示例#1
0
def main():
    usage = "usage: %prog [options] <sad_h5_path> <vcf_file>"
    parser = OptionParser(usage)
    parser.add_option(
        "-s",
        dest="sample",
        default=131072,
        type="int",
        help="Sampled SNPs to fit distribution [Default: %default]",
    )
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.error("Must provide SAD HDF5 path.")
    else:
        sad_h5_path = args[0]

    # index SNPs
    csad5 = ChrSAD5(sad_h5_path, index_chr=True, compute_norm=False)

    # fit Cauchy
    csad5.fit_cauchy(options.sample)

    # normalize
    csad5.norm_cauchy()
示例#2
0
def main():
    usage = 'usage: %prog [options] <sad_hdf5_path>'
    parser = OptionParser(usage)
    parser.add_option(
        '-c',
        dest='chrom_hdf5',
        default=False,
        action='store_true',
        help='HDF5 files split by chromosome [Default: %default]')
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.error('Must provide SAD HDF5')
    else:
        sad_h5_path = args[0]

    #############################################
    # precursors

    print('Preparing data...', end='', flush=True)
    sad5 = ChrSAD5(sad_h5_path, index_chr=True)
    print('DONE.', flush=True)

    #############################################
    # layout

    column_widths = [('SNP', 150), ('Association', 125), ('Score', 125),
                     ('ScoreQ', 125), ('R', 125), ('Experiment', 125),
                     ('Description', 200)]
    scc = [{
        'if': {
            'column_id': cw[0]
        },
        'width': cw[1]
    } for cw in column_widths]

    app = dash.Dash(__name__)
    app.css.append_css(
        {"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"})

    app.layout = html.Div([
        html.Div(
            [
                html.H1('Basenji SNP activity difference'),
                dcc.Markdown('Instructions...'),
                html.Div([
                    html.Label('Datasets'),
                    dcc.Dropdown(id='dataset',
                                 options=[{
                                     'label': 'CAGE',
                                     'value': 'CAGE'
                                 }, {
                                     'label': 'DNase',
                                     'value': 'DNASE'
                                 }, {
                                     'label': 'H3K4me3',
                                     'value': 'CHIP:H3K4me3'
                                 }, {
                                     'label': 'All',
                                     'value': 'All'
                                 }],
                                 value='CAGE')
                ],
                         style={
                             'width': '250',
                             'display': 'inline-block'
                         }),
                html.Div([
                    html.Label('Population'),
                    dcc.Dropdown(id='population',
                                 options=[{
                                     'label': '-',
                                     'value': '-'
                                 }, {
                                     'label': '1kG African',
                                     'value': 'AFR'
                                 }, {
                                     'label': '1kG American',
                                     'value': 'AMR'
                                 }, {
                                     'label': '1kG East Asian',
                                     'value': 'EAS'
                                 }, {
                                     'label': '1kG European',
                                     'value': 'EUR'
                                 }, {
                                     'label': '1kG South Asian',
                                     'value': 'SAS'
                                 }],
                                 value='-')
                ],
                         style={
                             'width': '250',
                             'display': 'inline-block'
                         }),
                html.Div([
                    html.Label('SNP ID'),
                    dcc.Input(id='snp_id', value='rs6656401', type='text'),
                    html.Button(id='snp_submit', n_clicks=0, children='Submit')
                ],
                         style={
                             'display': 'inline-block',
                             'float': 'right'
                         })
            ],
            style={
                'borderBottom': 'thin lightgrey solid',
                'backgroundColor': 'rgb(250, 250, 250)',
                'padding': '10px 5px'
            }),
        dcc.Graph(id='assoc_plot'),
        html.Div([
            dt.DataTable(id='table',
                         data=[],
                         columns=[{
                             'id': cw[0],
                             'name': cw[0]
                         } for cw in column_widths],
                         style_cell_conditional=scc,
                         editable=False,
                         filtering=True,
                         sorting=True,
                         n_fixed_rows=20)
        ])
    ])

    # html.Div([
    #     dt.DataTable(
    #         id='table',
    #         data=[],
    #         columns=[cw[0] for cw in column_widths],
    #         style_cell_conditional=scc,
    #         editable=False,
    #         filtering=True,
    #         sorting=True,
    #         n_fixed_rows=20
    #     )

    #############################################
    # callback helpers

    @memoized
    def query_ld(population, snp_id):
        try:
            sad5.set_population(population)

        except ValueError:
            print('Population unavailable.', file=sys.stderr)
            return pd.DataFrame()

        chrm, snp_i = sad5.snp_chr_index(snp_id)
        pos = sad5.snp_pos(snp_i, chrm)

        if chrm is None:
            return pd.DataFrame()
        else:
            return sad5.emerald_vcf.query_ld(snp_id,
                                             chrm,
                                             pos,
                                             ld_threshold=0.8)

    @memoized
    def read_sad(chrm, snp_i, verbose=True):
        """Read SAD scores from HDF5 for the given SNP index."""
        if verbose:
            print('Reading SAD!', file=sys.stderr)

        # read SAD
        snp_sad = sad5.chr_sad5[chrm][snp_i].astype('float64')

        # read percentiles
        snp_pct = sad5.chr_sad5[chrm].sad_pct(snp_sad)

        return snp_sad, snp_pct

    def snp_rows(snp_id, dataset, ld_r2=1., verbose=True):
        """Construct table rows for the given SNP id and its LD set
           in the given dataset."""
        rows = []

        # search for SNP
        # chrom, snp_i = snp_indexes.get(snp_id, (None,None))
        chrm, snp_i = sad5.snp_chr_index(snp_id)

        if chrm is not None:
            # SAD
            snp_sad, snp_pct = read_sad(chrm, snp_i)

            # round floats
            snp_sad = np.around(snp_sad, 4)
            snp_assoc = np.around(snp_sad * ld_r2, 4)
            ld_r2_round = np.around(ld_r2, 4)

            # extract target scores and info
            for ti, tid in enumerate(sad5.target_ids):
                if dataset == 'All' or sad5.target_labels[ti].startswith(
                        dataset):
                    rows.append({
                        'SNP': snp_id,
                        'Association': snp_assoc[ti],
                        'Score': snp_sad[ti],
                        'ScoreQ': snp_pct[ti],
                        'R': ld_r2_round,
                        'Experiment': tid,
                        'Description': sad5.target_labels[ti]
                    })
        elif verbose:
            print('Cannot find %s in snp_indexes.' % snp_id)

        return rows

    def make_data_mask(dataset):
        """Make a mask across targets for the given dataset."""
        dataset_mask = []
        for ti, tid in enumerate(sad5.target_ids):
            if dataset == 'All':
                dataset_mask.append(True)
            else:
                dataset_mask.append(sad5.target_labels[ti].startswith(dataset))
        return np.array(dataset_mask, dtype='bool')

    def snp_scores(snp_id, dataset, ld_r2=1.):
        """Compute an array of scores for this SNP
           in the specified dataset."""

        dataset_mask = make_data_mask(dataset)

        scores = np.zeros(dataset_mask.sum(), dtype='float64')

        # search for SNP
        chrm, snp_i = sad5.snp_chr_index(snp_id)
        if snp_i is not None:
            # read SAD
            snp_sad, _ = read_sad(chrm, snp_i)

            # filter datasets
            snp_sad = snp_sad[dataset_mask]

            # add
            scores += snp_sad * ld_r2

        return scores

    #############################################
    # callbacks

    @app.callback(dd.Output('table', 'data'),
                  [dd.Input('snp_submit', 'n_clicks')], [
                      dd.State('snp_id', 'value'),
                      dd.State('dataset', 'value'),
                      dd.State('population', 'value')
                  ])
    def update_table(n_clicks, snp_id, dataset, population, verbose=True):
        """Update the table with a new parameter set."""
        if verbose:
            print('Tabling')

        # add snp_id rows
        rows = snp_rows(snp_id, dataset)

        if population != '-':
            df_ld = query_ld(population, snp_id)
            for i, v in df_ld.iterrows():
                rows += snp_rows(v.snp, dataset, v.r)

        return rows

    @app.callback(dd.Output('assoc_plot', 'figure'),
                  [dd.Input('snp_submit', 'n_clicks')], [
                      dd.State('snp_id', 'value'),
                      dd.State('dataset', 'value'),
                      dd.State('population', 'value')
                  ])
    def update_plot(n_clicks, snp_id, dataset, population, verbose=True):
        if verbose:
            print('Plotting')

        target_mask = make_data_mask(dataset)

        # add snp_id rows
        query_scores = snp_scores(snp_id, dataset)

        if population != '-':
            df_ld = query_ld(population, snp_id)
            for i, v in df_ld.iterrows():
                query_scores += snp_scores(v.snp, dataset, v.r)

        # sort
        sorted_indexes = np.argsort(query_scores)

        # range
        ymax = np.abs(query_scores).max()
        ymax *= 1.2

        return {
            'data': [
                go.Scatter(x=np.arange(len(query_scores)),
                           y=query_scores[sorted_indexes],
                           text=sad5.target_ids[target_mask][sorted_indexes],
                           mode='markers')
            ],
            'layout': {
                'height': 400,
                'margin': {
                    'l': 20,
                    'b': 30,
                    'r': 10,
                    't': 10
                },
                'yaxis': {
                    'range': [-ymax, ymax]
                },
                'xaxis': {
                    'range': [-1, 1 + len(query_scores)]
                }
            }
        }

    #############################################
    # run

    app.scripts.config.serve_locally = True
    app.run_server(debug=False, port=8787)
示例#3
0
def main():
    usage = 'usage: %prog [options] <sad_h5_path> <vcf_file>'
    parser = OptionParser(usage)
    # parser.add_option('-c', dest='chrom_h5',
    #         default=False, action='store_true',
    #         help='HDF5 files split by chromosome [Default: %default]')
    parser.add_option(
        '-f',
        dest='full_tables',
        default=False,
        action='store_true',
        help=
        'Print full tables describing all linked variants [Default: %default]')
    parser.add_option(
        '--ld',
        dest='ld_t',
        default=0.5,
        type='float',
        help='LD threshold to consider variant [Default: %default]')
    parser.add_option('-p',
                      dest='population',
                      default='EUR',
                      help='Population code')
    parser.add_option('-o', dest='out_dir', default='fetch_vcf')
    (options, args) = parser.parse_args()

    if len(args) != 2:
        parser.error('Must provide SAD HDF5 path and VCF file')
    else:
        sad_h5_path = args[0]
        vcf_file = args[1]

    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)

    ##################################################
    # precursors

    print('Preparing data...', end='', flush=True)
    sad5 = ChrSAD5(sad_h5_path, options.population)
    print('DONE.', flush=True)

    ##################################################
    # parse VCF

    ldscores_out = open('%s/ldscores.txt' % options.out_dir, 'w')
    if options.full_tables:
        full_dir = '%s/full' % options.out_dir
        if not os.path.isdir(full_dir):
            os.mkdir(full_dir)

    for line in open(vcf_file):
        if not line.startswith('#'):
            t0 = time.time()
            a = line.split()
            chrm = a[0]
            pos = int(a[1])
            rsid = a[2]

            # retrieve scores for variants in LD
            snp_ldscores, snp_ld_df, snps_scores = sad5.retrieve_snp(
                rsid, chrm, pos, ld_t=options.ld_t)

            if len(snp_ldscores) > 0:
                # print LD scores
                for ti in range(sad5.num_targets):
                    cols = (rsid, snp_ldscores[ti], sad5.target_ids[ti],
                            sad5.target_labels[ti])
                    print('%-16s  %7.3f  %20s  %s' % cols, file=ldscores_out)

                if options.full_tables:
                    # print all LD variant scores
                    full_ld_out = open('%s/%s.txt' % (full_dir, rsid), 'w')
                    for si in range(snp_ld_df.shape[0]):
                        snp_ld_series = snp_ld_df.iloc[si]
                        snp_scores = snps_scores[si]
                        for ti in range(sad5.num_targets):
                            snp_score_ti = snp_scores[ti]
                            snp_ldscore_ti = snp_ld_series.r * snp_score_ti
                            cols = (snp_ld_series.snp, snp_ldscore_ti,
                                    snp_score_ti, snp_ld_series.r,
                                    sad5.target_ids[ti],
                                    sad5.target_labels[ti])
                            print('%-16s  %7.3f  %7.3f  %6.1f  %20s  %s' %
                                  cols,
                                  file=full_ld_out)
                    full_ld_out.close()

            print(rsid, '%.1fs' % (time.time() - t0))

    ldscores_out.close()
示例#4
0
def main():
    usage = "usage: %prog [options] <sad_hdf5_path>"
    parser = OptionParser(usage)
    parser.add_option(
        "-c",
        dest="chrom_hdf5",
        default=False,
        action="store_true",
        help="HDF5 files split by chromosome [Default: %default]",
    )
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.error("Must provide SAD HDF5")
    else:
        sad_h5_path = args[0]

    #############################################
    # precursors

    print("Preparing data...", end="", flush=True)
    sad5 = ChrSAD5(sad_h5_path, index_chr=True)
    print("DONE.", flush=True)

    #############################################
    # layout

    app = dash.Dash()
    app.css.append_css(
        {"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"})

    app.layout = html.Div([
        html.Div(
            [
                html.H1("Basenji SNP activity difference"),
                dcc.Markdown("Instructions..."),
                html.Div(
                    [
                        html.Label("Datasets"),
                        dcc.Dropdown(
                            id="dataset",
                            options=[
                                {
                                    "label": "CAGE",
                                    "value": "CAGE"
                                },
                                {
                                    "label": "DNase",
                                    "value": "DNASE"
                                },
                                {
                                    "label": "H3K4me3",
                                    "value": "CHIP:H3K4me3"
                                },
                                {
                                    "label": "All",
                                    "value": "All"
                                },
                            ],
                            value="CAGE",
                        ),
                    ],
                    style={
                        "width": "250",
                        "display": "inline-block"
                    },
                ),
                html.Div(
                    [
                        html.Label("Population"),
                        dcc.Dropdown(
                            id="population",
                            options=[
                                {
                                    "label": "-",
                                    "value": "-"
                                },
                                {
                                    "label": "1kG African",
                                    "value": "AFR"
                                },
                                {
                                    "label": "1kG American",
                                    "value": "AMR"
                                },
                                {
                                    "label": "1kG East Asian",
                                    "value": "EAS"
                                },
                                {
                                    "label": "1kG European",
                                    "value": "EUR"
                                },
                                {
                                    "label": "1kG South Asian",
                                    "value": "SAS"
                                },
                            ],
                            value="EUR",
                        ),
                    ],
                    style={
                        "width": "250",
                        "display": "inline-block"
                    },
                ),
                html.Div(
                    [
                        html.Label("SNP ID"),
                        dcc.Input(id="snp_id", value="rs6656401", type="text"),
                        html.Button(
                            id="snp_submit", n_clicks=0, children="Submit"),
                    ],
                    style={
                        "display": "inline-block",
                        "float": "right"
                    },
                ),
            ],
            style={
                "borderBottom": "thin lightgrey solid",
                "backgroundColor": "rgb(250, 250, 250)",
                "padding": "10px 5px",
            },
        ),
        dcc.Graph(id="assoc_plot"),
        html.Div([
            dt.DataTable(
                id="table",
                rows=[],
                columns=[
                    "SNP",
                    "Association",
                    "Score",
                    "ScoreQ",
                    "R",
                    "Experiment",
                    "Description",
                ],
                column_widths=[150, 125, 125, 125, 125, 200],
                editable=False,
                filterable=True,
                sortable=True,
                resizable=True,
                sortColumn="Association",
                row_selectable=True,
                selected_row_indices=[],
                max_rows_in_viewport=20,
            )
        ]),
    ])

    #############################################
    # callback helpers

    @memoized
    def query_ld(population, snp_id):
        try:
            sad5.set_population(population)

        except ValueError:
            print("Population unavailable.", file=sys.stderr)
            return pd.DataFrame()

        chrm, snp_i = sad5.snp_chr_index(snp_id)
        pos = sad5.snp_pos(snp_i, chrm)

        if chrm is None:
            return pd.DataFrame()
        else:
            return sad5.emerald_vcf.query_ld(snp_id,
                                             chrm,
                                             pos,
                                             ld_threshold=0.8)

    @memoized
    def read_sad(chrm, snp_i, verbose=True):
        """Read SAD scores from HDF5 for the given SNP index."""
        if verbose:
            print("Reading SAD!", file=sys.stderr)

        # read SAD
        snp_sad = sad5.chr_sad5[chrm][snp_i].astype("float64")

        # read percentiles
        snp_pct = sad5.chr_sad5[chrm].sad_pct(snp_sad)

        return snp_sad, snp_pct

    def snp_rows(snp_id, dataset, ld_r=1.0, verbose=True):
        """Construct table rows for the given SNP id and its LD set
           in the given dataset."""
        rows = []

        # search for SNP
        # chrom, snp_i = snp_indexes.get(snp_id, (None,None))
        chrm, snp_i = sad5.snp_chr_index(snp_id)

        if chrm is not None:
            # SAD
            snp_sad, snp_pct = read_sad(chrm, snp_i)

            # round floats
            snp_sad = np.around(snp_sad, 4)
            snp_assoc = np.around(snp_sad * ld_r, 4)
            ld_r_round = np.around(ld_r, 4)

            # extract target scores and info
            for ti, tid in enumerate(sad5.target_ids):
                if dataset == "All" or sad5.target_labels[ti].startswith(
                        dataset):
                    rows.append({
                        "SNP": snp_id,
                        "Association": snp_assoc[ti],
                        "Score": snp_sad[ti],
                        "ScoreQ": snp_pct[ti],
                        "R": ld_r_round,
                        "Experiment": tid,
                        "Description": sad5.target_labels[ti],
                    })
        elif verbose:
            print("Cannot find %s in snp_indexes." % snp_id)

        return rows

    def make_data_mask(dataset):
        """Make a mask across targets for the given dataset."""
        dataset_mask = []
        for ti, tid in enumerate(sad5.target_ids):
            if dataset == "All":
                dataset_mask.append(True)
            else:
                dataset_mask.append(sad5.target_labels[ti].startswith(dataset))
        return np.array(dataset_mask, dtype="bool")

    #############################################
    # callbacks

    @app.callback(
        dd.Output("table", "rows"),
        [dd.Input("snp_submit", "n_clicks")],
        [
            dd.State("snp_id", "value"),
            dd.State("dataset", "value"),
            dd.State("population", "value"),
        ],
    )
    def update_table(n_clicks, snp_id, dataset, population, verbose=True):
        """Update the table with a new parameter set."""
        if verbose:
            print("Tabling")

        # look up SNP index
        chrm, snp_i = sad5.snp_chr_index(snp_id)

        # look up position
        pos = sad5.snp_pos(snp_i, chrm)

        # set population
        try:
            sad5.set_population(population)
        except ValueError:
            print("Population unavailable.", file=sys.stderr)

        # retrieve scores and LD
        snp_ldscores, df_ld, snps_scores = sad5.retrieve_snp(snp_id,
                                                             chrm,
                                                             pos,
                                                             ld_t=0.5)

        # construct rows
        rows = []

        # for each SNP
        for i, v in tqdm(df_ld.iterrows()):
            # round floats
            snp_sad = np.around(snps_scores[i], 4)
            snp_assoc = np.around(snp_sad * v.r, 4)
            ld_r_round = np.around(v.r, 4)

            # read percentiles
            snp_pct = sad5.chr_sad5[chrm].sad_pct(snp_sad)

            # for each target
            for ti, tid in enumerate(sad5.target_ids):
                if dataset == "All" or sad5.target_labels[ti].startswith(
                        dataset):
                    rows.append({
                        "SNP": v.snp,
                        "Association": snp_assoc[ti],
                        "Score": snp_sad[ti],
                        "ScoreQ": snp_pct[ti],
                        "R": ld_r_round,
                        "Experiment": tid,
                        "Description": sad5.target_labels[ti],
                    })

        return rows

    @app.callback(
        dd.Output("assoc_plot", "figure"),
        [dd.Input("snp_submit", "n_clicks")],
        [
            dd.State("snp_id", "value"),
            dd.State("dataset", "value"),
            dd.State("population", "value"),
        ],
    )
    def update_plot(n_clicks, snp_id, dataset, population, verbose=True):
        if verbose:
            print("Plotting")

        target_mask = make_data_mask(dataset)

        # look up SNP index
        chrm, snp_i = sad5.snp_chr_index(snp_id)

        # look up position
        pos = sad5.snp_pos(snp_i, chrm)

        # set population
        try:
            sad5.set_population(population)
        except ValueError:
            print("Population unavailable.", file=sys.stderr)

        # retrieve scores and LD
        snp_ldscores, df_ld, snps_scores = sad5.retrieve_snp(snp_id,
                                                             chrm,
                                                             pos,
                                                             ld_t=0.5)

        # mask
        snp_ldscores = snp_ldscores[target_mask]

        # sort
        sorted_indexes = np.argsort(snp_ldscores)

        # range
        ymax = np.abs(snp_ldscores).max()
        ymax *= 1.2

        return {
            "data": [
                go.Scatter(
                    x=np.arange(len(snp_ldscores)),
                    y=snp_ldscores[sorted_indexes],
                    text=sad5.target_ids[target_mask][sorted_indexes],
                    mode="markers",
                )
            ],
            "layout": {
                "height": 400,
                "margin": {
                    "l": 20,
                    "b": 30,
                    "r": 10,
                    "t": 10
                },
                "yaxis": {
                    "range": [-ymax, ymax]
                },
                "xaxis": {
                    "range": [-1, 1 + len(snp_ldscores)]
                },
            },
        }

    #############################################
    # run

    app.scripts.config.serve_locally = True
    app.run_server(debug=False, port=8787)
示例#5
0
def main():
    usage = "usage: %prog [options] <sad_h5_path> <vcf_file>"
    parser = OptionParser(usage)
    # parser.add_option('-c', dest='chrom_h5',
    #         default=False, action='store_true',
    #         help='HDF5 files split by chromosome [Default: %default]')
    parser.add_option(
        "-f",
        dest="full_tables",
        default=False,
        action="store_true",
        help=
        "Print full tables describing all linked variants [Default: %default]",
    )
    parser.add_option(
        "--ld",
        dest="ld_t",
        default=0.5,
        type="float",
        help="LD threshold to consider variant [Default: %default]",
    )
    parser.add_option("-p",
                      dest="population",
                      default="EUR",
                      help="Population code")
    parser.add_option("-o", dest="out_dir", default="fetch_vcf")
    (options, args) = parser.parse_args()

    if len(args) != 2:
        parser.error("Must provide SAD HDF5 path and VCF file")
    else:
        sad_h5_path = args[0]
        vcf_file = args[1]

    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)

    ##################################################
    # precursors

    print("Preparing data...", end="", flush=True)
    sad5 = ChrSAD5(sad_h5_path, options.population)
    print("DONE.", flush=True)

    ##################################################
    # parse VCF

    ldscores_out = open("%s/ldscores.txt" % options.out_dir, "w")
    if options.full_tables:
        full_dir = "%s/full" % options.out_dir
        if not os.path.isdir(full_dir):
            os.mkdir(full_dir)

    for line in open(vcf_file):
        if not line.startswith("#"):
            t0 = time.time()
            a = line.split()
            chrm = a[0]
            pos = int(a[1])
            rsid = a[2]

            # retrieve scores for variants in LD
            snp_ldscores, snp_ld_df, snps_scores = sad5.retrieve_snp(
                rsid, chrm, pos, ld_t=options.ld_t)

            if len(snp_ldscores) > 0:
                # print LD scores
                for ti in range(sad5.num_targets):
                    cols = (
                        rsid,
                        snp_ldscores[ti],
                        sad5.target_ids[ti],
                        sad5.target_labels[ti],
                    )
                    print("%-16s  %7.3f  %20s  %s" % cols, file=ldscores_out)

                if options.full_tables:
                    # print all LD variant scores
                    full_ld_out = open("%s/%s.txt" % (full_dir, rsid), "w")
                    for si in range(snp_ld_df.shape[0]):
                        snp_ld_series = snp_ld_df.iloc[si]
                        snp_scores = snps_scores[si]
                        for ti in range(sad5.num_targets):
                            snp_score_ti = snp_scores[ti]
                            snp_ldscore_ti = snp_ld_series.r * snp_score_ti
                            cols = (
                                snp_ld_series.snp,
                                snp_ldscore_ti,
                                snp_score_ti,
                                snp_ld_series.r,
                                sad5.target_ids[ti],
                                sad5.target_labels[ti],
                            )
                            print(
                                "%-16s  %7.3f  %7.3f  %6.1f  %20s  %s" % cols,
                                file=full_ld_out,
                            )
                    full_ld_out.close()

            print(rsid, "%.1fs" % (time.time() - t0))

    ldscores_out.close()