示例#1
0
    def create_network(self, nodes=[]):
        cmds = 0
        session = Session()
        for res in session.query(Overlay):
            msg = json.dumps({'oid': res.id, 'time': time.time()})

            # If nodes are passed, process only those overlaps containing
            # the provided node(s)
            if nodes:
                for r in res.overlaps:
                    if r in nodes:
                        self.redis_queue.rpush(
                            config['redis']['processing_queue'], msg)
                        cmds += 1
                        break
            else:
                self.redis_queue.rpush(config['redis']['processing_queue'],
                                       msg)
                cmds += 1
        script = 'acn_create_network'
        spawn_jobarr(script,
                     cmds,
                     mem=config['cluster']['processing_memory'],
                     queue=config['cluster']['queue'],
                     env=config['python']['env_name'])
        session.close()
示例#2
0
    def from_database(cls, query_string='SELECT * FROM public.images'):
        """
        This is a constructor that takes the results from an arbitrary query string,
        uses those as a subquery into a standard polygon overlap query and
        returns a NetworkCandidateGraph object.  By default, an images
        in the Image table will be used in the outer query.

        Parameters
        ----------
        query_string : str
                       A valid SQL select statement that targets the Images table

        Usage
        -----
        Here, we provide usage examples for a few, potentially common use cases.

        ## Spatial Query
        This example selects those images that intersect a given bounding polygon.  The polygon is
        specified as a Well Known Text LINESTRING with the first and last points being the same.
        The query says, select the footprint_latlon (the bounding polygons in the database) that
        intersect the user provided polygon (the LINESTRING) in the given spatial reference system
        (SRID), 949900.

        "SELECT * FROM Images WHERE ST_INTERSECTS(footprint_latlon, ST_Polygon(ST_GeomFromText('LINESTRING(159 10, 159 11, 160 11, 160 10, 159 10)'),949900)) = TRUE"
from_database
        ## Select from a specific orbit
        This example selects those images that are from a particular orbit. In this case,
        the regex string pulls all P##_* orbits and creates a graph from them. This method
        does not guarantee that the graph is fully connected.

        "SELECT * FROM Images WHERE (split_part(path, '/', 6) ~ 'P[0-9]+_.+') = True"

        """
        composite_query = """WITH
	i as ({})
SELECT i1.id as i1_id,i1.path as i1_path, i2.id as i2_id, i2.path as i2_path
FROM
	i as i1, i as i2
WHERE ST_INTERSECTS(i1.footprint_latlon, i2.footprint_latlon) = TRUE
AND i1.id < i2.id""".format(query_string)
        session = Session()
        res = session.execute(composite_query)

        adjacency = defaultdict(list)
        adjacency_lookup = {}
        for r in res:
            sid, spath, did, dpath = r

            adjacency_lookup[spath] = sid
            adjacency_lookup[dpath] = did
            if spath != dpath:
                adjacency[spath].append(dpath)
        session.close()
        # Add nodes that do not overlap any images
        obj = cls.from_adjacency(adjacency,
                                 node_id_map=adjacency_lookup,
                                 config=config)

        return obj
示例#3
0
    def keypoints(self, kps):
        session = Session()
        io_keypoints.to_hdf(self.keypoint_file, keypoints=kps)
        res = session.query(Keypoints).filter(getattr(Keypoints,'image_id') == self['node_id']).first()

        if res is None:
            _ = self.keypoint_file
            res = self._from_db(Keypoints)
        res.nkeypoints = len(kps)
        session.commit()
示例#4
0
 def matches(self):
     session = Session()
     q = session.query(Matches)
     qf = q.filter(Matches.source == self.source['node_id'],
                   Matches.destination == self.destination['node_id'])
     odf = pd.read_sql(qf.statement, q.session.bind).set_index('id')
     df = pd.DataFrame(odf.values, index=odf.index.values, columns=odf.columns.values)
     df.index.name = 'id'
     # Explicit close to get the session cleaned up
     session.close()
     return DbDataFrame(df,
                        parent=self,
                        name='matches')
示例#5
0
    def _from_db(self, table_obj):
        """
        Generic database query to pull the row associated with this node
        from an arbitrary table. We assume that the row id matches the node_id.

        Parameters
        ----------
        table_obj : object
                    The declared table class (from db.model)
        """
        session = Session()
        res = session.query(table_obj).\
               filter(table_obj.source == self.source['node_id']).\
               filter(table_obj.destination == self.destination['node_id'])
        session.close()
        return res
示例#6
0
    def footprint(self):

        res = Session().query(Images).filter(Images.id == self['node_id']).first()
        if res is None:
            try:
                footprint_latlon = generate_latlon_footprint(self.camera)
                footprint_latlon = footprint_latlon.ExportToWkt()
                footprint_latlon = WKTElement(footprint_latlon, srid=config['spatial']['srid'])
            except:
                footprint_latlon = None
        else:
            footprint_latlon = to_shape(res.footprint_latlon)
        return footprint_latlon
示例#7
0
    def _from_db(self, table_obj, key='image_id'):
        """
        Generic database query to pull the row associated with this node
        from an arbitrary table. We assume that the row id matches the node_id.

        Parameters
        ----------
        table_obj : object
                    The declared table class (from db.model)

        key : str
              The name of the column to compare this object's node_id with. For
              most tables this will be the default, 'image_id' because 'image_id'
              is the foreign key in the DB. For the Images table (the parent table),
              the key is simply 'id'.
        """
        if 'node_id' not in self.keys():
            return
        session = Session()
        res = session.query(table_obj).filter(getattr(table_obj,key) == self['node_id']).first()
        session.close()
        return res
示例#8
0
 def matches(self, v):
     to_db_add = []
     to_db_update = []
     df = pd.DataFrame(v)
     df.index.name = v.index.name
     # Get the query obj
     session = Session()
     q = session.query(Matches)
     for idx, row in df.iterrows():
         # Determine if this is an update or the addition of a new row
         if hasattr(row, 'id'):
             res = q.filter(Matches.id == row.id).first()
             match_id = row.id
         elif v.index.name == 'id':
             res = q.filter(Matches.id == row.name).first()
             match_id = row.name
         else:
             res = None
         if res:
             # update
             mapping = {}
             mapping['id'] = match_id
             for index in row.index:
                 row_val = row[index]
                 if isinstance(row_val, (np.int, )):
                     row_val = int(row_val)
                 elif isinstance(row_val, (np.float, )):
                     row_val = float(row_val)
                 elif isinstance(row_val, WKBElement):
                     continue
                 mapping[index] = row_val
             to_db_update.append(mapping)
         else:
             match = Matches(source=int(row.source),
                             source_idx=int(row.source_idx),
                             destination=int(row.destination),
                             destination_idx=int(row.destination_idx))
             to_db_add.append(match)
     if to_db_add:
         session.bulk_save_objects(to_db_add)
     if to_db_update:
         session.bulk_update_mappings(Matches, to_db_update)
     session.commit()
示例#9
0
    def masks(self):
        res = Session().query(Edges.masks).\
                                        filter(Edges.source == self.source['node_id']).\
                                        filter(Edges.destination == self.destination['node_id']).\
                                        first()

        if res:
            df = pd.DataFrame.from_records(res[0])
            df.index = df.index.map(int)
        else:
            ids = list(map(int, self.matches.index.values))
            df = pd.DataFrame(index=ids)
        df.index.name = 'match_id'
        return DbDataFrame(df, parent=self, name='masks')
示例#10
0
 def fundamental_matrix(self, v):
     session = Session()
     res = session.query(table_obj).\
            filter(table_obj.source == self.source['node_id']).\
            filter(table_obj.destination == self.destination['node_id']).first()
     if res:
         res.fundamental = v
     else:
         edge = Edges(source=self.source['node_id'],
                      destination=self.destination['node_id'],
                      fundamental = v)
         session.add(edge)
         session.commit()
示例#11
0
    def costs(self):
        # these are np.float coming out, sqlalchemy needs ints
        ids = list(map(int, self.matches.index.values))
        res = Session().query(Costs).filter(Costs.match_id.in_(ids)).all()
        #qf = q.filter(Costs.match_id.in_(ids))

        if res:
        # Parse the JSON dicts in the cost field into a full dimension dataframe
            costs = {r.match_id:r._cost for r in res}
            df = pd.DataFrame.from_records(costs).T  # From records is important because from_dict drops rows with empty dicts
        else:
            df = pd.DataFrame(index=ids)

        df.index.name = 'match_id'
        return DbDataFrame(df, parent=self, name='costs')
示例#12
0
 def ring(self, ring):
     # Setters need a single session and so should not make use of the
     # syntax sugar _from_db
     session = Session()
     res = session.query(Edges).\
            filter(Edges.source == self.source['node_id']).\
            filter(Edges.destination == self.destination['node_id']).first()
     if res:
         res.ring = ring
     else:
         edge = Edges(source=self.source['node_id'],
                      destination=self.destination['node_id'],
                      ring=ring)
         session.add(edge)
         session.commit()
     return
示例#13
0
    def masks(self, v):
        def dict_check(input):
            for k, v in input.items():
                if isinstance(v, dict):
                    dict_check(v)
                elif v is None:
                    continue
                elif np.isnan(v):
                    input[k] = None

        df = pd.DataFrame(v)
        session = Session()
        res = session.query(Edges).\
                                filter(Edges.source == self.source['node_id']).\
                                filter(Edges.destination == self.destination['node_id']).first()
        if res:
            as_dict = df.to_dict()
            dict_check(as_dict)
            # Update the masks
            res.masks = as_dict
            session.add(res)
            session.commit()
示例#14
0
    def compute_overlaps(self):
        query = """
    SELECT ST_AsEWKB(geom) AS geom FROM ST_Dump((
        SELECT ST_Polygonize(the_geom) AS the_geom FROM (
            SELECT ST_Union(the_geom) AS the_geom FROM (
                SELECT ST_ExteriorRing(footprint_latlon) AS the_geom
                FROM images) AS lines
        ) AS noded_lines
    )
)"""
        session = Session()
        oquery = session.query(Overlay)
        iquery = session.query(Images)

        rows = []
        for q in self._engine.execute(query).fetchall():
            overlaps = []
            b = bytes(q['geom'])
            qgeom = shapely.wkb.loads(b)
            res = iquery.filter(Images.footprint_latlon.ST_Intersects(from_shape(qgeom, srid=949900)))
            for i in res:
                fgeom = to_shape(i.footprint_latlon)
                area = qgeom.intersection(fgeom).area
                if area < 1e-6:
                    continue
                overlaps.append(i.id)
            o = Overlay(geom='SRID=949900;{}'.format(qgeom.wkt), overlaps=overlaps)
            res = oquery.filter(Overlay.overlaps == o.overlaps).first()
            if res is None:
                rows.append(o)

        session.bulk_save_objects(rows)
        session.commit()

        res = oquery.filter(sqlalchemy.func.cardinality(Overlay.overlaps) <= 1)
        res.delete(synchronize_session=False)
        session.commit()
        session.close()
示例#15
0
    def __init__(self, *args, parent=None, **kwargs):
        # If this is the first time that the image is seen, add it to the DB
        if parent is None:
            self.parent = Parent(config)
        else:
            self.parent = parent

        # Create a session to work in
        session = Session()
        # For now, just use the PATH to determine if the node/image is in the DB
        res = session.query(Images).filter(Images.path == kwargs['image_path']).first()
        exists = False
        if res:
            exists = True
            kwargs['node_id'] = res.id
        session.close()
        super(NetworkNode, self).__init__(*args, **kwargs)

        if exists is False:
            # Create the camera entry
            try:
                self._camera = create_camera(self.geodata)
                serialized_camera = self._camera.getModelState()
                cam = Cameras(camera=serialized_camera)
            except:
                cam = None
            kpspath = io_keypoints.create_output_path(self.geodata.file_name)

            # Create the keypoints entry
            kps = Keypoints(path=kpspath, nkeypoints=0)
            # Create the image
            i = Images(name=kwargs['image_name'],
                       path=kwargs['image_path'],
                       footprint_latlon=self.footprint,
                       cameras=cam, keypoints=kps)
            session = Session()
            session.add(i)
            session.commit()
            session.close()
        self.job_status = defaultdict(dict)
示例#16
0
 def costs(self, v):
     to_db_add = []
     # Get the query obj
     session = Session()
     q = session.query(Costs)
     # Need the new instance here to avoid __setattr__ issues
     df = pd.DataFrame(v)
     for idx, row in df.iterrows():
         # Now invert the expanded dict back into a single JSONB column for storage
         res = q.filter(Costs.match_id == idx).first()
         if res:
             #update the JSON blob
             costs_new_or_updated = row.to_dict()
             for k, v in costs_new_or_updated.items():
                 if v is None:
                     continue
                 elif np.isnan(v):
                     v = None
                 res._cost[k] = v
             sqlalchemy.orm.attributes.flag_modified(res, '_cost')
             session.add(res)
             session.commit()
         else:
             row = row.to_dict()
             costs = row.pop('_costs', {})
             for k, v in row.items():
                 if np.isnan(v):
                     v = None
                 costs[k] = v
             cost = Costs(match_id=idx, _cost=costs)
             to_db_add.append(cost)
     if to_db_add:
         session.bulk_save_objects(to_db_add)
     session.commit()
示例#17
0
 def matches(self):
     session = Session()
     session.query(Matches).filter(Matches.source == self.source['node_id'], Matches.destination == self.destination['node_id']).delete()
     session.commit()
     session.close()
     return