 1] == 'i_clamp': # TODO: remove hardcoding of this... ic = arbor.iclamp( self.nl_network.parameters["input_del"], self.nl_network.parameters["input_dur"], self.nl_network.parameters["input_amp"], ) print_v("Stim: %s on %s" % (ic, gid)) decor.place('"center"', ic, "iclamp") # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite). labels["synapse_site"] = "(location 0 0.5)" # (4) Attach a single synapse. decor.place('"synapse_site"', arbor.synapse("expsyn"), "syn") default_cell = arbor.cable_cell(default_tree, labels, decor) print_v("Created a new cell for gid %i: %s" % (gid, cell)) print_v("%s" % (default_cell)) return default_cell