示例#1
0
    def test_forfatal_from_dict(self):
        """
        Test if dictionary-based constraint interface is working.
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        np.random.seed(1)
        n_cells = 2000
        n_genes = 2

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        # Build design matrix:
        sample_description = pd.DataFrame({
            "cond": ["cond" + str(i // 1000) for i in range(n_cells)],
            "batch": ["batch" + str(i // 500) for i in range(n_cells)]
        })

        test = de.test.wald(data=sim.input_data,
                            sample_description=sample_description,
                            formula_loc="~1+cond+batch",
                            formula_scale="~1+cond+batch",
                            constraints_loc={"batch": "cond"},
                            constraints_scale={"batch": "cond"},
                            coef_to_test=["cond[T.cond1]"])
        _ = test.summary()
示例#2
0
    def test_rank_test_zero_variance(self):
        """
        Test if rank test works if it is given genes with zero variance.
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        np.random.seed(1)
        sim = Simulator(num_observations=1000, num_features=10)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()
        sim.input_data.x[:, 0] = 0
        sim.input_data.x[:, 1] = 5

        random_sample_description = pd.DataFrame(
            {"condition": np.random.randint(2, size=sim.nobs)})

        test = de.test.rank_test(data=sim.input_data,
                                 sample_description=random_sample_description,
                                 grouping="condition",
                                 is_sig_zerovar=True)

        assert np.isnan(test.pval[0]) and test.pval[1] == 1, \
            "rank test did not assign p-value of zero to groups with zero variance and same mean, %f, %f" % \
            (test.pval[0], test.pval[1])
        return True
示例#3
0
    def _test_null_distribution_rank(self, n_cells: int, n_genes: int):
        """
        Test if de.test.rank_test() generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distribution and a uniform distribution.

        :param n_cells: Number of cells to simulate (number of observations per test).
        :param n_genes: Number of genes to simulate (number of tests).
        """
        from batchglm.api.models.tf1.glm_norm import Simulator

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        random_sample_description = pd.DataFrame(
            {"condition": np.random.randint(2, size=sim.nobs)})

        test = de.test.rank_test(data=sim.input_data,
                                 sample_description=random_sample_description,
                                 grouping="condition")
        _ = test.summary()

        # Compare p-value distribution under null model against uniform distribution.
        pval_h0 = stats.kstest(test.pval, 'uniform').pvalue

        logging.getLogger("diffxpy").info(
            'KS-test pvalue for null model match of rank_test(): %f' % pval_h0)
        assert pval_h0 > 0.05, ("KS-Test failed: pval_h0=%f is <= 0.05!" %
                                np.round(pval_h0, 5))

        return True
示例#4
0
    def simulate(self, n_cells: int = 200, n_genes: int = 2):
        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        random_sample_description = pd.DataFrame({
            "condition": np.random.randint(2, size=sim.input_data.num_observations)
        })
        return sim.x, random_sample_description
示例#5
0
    def test_forfatal_from_string(self):
        """
        Test if _from_string interface is working.

        n_cells is constant as the design matrix and constraints depend on it.
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        np.random.seed(1)
        n_cells = 2000
        n_genes = 2

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        # Build design matrix:
        dmat = np.zeros([n_cells, 6])
        dmat[:, 0] = 1
        dmat[:500, 1] = 1  # bio rep 1
        dmat[500:1000, 2] = 1  # bio rep 2
        dmat[1000:1500, 3] = 1  # bio rep 3
        dmat[1500:2000, 4] = 1  # bio rep 4
        dmat[1000:2000, 5] = 1  # condition effect
        coefficient_names = [
            'intercept', 'bio1', 'bio2', 'bio3', 'bio4', 'treatment1'
        ]
        dmat_est = pd.DataFrame(data=dmat, columns=coefficient_names)

        dmat_est_loc, _ = de.utils.design_matrix(dmat=dmat_est,
                                                 return_type="dataframe")
        dmat_est_scale, _ = de.utils.design_matrix(dmat=dmat_est,
                                                   return_type="dataframe")

        # Build constraints:
        constraints_loc = de.utils.constraint_matrix_from_string(
            dmat=dmat_est_loc.values,
            coef_names=dmat_est_loc.columns,
            constraints=["bio1+bio2=0", "bio3+bio4=0"])
        constraints_scale = de.utils.constraint_matrix_from_string(
            dmat=dmat_est_scale.values,
            coef_names=dmat_est_scale.columns,
            constraints=["bio1+bio2=0", "bio3+bio4=0"])

        test = de.test.wald(data=sim.input_data,
                            dmat_loc=dmat_est_loc,
                            dmat_scale=dmat_est_scale,
                            constraints_loc=constraints_loc,
                            constraints_scale=constraints_scale,
                            coef_to_test=["treatment1"])
        _ = test.summary()
示例#6
0
    def test_null_distribution_lrt(self,
                                   n_cells: int = 4000,
                                   n_genes: int = 200):
        """
        Test if de.lrt() generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distribution and a uniform distribution.

        :param n_cells: Number of cells to simulate (number of observations per test).
        :param n_genes: Number of genes to simulate (number of tests).
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=2)
        sim.generate()

        sample_description = pd.DataFrame({
            "covar1":
            np.random.randint(2, size=sim.nobs),
            "covar2":
            np.random.randint(2, size=sim.nobs)
        })
        sample_description["cond"] = sim.sample_description["condition"].values

        partition = de.test.partition(data=sim.x,
                                      parts="cond",
                                      sample_description=sample_description)
        det = partition.lrt(full_formula_loc="~ 1 + covar1",
                            full_formula_scale="~ 1",
                            reduced_formula_loc="~ 1",
                            reduced_formula_scale="~ 1",
                            training_strategy="DEFAULT",
                            dtype="float64")
        _ = det.summary()

        # Compare p-value distribution under null model against uniform distribution.
        pval_h0 = stats.kstest(det.pval.flatten(), 'uniform').pvalue

        logging.getLogger("diffxpy").info(
            'KS-test pvalue for null model match of lrt(): %f' % pval_h0)
        assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(
            pval_h0, 5)

        return True
示例#7
0
    def test_null_distribution_wald(self,
                                    n_cells: int = 2000,
                                    n_genes: int = 100,
                                    n_groups: int = 2):
        """
        Test if de.test_wald_loc() generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distriubution and a uniform distribution.

        :param n_cells: Number of cells to simulate (number of observations per test).
        :param n_genes: Number of genes to simulate (number of tests).
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)
        from batchglm.api.models.tf1.glm_nb import Simulator

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        random_sample_description = pd.DataFrame(
            {"condition": np.random.randint(n_groups, size=sim.nobs)})

        test = de.test.versus_rest(
            data=sim.x,
            grouping="condition",
            test="wald",
            noise_model="nb",
            sample_description=random_sample_description,
            batch_size=500,
            training_strategy="DEFAULT",
            dtype="float64")
        summary = test.summary()

        # Compare p-value distribution under null model against uniform distribution.
        pval_h0 = stats.kstest(test.pval.flatten(), 'uniform').pvalue

        logging.getLogger("diffxpy").info(
            'KS-test pvalue for null model match of test_wald_loc(): %f' %
            pval_h0)
        assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(
            pval_h0, 5)

        return True
示例#8
0
    def test_null_distribution_wald_constrained(self, n_genes: int = 100):
        """
        Test if de.wald() with constraints generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distribution and a uniform distribution.

        n_cells is constant as the design matrix and constraints depend on it.

        :param n_genes: Number of genes to simulate (number of tests).
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        np.random.seed(1)
        n_cells = 2000
        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        # Build design matrix:
        sample_description = pd.DataFrame({
            "cond": ["cond" + str(i // 1000) for i in range(n_cells)],
            "batch": ["batch" + str(i // 500) for i in range(n_cells)]
        })

        test = de.test.wald(data=sim.input_data,
                            sample_description=sample_description,
                            formula_loc="~1+cond+batch",
                            formula_scale="~1+cond+batch",
                            constraints_loc={"batch": "cond"},
                            constraints_scale={"batch": "cond"},
                            coef_to_test=["cond[T.cond1]"])
        _ = test.summary()

        # Compare p-value distribution under null model against uniform distribution.
        pval_h0 = stats.kstest(test.pval, 'uniform').pvalue

        logging.getLogger("diffxpy").info(
            'KS-test pvalue for null model match of wald(): %f' % pval_h0)
        assert pval_h0 > 0.05, "KS-Test failed: pval_h0 is <= 0.05!"

        return True
示例#9
0
    def _test_null_distribution_lrt(self, n_cells: int, n_genes: int,
                                    noise_model: str):
        """
        Test if de.lrt() generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distribution and a uniform distribution.

        :param n_cells: Number of cells to simulate (number of observations per test).
        :param n_genes: Number of genes to simulate (number of tests).
        :param noise_model: Noise model to use for data fitting.
        """
        if noise_model == "nb":
            from batchglm.api.models.tf1.glm_nb import Simulator
        elif noise_model == "norm":
            from batchglm.api.models.tf1.glm_norm import Simulator
        else:
            raise ValueError("noise model %s not recognized" % noise_model)

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        random_sample_description = pd.DataFrame(
            {"condition": np.random.randint(2, size=sim.nobs)})

        test = de.test.lrt(data=sim.input_data,
                           sample_description=random_sample_description,
                           full_formula_loc="~ 1 + condition",
                           full_formula_scale="~ 1",
                           reduced_formula_loc="~ 1",
                           reduced_formula_scale="~ 1",
                           noise_model=noise_model)
        _ = test.summary()

        # Compare p-value distribution under null model against uniform distribution.
        pval_h0 = stats.kstest(test.pval, 'uniform').pvalue

        logging.getLogger("diffxpy").info(
            'KS-test pvalue for null model match of lrt(): %f' % pval_h0)
        assert pval_h0 > 0.05, ("KS-Test failed: pval_h0=%f is <= 0.05!" %
                                np.round(pval_h0, 5))

        return True
示例#10
0
    def simulate(self):
        if self.noise_model is None:
            raise ValueError("noise_model is None")
        else:
            if self.noise_model == "nb":
                from batchglm.api.models.tf1.glm_nb import Simulator
            elif self.noise_model == "norm":
                from batchglm.api.models import Simulator
            elif self.noise_model == "beta":
                from batchglm.api.models.tf1.glm_beta import Simulator
            else:
                raise ValueError("noise_model not recognized")

        num_observations = 500
        sim = Simulator(num_observations=num_observations, num_features=4)
        sim.generate_sample_description(num_conditions=2, num_batches=2)
        sim.generate()

        self.sim = sim
示例#11
0
    def _test_residuals_fit(
            self,
            n_cells: int,
            n_genes: int,
            noise_model: str
    ):
        """
        Test if de.wald() (multivariate mode) generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distribution and a uniform distribution.

        :param n_cells: Number of cells to simulate (number of observations per test).
        :param n_genes: Number of genes to simulate (number of tests).
        :param noise_model: Noise model to use for data fitting.
        """
        if noise_model == "nb":
            from batchglm.api.models.tf1.glm_nb import Simulator
        elif noise_model == "norm":
            from batchglm.api.models.tf1.glm_norm import Simulator
        else:
            raise ValueError("noise model %s not recognized" % noise_model)

        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        random_sample_description = pd.DataFrame({
            "condition": np.random.randint(2, size=sim.nobs),
            "batch": np.random.randint(2, size=sim.nobs)
        })

        res = de.fit.residuals(
            data=sim.input_data,
            sample_description=random_sample_description,
            formula_loc="~ 1 + condition + batch",
            noise_model=noise_model
        )
        return True
示例#12
0
    def test_for_fatal(self):
        """
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        sim = Simulator(num_observations=50, num_features=10)
        sim.generate_sample_description(num_batches=0, num_conditions=2)
        sim.generate()

        test = de.test.wald(data=sim.X,
                            factor_loc_totest="condition",
                            formula_loc="~ 1 + condition",
                            sample_description=sim.sample_description,
                            gene_names=[str(x) for x in range(sim.X.shape[1])],
                            training_strategy="DEFAULT",
                            dtype="float64")

        # Set up reference gene sets.
        rs = de.enrich.RefSets()
        rs.add(id="set1", source="manual", gene_ids=["1", "3"])
        rs.add(id="set2", source="manual", gene_ids=["5", "6"])

        for i in [True, False]:
            for j in [True, False]:
                enrich_test_i = de.enrich.test(
                    ref=rs,
                    det=test,
                    threshold=0.05,
                    incl_all_zero=i,
                    clean_ref=j,
                )
                _ = enrich_test_i.summary()
                _ = enrich_test_i.significant_set_ids()
                _ = enrich_test_i.significant_sets()
                _ = enrich_test_i.set_summary(id="set1")

        return True
示例#13
0
    def _test_null_distribution_wald_constrained_2layer(
            self, n_genes: int = 100):
        """
        Test if de.wald() with constraints generates a uniform p-value distribution
        if it is given data simulated based on the null model. Returns the p-value
        of the two-side Kolmgorov-Smirnov test for equality of the observed
        p-value distribution and a uniform distribution.

        n_cells is constant as the design matrix and constraints depend on it.

        :param n_genes: Number of genes to simulate (number of tests).
        """
        logging.getLogger("tensorflow").setLevel(logging.ERROR)
        logging.getLogger("batchglm").setLevel(logging.WARNING)
        logging.getLogger("diffxpy").setLevel(logging.WARNING)

        np.random.seed(1)
        n_cells = 12000
        sim = Simulator(num_observations=n_cells, num_features=n_genes)
        sim.generate_sample_description(num_batches=0, num_conditions=0)
        sim.generate()

        # Build design matrix:
        dmat = np.zeros([n_cells, 14])
        dmat[:, 0] = 1
        dmat[6000:12000, 1] = 1  # condition effect
        dmat[:1000, 2] = 1  # bio rep 1 - treated 1
        dmat[1000:3000, 3] = 1  # bio rep 2 - treated 2
        dmat[3000:5000, 4] = 1  # bio rep 3 - treated 3
        dmat[5000:6000, 5] = 1  # bio rep 4 - treated 4
        dmat[6000:7000, 6] = 1  # bio rep 5 - untreated 1
        dmat[7000:9000, 7] = 1  # bio rep 6 - untreated 2
        dmat[9000:11000, 8] = 1  # bio rep 7 - untreated 3
        dmat[11000:12000, 9] = 1  # bio rep 8 - untreated 4
        dmat[1000:2000, 10] = 1  # tech rep 1
        dmat[7000:8000, 10] = 1  # tech rep 1
        dmat[2000:3000, 11] = 1  # tech rep 2
        dmat[8000:9000, 11] = 1  # tech rep 2
        dmat[3000:4000, 12] = 1  # tech rep 3
        dmat[9000:10000, 12] = 1  # tech rep 3
        dmat[4000:5000, 13] = 1  # tech rep 4
        dmat[10000:11000, 13] = 1  # tech rep 4

        coefficient_names = [
            'intercept', 'treatment1', 'bio1', 'bio2', 'bio3', 'bio4', 'bio5',
            'bio6', 'bio7', 'bio8', 'tech1', 'tech2', 'tech3', 'tech4'
        ]
        dmat_est = pd.DataFrame(data=dmat, columns=coefficient_names)

        dmat_est_loc = de.utils.design_matrix(dmat=dmat_est,
                                              return_type="dataframe")
        dmat_est_scale = de.utils.design_matrix(dmat=dmat_est.iloc[:, [0]],
                                                return_type="dataframe")

        # Build constraints:
        constraints_loc = de.utils.constraint_matrix_from_string(
            dmat=dmat_est_loc.values,
            coef_names=dmat_est_loc.columns,
            constraints=[
                "bio1+bio2=0", "bio3+bio4=0", "bio5+bio6=0", "bio7+bio8=0",
                "tech1+tech2=0", "tech3+tech4=0"
            ])
        constraints_scale = None

        test = de.test.wald(data=sim.input_data,
                            dmat_loc=dmat_est_loc,
                            dmat_scale=dmat_est_scale,
                            constraints_loc=constraints_loc,
                            constraints_scale=constraints_scale,
                            coef_to_test=["treatment1"])
        _ = test.summary()

        # Compare p-value distribution under null model against uniform distribution.
        pval_h0 = stats.kstest(test.pval, 'uniform').pvalue

        logging.getLogger("diffxpy").info(
            'KS-test pvalue for null model match of wald(): %f' % pval_h0)
        assert pval_h0 > 0.05, "KS-Test failed: pval_h0 is <= 0.05!"

        return True
示例#14
0
    def _test_compute_hessians(self, sparse):
        if self.noise_model is None:
            raise ValueError("noise_model is None")
        else:
            if self.noise_model == "nb":
                from batchglm.api.models.tf1.glm_nb import Simulator, InputDataGLM
            elif self.noise_model == "norm":
                from batchglm.api.models import Simulator, InputDataGLM
            elif self.noise_model == "beta":
                from batchglm.api.models.tf1.glm_beta import Simulator, InputDataGLM
            else:
                raise ValueError("noise_model not recognized")

        num_observations = 500
        num_conditions = 2

        sim = Simulator(num_observations=num_observations, num_features=4)
        sim.generate_sample_description(num_conditions=num_conditions,
                                        num_batches=2)
        sim.generate()

        sample_description = data_utils.sample_description_from_xarray(
            sim.data, dim="observations")
        design_loc = data_utils.design_matrix(
            sample_description, formula="~ 1 + condition + batch")
        design_scale = data_utils.design_matrix(sample_description,
                                                formula="~ 1 + condition")

        if sparse:
            input_data = InputDataGLM(data=scipy.sparse.csr_matrix(sim.X),
                                      design_loc=design_loc,
                                      design_scale=design_scale)
        else:
            input_data = InputDataGLM(data=sim.X,
                                      design_loc=design_loc,
                                      design_scale=design_scale)

        # Compute hessian based on analytic solution.
        pkg_constants.HESSIAN_MODE = "analytic"
        t0_analytic = time.time()
        h_analytic = self.get_hessians(input_data)
        t1_analytic = time.time()
        t_analytic = t1_analytic - t0_analytic

        # Compute hessian based on tensorflow auto-differentiation.
        pkg_constants.HESSIAN_MODE = "tf1"
        t0_tf = time.time()
        h_tf = self.get_hessians(input_data)
        t1_tf = time.time()
        t_tf = t1_tf - t0_tf

        logging.getLogger("batchglm").info(
            "run time observation batch-wise analytic solution: %f" %
            t_analytic)
        logging.getLogger("batchglm").info("run time tensorflow solution: %f" %
                                           t_tf)
        logging.getLogger("batchglm").info("MAD: %f" %
                                           np.max(np.abs((h_tf - h_analytic))))

        #i = 1
        #print(h_tf[i, :, :])
        #print(h_analytic[i, :, :])
        #print(h_tf[i, :, :] - h_analytic[i, :, :])

        # Make sure that hessians are not all zero which might make evaluation of equality difficult.
        assert np.sum(np.abs(h_analytic)) > 1e-10, \
            "hessians too small to perform test: %f" % np.sum(np.abs(h_analytic))
        mad = np.max(np.abs(h_tf - h_analytic))
        assert mad < 1e-15, mad
        return True