示例#1
0
def sfn(l, msk, myrad, bcast_var):
    # Arguments:
    # l -- a list of 4D arrays, containing data from a single searchlight
    # msk -- a 3D binary array, mask of this searchlight
    # myrad -- an integer, sl_rad
    # bcast_var -- whatever is broadcasted 

    # extract training and testing data
    train_data = []
    test_data = []
    d1,d2,d3,ntr = l[0].shape
    nvx = d1*d2*d3
    for s in l:
        train_data.append(np.reshape(s[:,:,:,:int(ntr/2)],(nvx,int(ntr/2))))
        test_data.append(np.reshape(s[:,:,:,int(ntr/2):],(nvx,ntr-int(ntr/2))))
    # train an srm model 
    srm = SRM(bcast_var[0],bcast_var[1])
    srm.fit(train_data)
    # transform test data
    shared_data = srm.transform(test_data)
    for s in range(len(l)):
        shared_data[s] = np.nan_to_num(stats.zscore(shared_data[s],axis=1,ddof=1))
    # run experiment
    accu = time_segment_matching_accuracy(shared_data)

    # return: can also return several values. In that case, the final output will be 
    # a 3D array of tuples
    return np.mean(accu) 
def srm(run1, run2):
    # initialize model
    print('Building Models')
    n_iter = 50
    srm_k = 30
    srm_train_run1 = SRM(n_iter=n_iter, features=srm_k)
    srm_train_run2 = SRM(n_iter=n_iter, features=srm_k)

    # fit model to training data
    print('Training Models')
    srm_train_run1.fit(run1)
    srm_train_run2.fit(run2)

    print('Testing Models')
    shared_data_run1 = stats.zscore(np.dstack(srm_train_run2.transform(run1)),
                                    axis=1,
                                    ddof=1)
    shared_data_run2 = stats.zscore(np.dstack(srm_train_run1.transform(run2)),
                                    axis=1,
                                    ddof=1)

    # average test data across subjects
    run1 = np.mean(shared_data_run1, axis=2)
    run2 = np.mean(shared_data_run2, axis=2)

    return run1, run2
示例#3
0
def HMM(X,K,loo_idx,song_idx,song_bounds):
    
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subject using within song and between song average correlations              

       Parameters
       ----------
       A: voxel by time ndarray (2D)
       B: voxel by time ndarray (2D)
       C: voxel by time ndarray (2D)
       D: voxel by time ndarray (2D)
       K: # of events for HMM (scalar)
 
       Returns
       -------
       z: z-score after performing permuted cross-validation analysis      

    """
    
    w = 6
    srm_k = 45
    nPerm = 1000
    within_across = np.zeros(nPerm+1)
    run1 = [X[i] for i in np.arange(0, int(len(X)/2))]
    run2 = [X[i] for i in np.arange(int(len(X)/2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)   
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data),axis=1,ddof=1)
    others = np.mean(shared_data[:,:,np.arange(shared_data.shape[-1]) != loo_idx],axis=2)
    loo = shared_data[:,song_bounds[song_idx]:song_bounds[song_idx + 1],loo_idx] 
    nTR = loo.shape[1]

    # Fit to all but one subject
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(others[:,song_bounds[song_idx]:song_bounds[song_idx + 1]].T)
    events = np.argmax(ev.segments_[0],axis=1)

    # Compute correlations separated by w in time
    corrs = np.zeros(nTR-w)
    for t in range(nTR-w):
        corrs[t] = pearsonr(loo[:,t],loo[:,t+w])[0]
       
    # Compute within vs across boundary correlations, for real and permuted bounds
    for p in range(nPerm+1):
        within = corrs[events[:-w] == events[w:]].mean()
        across = corrs[events[:-w] != events[w:]].mean()
        within_across[p] = within - across
        
        np.random.seed(p)
        events = np.zeros(nTR, dtype=np.int)
        events[np.random.choice(nTR,K-1,replace=False)] = 1
        events = np.cumsum(events)

    return within_across
def HMM(X, human_bounds, song_idx, song_bounds, srm_k, hrf):
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subject using within song and between song average correlations              

       Parameters
       ----------
       A: voxel by time ndarray (2D)
       B: voxel by time ndarray (2D)
       C: voxel by time ndarray (2D)
       D: voxel by time ndarray (2D)
       K: # of events for HMM (scalar)
 
       Returns
       -------
       z: z-score after performing permuted cross-validation analysis      

    """

    w = 3
    nPerm = 1000
    run1 = [X[i] for i in np.arange(0, int(len(X) / 2))]
    run2 = [X[i] for i in np.arange(int(len(X) / 2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)
    print('Training Model')
    srm.fit(run2)
    print('Testing Model')
    shared_data = srm.transform(run1)
    shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)
    data = np.mean(shared_data[:, song_bounds[song_idx]:song_bounds[song_idx +
                                                                    1]],
                   axis=2)
    nTR = data.shape[1]

    # Fit to all but one subject
    K = len(human_bounds) + 1
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(data.T)
    bounds = np.where(np.diff(np.argmax(ev.segments_[0], axis=1)))[0] + 1
    match = np.zeros(nPerm + 1)
    events = np.argmax(ev.segments_[0], axis=1)
    _, event_lengths = np.unique(events, return_counts=True)
    perm_bounds = bounds.copy()

    for p in range(nPerm + 1):
        for hb in human_bounds:
            if np.any(np.abs(perm_bounds - hb) <= w):
                match[p] += 1
        match[p] /= len(human_bounds)
        np.random.seed(p)
        perm_bounds = np.cumsum(np.random.permutation(event_lengths))[:-1]

    return match
def srm(train_data, test_data, n_features):
    # Z-score the data
    n = len(train_data)
    for subject in range(n):
        train_data[subject] = stats.zscore(train_data[subject], axis=1, ddof=1)
        test_data[subject] = stats.zscore(test_data[subject], axis=1, ddof=1)

    model = SRM(n_iter=10, features=n_features)
    model.fit(train_data)
    projected_data = model.transform(test_data)
    for subject in range(n):
        projected_data[subject] = stats.zscore(projected_data[subject], axis=1, ddof=1)

    return projected_data
def isc_srm(X,set_srm):
    
    """perform isc on srm searchlights

       Parameters
       ----------
       X: list of searchlights where searchlights are voxels by time
       
       Returns
       -------
       r: correlations for each searchlights timecourse correlated with all other timecourses      
    """
    
    run1 = [X[i] for i in np.arange(0, int(len(X)/2))]
    run2 = [X[i] for i in np.arange(int(len(X)/2), len(X))]
    data = np.zeros((run1[0].shape[0],run1[0].shape[1]*2,len(run1)))
    
    if set_srm == 0:
        for i in range(data.shape[2]):
            data[:,:,i] = np.hstack((run1[i],run2[i])) 
        # run isc
        isc_output = brainiak.isfc.isfc(data)
    elif set_srm == 1:
        # train on run 1 and test on run 2     
        print('Building Model')
        srm = SRM(n_iter=10, features=5)   
        print('Training Model')
        srm.fit(run1)
        print('Testing Model')
        shared_data = srm.transform(run2)
        shared_data = stats.zscore(np.dstack(shared_data),axis=1,ddof=1)
        # run isc
        isc_output = brainiak.isfc.isfc(shared_data)
        print(isc_output)
       
    # average isc results
    
    mean_isc = np.mean(isc_output)
 
    return mean_isc,isc_output
示例#7
0
def sfn(l, msk, myrad, bcast_var):
    # extract training and testing data
    train_data = []
    test_data = []
    d1, d2, d3, ntr = l[0].shape
    nvx = d1 * d2 * d3
    for s in l:
        train_data.append(
            np.reshape(s[:, :, :, :int(ntr / 2)], (nvx, int(ntr / 2))))
        test_data.append(
            np.reshape(s[:, :, :, int(ntr / 2):], (nvx, ntr - int(ntr / 2))))
    # train an srm model
    srm = SRM(bcast_var[0], bcast_var[1])
    srm.fit(train_data)
    # transform test data
    shared_data = srm.transform(test_data)
    for s in range(len(l)):
        shared_data[s] = np.nan_to_num(
            stats.zscore(shared_data[s], axis=1, ddof=1))
    # experiment
    accu = timesegmentmatching_accuracy(shared_data, 6)

    return np.mean(accu), stats.sem(
        accu)  # multiple outputs will be saved as tuples
    train_list_roi_1.append(train_roi_1[:,:,i])
    test_list_roi_1.append(test_roi_1[:,:,i])

for i in range(0,train_roi_2.shape[2]):
    train_list_roi_2.append(train_roi_2[:,:,i])
    test_list_roi_2.append(test_roi_2[:,:,i])

    
# Initialize models
print('Building Model')
srm_roi_1 = SRM(n_iter=50, features=5)
srm_roi_2 = SRM(n_iter=50, features=5)

# Fit model to training data (run 1)
print('Training Model')
srm_roi_1.fit(train_list_roi_1)
srm_roi_2.fit(train_list_roi_2)

# Test model on testing data to produce shared response
print('Testing Model')
shared_data_roi_1 = srm_roi_1.transform(test_list_roi_1)
shared_data_roi_2 = srm_roi_2.transform(test_list_roi_2)

avg_response_roi_1 = sum(shared_data_roi_1)/len(shared_data_roi_1)
avg_response_roi_2 = sum(shared_data_roi_2)/len(shared_data_roi_2)

# Fit to ROI 1
ev1 = brainiak.eventseg.event.EventSegment(len(human_bounds) - 1)
ev1.fit(avg_response_roi_1[:,start:end].T)

bounds1 = np.where(np.diff(np.argmax(ev1.segments_[0], axis=1)))[0]
示例#9
0
def parcel_srm(data,
               atlas,
               k=3,
               parcel_labels=None,
               stories=None,
               subjects=None):

    # By default grab all stories
    stories = check_keys(data, keys=stories)

    # Firsts compute mean time-series for all target parcels
    targets = parcel_means(data,
                           atlas,
                           parcel_labels=parcel_labels,
                           stories=stories,
                           subjects=subjects)

    # Compute ISFCs with targets for all vertices
    target_fcs = target_isfc(data, targets, stories=stories, subjects=subjects)

    parcels = {}
    for story in stories:

        parcels[story] = {}

        # By default just grab all subjects
        subject_list = check_keys(data[story], keys=subjects, subkey=story)

        # Loop through both hemispheres
        hemi_stack = []
        for hemi in ['lh', 'rh']:

            # Loop through parcels
            parcel_tss = []
            for parcel_label in parcel_labels[hemi]:

                # Resort parcel FCs into list of subject parcels
                fc_stack = []
                ts_stack = []
                for subject in subject_list:

                    # Grab the connectivities for this parcel
                    parcel_fcs = target_fcs[story][subject][hemi][
                        atlas[hemi] == parcel_label, :]
                    fc_stack.append(parcel_fcs)

                    ts_stack.append(data[story][subject][hemi]
                                    [:, atlas[hemi] == parcel_label])

                # Set up fresh SRM
                srm = SRM(features=k)

                # Train SRM on parcel connectivities
                srm.fit(np.nan_to_num(fc_stack))

                # Apply transformations to time series
                transformed_stack = [
                    ts.dot(w) for ts, w in zip(ts_stack, srm.w_)
                ]
                transformed_stack = np.dstack(transformed_stack)
                parcel_tss.append(transformed_stack)
                print(f"Finished SRM for {hemi} parcel "
                      f"{parcel_label} in '{story}'")

            # Stack parcel means
            parcel_tss = np.hstack(parcel_tss)
            hemi_stack.append(parcel_tss)

        # Stack hemispheres
        hemi_stack = np.hstack(hemi_stack)
        assert hemi_stack.shape[1] == (len(parcel_labels['lh']) +
                                       len(parcel_labels['rh'])) * k
        assert hemi_stack.shape[2] == len(subject_list)

        # Unstack subjects
        hemi_stack = np.dsplit(hemi_stack, hemi_stack.shape[2])
        for subject, ts in zip(subject_list, hemi_stack):
            parcels[story][subject] = np.squeeze(ts)

        print(f"Finished applying cSRM to parcels for '{story}'")

    return parcels
    run1_list = []
    run2_list = []
    for r in range(len(resamp_subjs)):
        run1_list.append(run1_list_orig[resamp_subjs[r]])
        run2_list.append(run2_list_orig[resamp_subjs[r]])

    n_iter = 50
    features = 10
    # Initialize model
    print('Building Model')
    srm_train_run1 = SRM(n_iter=n_iter, features=features)
    srm_train_run2 = SRM(n_iter=n_iter, features=features)

    # Fit model to training data
    print('Training Model')
    srm_train_run1.fit(run1_list)
    srm_train_run2.fit(run2_list)

    # Test model on testing data to produce shared response
    print('Testing Model')
    shared_data_train_run1 = srm_train_run1.transform(run2_list)
    shared_data_train_run2 = srm_train_run2.transform(run1_list)

    avg_response_train_run1 = sum(shared_data_train_run1) / len(
        shared_data_train_run1)
    avg_response_train_run2 = sum(shared_data_train_run2) / len(
        shared_data_train_run2)

    ##################################################################################

    for i in range(16):
def srm_fit(target_fcs, stories=None, subjects=None,
            hemisphere=None, k=360, n_iter=10,
            half=1, save_prefix=None):

    # By default grab all stories
    stories = check_keys(target_fcs, keys=stories)

    # Recompile FCs accounting for repeat subjects
    subject_fcs = {}
    for story in stories:

        # By default just grab all subjects
        subject_list = check_keys(target_fcs[story], keys=subjects,
                                  subkey=story)

        for subject in subject_list:

            # For simplicity we just assume same hemis across stories/subjects
            hemis = check_keys(target_fcs[story][subject],
                               keys=hemisphere)

            for hemi in hemis:
                
                # If subject is not already there, make new dict for them
                if subject not in subject_fcs:
                    subject_fcs[subject] = {}
                    
                # If hemispheres aren't in there, add them
                if hemi not in subject_fcs[subject]:
                    subject_fcs[subject][hemi] = []
                    
                # Finally, make list of connectivity matrices per subject
                subject_fcs[subject][hemi].append(
                        target_fcs[story][subject][hemi])

    # Stack FCs in connectivity space (for all subjects across stories!)
    all_subjects = list(subject_fcs.keys())
    for subject in all_subjects:
        for hemi in hemis:

            # If more than one connectivity per subject, take average
            if len(subject_fcs[subject][hemi]) > 1:
                subject_fcs[subject][hemi] = np.mean(subject_fcs[subject][hemi],
                                                     axis=0)
            else:
                subject_fcs[subject][hemi] = subject_fcs[subject][hemi][0]

    # Convert FCs to list for SRM (grab the shared space too)
    transforms, shared_space, srms = {}, {}, {}
    for hemi in hemis:

        # Declare SRM for this hemi
        srm = SRM(n_iter=n_iter, features=k)

        subject_ids, subject_stack = [], []
        for subject in all_subjects:
            subject_ids.append(subject)
            subject_stack.append(subject_fcs[subject][hemi])
            if subject not in transforms:
                transforms[subject] = {}

        # Train SRM and apply
        start = time()
        srm.fit(subject_stack)
        print(f"Finished fitting SRM after {time() - start:.1f} seconds")

        for subject_id, transform in zip(subject_ids, srm.w_):
            transforms[subject_id][hemi] = transform
            
        shared_space[hemi] = srm.s_
        srms[hemi] = srm
        
    if save_prefix:
        np.save(f'data/half-{half}_{save_prefix}_w.npy', transforms)
        np.save(f'data/half-{half}_{save_prefix}_s.npy', shared_space)

    return transforms, srms
示例#12
0
for i in range(0, train_A1.shape[2]):
    train_list_A1.append(train_A1[:, :, i])
    test_list_A1.append(test_A1[:, :, i])

for i in range(0, train_vmPFC.shape[2]):
    train_list_vmPFC.append(train_vmPFC[:, :, i])
    test_list_vmPFC.append(test_vmPFC[:, :, i])

# Initialize models
print('Building Model')
srm_A1 = SRM(n_iter=10, features=50)
srm_vmPFC = SRM(n_iter=10, features=10)

# Fit model to training data (run 1)
print('Training Model')
srm_A1.fit(train_list_A1)
srm_vmPFC.fit(train_list_vmPFC)

# Test model on testing data to produce shared response
print('Testing Model')
shared_data_A1 = srm_A1.transform(test_list_A1)
shared_data_vmPFC = srm_vmPFC.transform(test_list_vmPFC)

avg_response_A1 = sum(shared_data_A1) / len(shared_data_A1)
avg_response_vmPFC = sum(shared_data_vmPFC) / len(shared_data_vmPFC)

A1_no_srm = np.mean(test_A1, axis=2)
vmPFC_no_srm = np.mean(test_vmPFC, axis=2)

X_MIN = 0
X_MAX = spect_corr.shape[0]
示例#13
0
def srm_fit(target_fcs, stories=None, subjects=None,
            hemisphere=None, k=360, n_iter=10):

    # By default grab all stories
    stories = check_keys(target_fcs, keys=stories)

    # Recompile FCs accounting for repeat subjects
    subject_fcs = {}
    for story in stories:

        # By default just grab all subjects
        subject_list = check_keys(target_fcs[story], keys=subjects,
                                  subkey=story)

        for subject in subject_list:

            # For simplicity we just assume same hemis across stories/subjects
            hemis = check_keys(target_fcs[story][subject],
                               keys=hemisphere)

            for hemi in hemis: 
                if subject not in subject_fcs:
                    subject_fcs[subject] = {}
                if hemi not in subject_fcs[subject]:
                    subject_fcs[subject][hemi] = []
                subject_fcs[subject][hemi].append(
                        target_fcs[story][subject][hemi])

    # Stack FCs across stories in connectivity space
    for subject in subject_list:
        for hemi in hemis:

            if len(subject_fcs[subject][hemi]) > 1:
                subject_fcs[subject][hemi] = np.mean(subject_fcs[subject][hemi],
                                                     axis=0)
            else:
                subject_fcs[subject][hemi] = subject_fcs[subject][hemi][0]

    # Convert FCs to list for SRM
    transforms = {}
    for hemi in hemis:

        # Declare SRM for this hemi
        srm = SRM(n_iter=n_iter, features=k)

        subject_ids, subject_stack = [], []
        for subject in subject_list:
            subject_ids.append(subject)
            subject_stack.append(subject_fcs[subject][hemi])
            if subject not in transforms:
                transforms[subject] = {}

        # Train SRM and apply
        start = time()
        srm.fit(subject_stack)
        print(f"Finished fitting SRM after {time() - start:.1f} seconds")

        for subject_id, transform in zip(subject_ids, srm.w_):
            transforms[subject_id][hemi] = transform

    return transforms
示例#14
0
def HMM(X, human_bounds, song_idx, song_bounds, hrf, srm_k):
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subjects using within song and between song average correlations              
       Parameters
       ----------
       A: list of 50 (contains 2 runs per subject) 2D (voxels x full time course) arrays
       B: # of events for HMM (scalar)
       song_idx: song index (scalar)
       C: voxel by time ndarray (2D)
       D: array of song boundaries (1D)
 
       Returns
       -------
       wVa score: final score after performing cross-validation of leftout subjects      
    """

    w = 6
    nPerm = 1000
    within_across = np.zeros(nPerm + 1)
    run1 = [X[i] for i in np.arange(0, int(len(X) / 2))]
    run2 = [X[i] for i in np.arange(int(len(X) / 2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)
    others = np.mean(
        shared_data[:, song_bounds[song_idx]:song_bounds[song_idx + 1], :13],
        axis=2)
    loo = np.mean(shared_data[:,
                              song_bounds[song_idx]:song_bounds[song_idx + 1],
                              13:],
                  axis=2)
    nTR = loo.shape[1]

    # Fit to all but one subject
    K = len(human_bounds) + 1
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(others.T)
    events = np.argmax(ev.segments_[0], axis=1)

    # Compute correlations separated by w in time
    corrs = np.zeros(nTR - w)
    for t in range(nTR - w):
        corrs[t] = pearsonr(loo[:, t], loo[:, t + w])[0]

    # Compute within vs across boundary correlations, for real and permuted bounds
    for p in range(nPerm + 1):
        within = corrs[events[:-w] == events[w:]].mean()
        across = corrs[events[:-w] != events[w:]].mean()
        within_across[p] = within - across

        np.random.seed(p)
        events = np.zeros(nTR, dtype=np.int)
        events[np.random.choice(nTR, K - 1, replace=False)] = 1
        events = np.cumsum(events)
    print((within_across[0] - np.mean(within_across[1:])) /
          np.std(within_across[1:]))
    return within_across
示例#15
0
def HMM(X, K, loo_idx, song_idx, song_bounds):
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subject using within song and between song average correlations              

       Parameters
       ----------
       A: voxel by time ndarray (2D)
       B: voxel by time ndarray (2D)
       C: voxel by time ndarray (2D)
       D: voxel by time ndarray (2D)
       K: # of events for HMM (scalar)
 
       Returns
       -------
       z: z-score after performing permuted cross-validation analysis      

    """

    w = 6
    srm_k = 45
    nPerm = 1000
    within_across = np.zeros(nPerm + 1)
    run1 = [X[i] for i in np.arange(0, int(len(X) / 2))]
    run2 = [X[i] for i in np.arange(int(len(X) / 2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)
    others = np.mean(shared_data[:, :,
                                 np.arange(shared_data.shape[-1]) != loo_idx],
                     axis=2)
    loo = shared_data[:, song_bounds[song_idx]:song_bounds[song_idx + 1],
                      loo_idx]
    nTR = loo.shape[1]

    # Fit to all but one subject
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(others[:, song_bounds[song_idx]:song_bounds[song_idx + 1]].T)
    events = np.argmax(ev.segments_[0], axis=1)

    ####
    # plot searchlights
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    shared_data = srm.transform(run2)
    avg_response = sum(shared_data) / len(shared_data)
    plt.figure(figsize=(10, 10))
    plt.imshow(np.corrcoef(avg_response[:, 0:89].T))
    bounds = np.where(np.diff(np.argmax(ev.segments_[0], axis=1)))[0]
    ax = plt.gca()
    bounds_aug = np.concatenate(([0], bounds, [nTR]))
    for i in range(len(bounds_aug) - 1):
        rect1 = patches.Rectangle((bounds_aug[i], bounds_aug[i]),
                                  bounds_aug[i + 1] - bounds_aug[i],
                                  bounds_aug[i + 1] - bounds_aug[i],
                                  linewidth=3,
                                  edgecolor='w',
                                  facecolor='none',
                                  label='Model Fit')
        ax.add_patch(rect1)
    plt.title('HMM Fit to A1 SRM K = ' + str(srm_k),
              fontsize=18,
              fontweight='bold')
    plt.savefig('plots/St_Pauls SRM K = ' + str(srm_k))
    ####

    # Compute correlations separated by w in time
    corrs = np.zeros(nTR - w)
    for t in range(nTR - w):
        corrs[t] = pearsonr(loo[:, t], loo[:, t + w])[0]

    # Compute within vs across boundary correlations, for real and permuted bounds
    for p in range(nPerm + 1):
        within = corrs[events[:-w] == events[w:]].mean()
        across = corrs[events[:-w] != events[w:]].mean()
        within_across[p] = within - across

        np.random.seed(p)
        events = np.zeros(nTR, dtype=np.int)
        events[np.random.choice(nTR, K - 1, replace=False)] = 1
        events = np.cumsum(events)

    return within_across