def fit(self,trainsets,ranges,ncs,ycol,figpath=None): self.ranges=ranges self.ncs=ncs self.ycol=ycol submodels=[] mean_vects=[] for i,rangei in enumerate(ranges): data_tmp=within_range.within_range(trainsets[i],rangei,ycol) x=data_tmp.xs('wvl',axis=1,level=0,drop_level=False) y=data_tmp['meta'][ycol] x_centered,x_mean_vect=meancenter(x) #mean center training data pls=PLSRegression(n_components=ncs[i],scale=False) pls.fit(x,y) submodels.append(pls) mean_vects.append(x_mean_vect) if figpath is not None: E=x_centered-np.dot(pls.x_scores_,pls.x_loadings_.transpose()) Q_res=np.dot(E,E.transpose()).diagonal() T=pls.x_scores_ leverage=np.diag([email protected](T.transpose()@T)@T.transpose()) plot.figure() plot.scatter(leverage,Q_res,color='r',edgecolor='k') plot.title(ycol+' ('+str(rangei[0])+'-'+str(rangei[1])+')') plot.xlabel('Leverage') plot.ylabel('Q') plot.savefig(figpath+'/'+ycol+'_'+str(rangei[0])+'-'+str(rangei[1])+'Qres_vs_Leverage.png',dpi=600) self.leverage=leverage self.Q_res=Q_res self.submodels=submodels self.mean_vects=mean_vects
def predict(self,x): #x is a list of data frames to feed into each submodel. #This allows different normalizations to be used with each submodel predictions=[] for i,k in enumerate(self.submodels): xtemp=x[i].xs('wvl',axis=1,level=0,drop_level=False) xtemp,mean_vect=meancenter(xtemp,previous_mean=self.mean_vects[i]) predictions.append(k.predict(xtemp['wvl'])) return predictions
def pls_cv(Train,Test=None,nc=20,nfolds=5,ycol='SiO2',doplot=True,outpath='.',plotfile='pls_cv.png'): #create empty arrays for the RMSE values pls_rmsecv=np.empty(nc) pls_rmsec=np.empty(nc) #If there is a test set provided, create the RMSEP array to hold test set errors if Test is not None: pls_rmsep=np.empty(nc) #loop through each number of components for i in range(1,nc+1): print('nc='+str(i)) Train[('meta',ycol+'_cv_PLS_nc'+str(i))]=0 #create a column to hold the PLS cross validation results for this nc Train[('meta',ycol+'_PLS_nc'+str(i))]=0 #create a column to hold the PLS training set results for this nc if Test is not None: Test[('meta',ycol+'_PLS_nc'+str(i))]=0 #create a column to hold the PLS test set results for this nc #Do the cross validation cv_iterator=LeaveOneLabelOut(Train[('meta','Folds')]) #create the iterator for cross validation within the training data for train,holdout in cv_iterator: #Iterate through each of the folds in the training set cv_train=Train.iloc[train] cv_holdout=Train.iloc[holdout] #Do PLS for this number of components cv_train_centered,cv_train_mean_vect=meancenter(cv_train) #mean center training data cv_holdout_centered,cv_holdout_mean_vect=meancenter(cv_holdout,previous_mean=cv_train_mean_vect) #apply same mean centering to holdout data pls=PLSRegression(n_components=i,scale=False) pls.fit(cv_train_centered['wvl'],cv_train_centered['meta'][ycol]) y_pred_holdout=pls.predict(cv_holdout_centered['wvl']) Train.set_value(Train.index[holdout],('meta',ycol+'_cv_PLS_nc'+str(i)),y_pred_holdout) pls_rmsecv[i-1]=np.sqrt(np.mean(np.subtract(Train[('meta',ycol)],Train[('meta',ycol+'_cv_PLS_nc'+str(i))])**2,axis=0)) #Do train and test set PLS predictions for this number of components Train_centered,Train_mean_vect=meancenter(Train) pls=PLSRegression(n_components=i,scale=False) pls.fit(Train_centered['wvl'],Train_centered['meta'][ycol]) y_pred=pls.predict(Train_centered['wvl']) Train.set_value(Train.index,('meta',ycol+'_PLS_nc'+str(i)),y_pred) pls_rmsec[i-1]=np.sqrt(np.mean(np.subtract(Train[('meta',ycol)],Train[('meta',ycol+'_PLS_nc'+str(i))])**2,axis=0)) if Test is not None: Test_centered,Train_mean_vect=meancenter(Test,previous_mean=Train_mean_vect) y_pred=pls.predict(Test_centered['wvl']) Test.set_value(Test.index,('meta',ycol+'_PLS_nc'+str(i)),y_pred) pls_rmsep[i-1]=np.sqrt(np.mean(np.subtract(Test[('meta',ycol)],Test[('meta',ycol+'_PLS_nc'+str(i))])**2,axis=0)) if doplot==True: plot.figure() plot.title(ycol) plot.xlabel('# of components') plot.ylabel(ycol+' RMSE (wt.%)') plot.plot(range(1,nc+1),pls_rmsecv,label='RMSECV',color='r') plot.plot(range(1,nc+1),pls_rmsec,label='RMSEC',color='b') if Test is not None: plot.plot(range(1,nc+1),pls_rmsep,label='RMSEP',color='g') plot.legend(loc=0,fontsize=6) plot.savefig(outpath+'/'+plotfile,dpi=600) rmses={'RMSEC':pls_rmsec,'RMSECV':pls_rmsecv} if Test is not None: rmses['RMSEP']=pls_rmsep return rmses